首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
We used a before-after, control-impact design (one year pre-harvest, two years post-harvest) and unlimited-radius point counts to study the effects of typical group-selection harvesting (0.5 gaps ha−1 placed near seed trees within a standard single-tree selection harvest) and intensive group-selection harvesting (4 gaps ha−1 placed on a grid with no harvesting between gaps) on the composition and abundance of breeding birds in tolerant hardwood forests in Algonquin Provincial Park, Ontario. Percent similarity between pre- and post-harvest bird communities was 5–9% lower in selection harvested stands than in reference stands. Differences in percent similarity among the three treatments were not significant, however, suggesting that the changes in the bird community in stands harvested with group selection were not substantially different than those in reference stands. Abundance of aerial foragers and tree-and-shrub nesters increased in response to typical and intensive group selection in the second year post-harvest. By contrast, bark foragers and cavity-nesters decreased in the first year post-harvest and then increased in the second year post-harvest in response to typical group selection. Abundance of 16 (73%) of 22 species was not affected by harvesting. Blue Jay (Cyanocitta cristata), Chestnut-sided Warbler (Dendroica pensylvanica), Least Flycatcher (Empidonax minimus), and White-throated Sparrow (Zonotrichia albicollis) increased in response to intensive group selection in the first or second year post-harvest, whereas Chestnut-sided Warbler, Hairy Woodpecker (Picoides villosus), and White-throated Sparrow increased in response to typical group selection in the first or second year post-harvest. Ovenbird (Seiurus aurocapilla) decreased slightly in response to typical group selection in the second year post-harvest. Our short-term data suggest that intensive, rather than typical, group-selection harvesting is preferred for maintaining densities of cavity-nesting birds and Ovenbird; whether these advantages continue through the remainder of the cutting cycle and beyond requires further investigation.  相似文献   

2.
Shelterwood seed cutting in conjunction with herbicide site preparation has proven effective at regenerating Allegheny hardwood forests, but the long-term impact of this silvicultural system on herbaceous vegetation has not been determined. From 1994 to 2004, we studied the impacts of operational herbicide site preparation using glyphosate plus sulfometuron methyl herbicides in the context of a shelterwood seed cut. Our study took place on 10 partially cut sites on the Allegheny National Forest in northwestern Pennsylvania. Half of each site received herbicide and half did not in a split-plot design with repeated measures. Fences were erected after year six because deer impact had increased. Resilience of individual species and the community were determined using measures of percent cover by species or species groups and indices of diversity and similarity comparing post-treatment to pre-treatment conditions and controls. In the short term, abundance of all species was reduced and there were four fewer species on average in treated areas. No species was eliminated by herbicide across all sites in the long term. Graminoids were more abundant on treated plots after year six. Targeted ferns remained less abundant on treated than control plots after 10 years. Species richness recovered within 4 years following treatment. Shannon Diversity and Shannon Evenness were greater in treated than in control plots over the full study period, but the differences were not significant in any single year. The richness-based Jaccard index of similarity did not differ between control and treatment plots after year two, while relative abundance influenced indices showed significant differences through year eight. Results suggest that herbaceous layer vegetation is resilient to the disturbance created by herbicide-shelterwood treatments.  相似文献   

3.
Large herbivores have potential to affect invertebrate community structure through numerous processes, but little work has been done to evaluate the relative importance of direct and indirect factors. In this study, we measured arthropod community assemblages on Ceanothus fendleri A. Gray (Fendler's ceanothus) plants that were growing inside and outside of 4-m2 exclosures. We used univariate analyses and structural equation modeling (SEM) to evaluate relationships within this herbivore–plant–arthropod system in ponderosa pine (Pinus ponderosa Laws.) forests of northern Arizona, USA. Results showed that individual arthropod abundance, family diversity, family richness, and functional group richness were significantly greater on plots where C. fendleri plants were protected from large ungulate herbivores (e.g., mule deer (Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus nelsoni)) than on unprotected plots in each of the three study years. Results also indicated the following: (1) arthropod abundance was significantly greater on protected plants than unprotected plants; (2) rarefaction curves suggested arthropod family richness was similar between protected and unprotected plants in two of the three years when scaled by number of individuals but the estimated total richness was consistently higher on protected plants; (3) arthropod abundance was directly affected by protection from herbivores, plant stem length, and number of flowers; (4) arthropod family richness was related to the number of individuals collected and affected by stem length. Results from this study illustrate that arthropod communities are directly affected by foraging vertebrate herbivores as well as indirectly affected through complex plant-mediated factors in this model system. Protection of preferred forage plants such as C. fendleri from ungulate herbivores can potentially increase diversity of arthropod assemblages in these forests, help conserve biological diversity, and enhance ecosystem restoration efforts.  相似文献   

4.
Storm damage in production forests constitutes a major source of economic loss world wide, yet the retrieval of salvageable timber remains problematic. In particular, an inability to anticipate when sapstain and degrade will appear hampers the planning of log recovery operations. A study was conducted to monitor the deterioration of fallen trees following two winter storms causing wind and snow damage in a Pinus radiata plantation forest in the upper South Island of New Zealand. Percentage sapstain, incidence of basidiomycete decay fungi, and frequency of bark beetle infestation increased, while percentage sapwood moisture content decreased, over a period of 1 year. These changes proceeded more rapidly in fallen trees that were severed at stump height, to simulate breakage, than in those that were left partially rooted. There was little beetle activity at the time of the storms, but Arhopalus ferus (Coleoptera: Cerambycidae), and Hylastes ater, Hylurgus ligniperda and Pachycotes peregrinus (Coleoptera: Curculionidae: Scolytinae), were collected in flight traps during the following spring and summer. The predominant fungal species associated with sapstain was Diplodia pinea, while Ophiostoma piceae and Grosmannia huntii were isolated near the end of the period. The main decay fungi obtained were Phlebiopsis gigantea, Stereum sanguinolentum, and Schizophyllum commune. A generalized linear mixed model was constructed to predict the development of sapstain in fallen trees for conditions prevailing during the study after a storm at the same time of year. According to the model, a 10 m long butt log of 22 cm mid length diameter will have minimal stain (<10% of the cross sectional area affected) when cut from severed stems up to 4 months after the storm; if taken from still-rooted trees this period will extend to 1 year. However, because of large between-tree variation, economically productive log recovery will also depend on the proportion of trees that lie below an acceptable sapstain threshold. Further research is needed to determine regional and seasonal influences on the development of sapstain in fallen trees.  相似文献   

5.
Changes in historical forest composition and structure may have cascading effects throughout the forest community. Perhaps nowhere is there a better example of current forests that carry a legacy from their past than in eastern North America. The Cerulean Warbler (Dendroica cerulea), a declining Neotropical migratory bird of high conservation concern, is one excellent example of a species that seems to be sensitive to both landscape configuration and subtle features of eastern forests of North America. We used the Cerulean Warbler as a model species to demonstrate how an appreciation of fine-scale structural attributes of forests may improve our ability to conserve late-successional forest species. To do this we evaluated the extent to which multiscale habitat features were associated with density, spatial distribution, and nesting success of Cerulean Warblers in 12 mature forest sites in southeast Ohio, 2004–2006. Results suggest that adjacency of regenerating clear-cuts did not influence density or nesting success of Cerulean Warblers in adjacent mature forest. Instead, variation in demographic parameters was best explained by local habitat features. Density and nesting success were positively associated with canopy openness, numbers of large-diameter trees, and number of grapevines—all of which are typical of heterogeneous steady-state phase forests. Thus, improved management for Cerulean Warblers may require creating features (e.g., large canopy gaps) that mimic old-growth forests. Although fragmentation and habitat loss remain important contributors to population declines of many mature forest species, our work provides evidence that subtle changes in forest structure, particularly to features associated with old forests, warrant additional attention from the conservation community.  相似文献   

6.
Use of herbicides in forestry to direct successional trajectories has raised concerns over possible direct or indirect effects on non-target organisms. We studied the response of forest birds to an operational application of glyphosate and sulfometuron methyl herbicides, using a randomized block design in which half of each 8 ha block received herbicide and the other acted as a control, on shelterwood seed-cut Allegheny hardwood stands in northwestern Pennsylvania. We monitored birds using 50 m radius point counts in two pretreatment years and for 10 years post-treatment (1992-2004). Fences were erected six years after herbicide treatment in response to increased deer browsing at a subset of sites. Avian responses to herbicide treatment varied by nesting guild: we detected no response by cavity-nesters, but documented declines in the shrub-, ground- and canopy-nesting guilds. Responses were short-lived (2-4 years post-treatment), but shrub-nesters did not recover until fencing provided regenerating vegetation respite from browsing. Thus, apparent responses of birds to herbicide were confounded with deer browsing in this study. High species turnover, even within control plots, suggests that avian communities may be assessed more appropriately assessed at larger spatial scales than those used in this study (6.5-8 ha).  相似文献   

7.
Green-tree retention systems are an important management component of variable retention harvests in temperate zone coniferous forests. Residual live trees (“legacy trees”) provide mature forest habitat, increase structural diversity, and provide continuity in the regenerating stand. This study was designed to test the hypotheses that, at up to 8 years after harvest, abundance and species diversity of communities of (i) understory plants and (ii) forest-floor small mammals, and (iii) relative habitat use by mule deer (Odocoileus hemionus), will decline with decreasing levels of tree retention. Communities of plants and forest floor small mammals were sampled in replicated clearcut, single seed-tree, group seed-tree, patch cut, and uncut forest sites in mixed Douglas-fir (Pseudotsuga menziesii)—lodgepole pine (Pinus contorta) forest in southern British Columbia, Canada from 2000 to 2003 (5–8 years post-harvest). Habitat use by mule deer was measured during summer and winter periods each year from 1999 to 2003 in these same sites.  相似文献   

8.
Individuals’ home ranges are constrained by resource distribution and density, population size, and energetic requirements. Consequently, home ranges and habitat selection may vary between individuals of different sex and reproductive conditions. Whilst home ranges of bats are well-studied in native habitats, they are often not well understood in modified landscapes, particularly exotic plantation forests. Although Chalinolobus tuberculatus (Vespertilionidae, Chiroptera) are present in plantation forests throughout New Zealand their home ranges have only been studied in native forest and forest-agricultural mosaic and no studies of habitat selection that included males had occurred in any habitat type. Therefore, we investigated C. tuberculatus home range and habitat selection within exotic plantation forest. Home range sizes did not differ between bats of different reproductive states. Bats selected home ranges with higher proportions of relatively old forest than was available. Males selected edges with open unplanted areas within their home ranges, which females avoided. We suggest males use these edges, highly profitable foraging areas with early evening peaks in invertebrate abundance, to maintain relatively low energetic demands. Females require longer periods of invertebrate activity to fulfil their needs so select older stands for foraging, where invertebrate activity is higher. These results highlight additional understanding gained when data are not pooled across sexes. Mitigation for harvest operations could include ensuring that areas suitable for foraging and roosting are located within a radius equal to the home range of this bat species.  相似文献   

9.
The single-tree selection system is an important option for management of Norway spruce (Picea abies (L.) Karst.) and silver fir (Abies alba Mill.) forests because it provides continuous cover, requires low investments for tending, and promotes natural regeneration as well as high stand resistance and elasticity. It is often regarded as a very conservative system that usually results in only minor spatiotemporal changes in forest structure and composition. We studied management history, structural changes, regeneration dynamics, and light climate of a traditional single-tree farmer selection silver fir-Norway spruce forest (site typology Bazzanio-Abietetum). Stand structure was analyzed on five 0.25 ha permanent plots in 1994, 2001, and 2008. Regeneration density and height growth, forest floor vegetation, and light climate were also assessed on 1.5 × 1.5 m regeneration subplots in 2001 and 2008. Tree cores extracted from dominant trees from both species in two plots were used for reconstructing stand history and age structure of the canopy layer. We documented the forest response to three types of selection management regimes: excessive, normal, and conservative. Excessive management with harvest intensity significantly above the increment was documented until the late 1950s, including two peaks of heavy fellings (diameter limit cut) in the 1880s and 1930s, which favoured establishment of Norway spruce and released regeneration. The period that followed was characterized by normal selection management, but was nevertheless marked by a decline of silver fir as a result of air pollution and several droughts. This led to sanitary fellings that were carried out from the late 1970s to the early 1990s. In the last two decades conservative management followed, which led to suppression and decline of regeneration, especially of Norway spruce, and loss of selection structure. Although we recorded lower regeneration potential of silver fir compared with Norway spruce within the seedling category, silver fir outcompeted Norway spruce within the small-sized tree category (1 cm < dbh ? 10 cm) because of its superior height growth in low light levels (diffuse light <6%) and occupied a greater share of the canopy. Nevertheless, we anticipate that over the long-term the low light regime will also cause regeneration decline of silver fir and broadleaves. Our research revealed significant structural changes in a single-tree farmer selection forest during the last 150 years. These were a result of variable management regime and environment. A farmer single-tree selection system could better mimic the natural disturbance regime if spatiotemporal combinations of diverse felling regimes would be used.  相似文献   

10.
Plant invasions of natural communities are commonly associated with reduced species diversity and altered ecosystem structure and function. This study investigated the effects of invasion and management of the woody shrub Lantana camara (lantana) in wet sclerophyll forest on the south-east coast of Australia. The effects of L. camara invasion and management on resident vegetation diversity and recruitment were determined as well as if invader management initiated community recovery. Vascular plant species richness, abundance and composition were surveyed and compared across L. camara invaded, non-invaded and managed sites following L. camara removal during a previous control event by land managers. Native tree juvenile and adult densities were compared between sites to investigate the potential effects of L. camara on species recruitment. Invasion of L. camara led to a reduction in species richness and compositions that diverged from non-invaded vegetation. Species richness was lower for fern, herb, tree and vine species, highlighting the pervasive threat of L. camara. For many common tree species, juvenile densities were lower within invaded sites than non-invaded sites, yet adult densities were similar across all invasion categories. This indicates that reduced species diversity is driven in part by recruitment limitation mechanisms, which may include allelopathy and resource competition, rather than displacement of adult vegetation. Management of L. camara initiated community recovery by increasing species richness, abundance and recruitment. While community composition following L. camara management diverged from non-invaded vegetation, vigorous tree and shrub recruitment signals that long-term community reinstatement will occur. However, secondary weed invasion occurred following L. camara control. Follow-up weed control may be necessary to prevent secondary plant invasion following invader management and facilitate long-term community recovery.  相似文献   

11.
Boreal forest ecosystems are generally highly sensitive to logging and other forestry activities. Thus, commercial forestry has had major effects on the forests and landscape structure in northern Sweden since the middle of the 19th Century, when it rapidly extended across the region. Lichens (which constitute up to 80% of reindeer forage in winter and early spring) have often been amongst the most severely affected ecosystem components. The overall aim of the present study was to analyze how forestry has influenced the potential supply of ground-growing lichens as winter forage for the reindeer in this region over the past ca. 100 years. For this purpose, we analysed changes in forest and stand structure in Scots pine-dominated (Pinus sylvestris L.) reindeer wintering areas in the southern part of the county Norrbotten (covering ca. 58,000 ha) using detailed historical forest inventories and management plans. We found that the amount of the forest types considered potentially good pasture (mainly middle-aged and old pine forests) decreased during the first part of the 20th Century. However, the quality of grazing grounds was improved by forestry during this time mainly because selective logging made the forests more open which benefits lichen growth. During the last part of the 20th century forestry impaired the quality of grazing grounds in several ways, e.g. by clear-cutting and intensified use of various silvicultural measures. We conclude that ca. 30–50% of the winter grazing grounds have been lost in the study area because of intensive forest management during the last century. The spatially precise historical information about the affects of forestry on lichen pasture provided in this study can be used to direct forest management which will facilitate and promote reindeer herding in the future.  相似文献   

12.
We studied the short-term effects of a catastrophic windstorm and subsequent salvage-logging and prescribed-burning fuel-reduction treatments on ground beetle (Coleoptera: Carabidae) assemblages in a sub-boreal forest in northeastern Minnesota, USA. During 2000–2003, 29,873 ground beetles represented by 71 species were caught in unbaited and baited pitfall traps in aspen/birch/conifer (ABC) and jack pine (JP) cover types. At the family level, both land-area treatment and cover type had significant effects on ground beetle trap catches, but there were no effects of pinenes and ethanol as baits. Six times more beetles were trapped in the burned forests than in the other land-area treatments; more beetles were caught in undisturbed than in wind-disturbed sites, and one-third more beetles were caught in the ABC than in the JP cover type. Thus, the windstorm generally reduced the activity-abundance of the beetles, but prescribed-burning increased it. Both salvaged and burned forest plots (especially in the ABC cover type) had the greatest species richness, diversity, and the most unique species assemblages. There was a highly similar ground beetle species composition (nearly 100%) between the ABC and JP burned forests, indicating that burning was a more primary driver of composition than cover type. At the species level, Pterostichus melanarius, an invasive ground beetle from Europe and a cover type generalist, was the most abundant beetle in the study (one-third of the total catch), and was caught in greatest numbers in burned forests. Removal of P. melanarius from the species composition analyses altered similarities among cover types and land-area treatments. Sphaeroderus nitidicollis brevoorti and Myas cyanescens were caught exclusively in the ABC and JP cover type, respectively; two rare pyrophilous species, Sericoda obsoleta and Sericoda quadripunctata, were only caught in burned sites; three forest species, Pterostichus coracinus, P. pensylvanicus, and Sphaeroderus lecontei, were caught more often in undisturbed JP sites; and two frequently trapped, open-habitat species, Agonum cupripenne and Poecilus l. lucublandus, were nearly absent from the undisturbed and wind-disturbed sites, as salvage-logging had a significant positive effect on their activity-abundance. Most species of Amara and Harpalus were trapped only in the salvaged or burned sites, indicating invasion of these disturbed sites by open-habitat species. We conclude that both the combined effect of fuel-reduction activities subsequent to the wind event and the numerical response of the invasive P. melanarius to habitat disturbances can alter the short-term succession of ground beetle assemblages in the sub-boreal forest.  相似文献   

13.
Bamboos’ vegetative growth are frequently associated to negative effects on tree recruitment and survival and despite this process, the effects of bamboo dieback after flowering events are poorly understood due the rarity of these events. 2 years after the massive flowering of the woody bamboo Merostachys multiramea in a southern South America subtropical forest, we compared changes in environmental conditions; tree species regeneration and production of new culms in canopy gaps resulted from bamboo dieback and areas of continuous canopy allowed by sparse bamboo cover. We observed sharp differences in environment conditions mainly resulted from differences in canopy openness and a NPMANOVA revealed differences among the stands regeneration directions (species composition and density). Average density, number of culms per sapling and total height of M. multiramea did not differ between stands, although slight differences were detected with increasing values toward opened sites.  相似文献   

14.
In an earlier study (Franc et al., 2007), local species richness of saproxylic oak beetles (including red-listed beetles) in forests was predicted mainly by the landscape (area of woodland key habitat within 1 km of plots). Such results are important for conservation work, but need to be backed up well, for reliable advice. We tested a two-stage method that improved our earlier models and our advice for conservation planning. We studied temperate mixed forest, rich in oaks Quercus robur/Quercus petraea, in a large landscape in Sweden. Franc et al. (2007) analysed 21 forests. Here we selected the significant explanatory variables (predictors) and other biologically relevant predictors, used the earlier 21 forests and sampled 11 new forests such that we expanded the range on the axes of the predictors. We collected in total 320 species of saproxylic oak beetles (23,137 individuals) of which 65 and 38 were red-listed (IUCN criteria, Swedish list 2000 and 2005, respectively). We partly confirmed our original results, but the results also changed in important ways: local species richness is now predicted by a combination of local, landscape and regional factors. Moreover, a local variable (dead wood) was the main predictor of saproxylic oak beetles (all species included), while for red-listed saproxylic oak beetles the landscape (woodland key habitat within 1 km of plots) was the main predictor, of local species richness. Thus, species richness of red-listed saproxylic oak beetles seems to depend mainly on landscapes factors, while total species richness of saproxylic oak beetles seems to depend more on local stand factors. We conclude that a two-stage research design can be useful in landscape and conservation studies, especially for species-rich taxa that require large samples per site.  相似文献   

15.
The aim of this study is to determine the competing regeneration and expansion patterns of two co-occurring pine species (Pinus brutia, Pinus nigra ssp. pallasiana), in a transitional montane Mediterranean zone. We measured the regeneration density of all woody species in 102 randomly located stands along an altitudinal gradient on the island of Lesbos, Greece. Individuals of pines were assigned to different size classes. Topographic factors (altitude, aspect, and soil depth) and light availability (through hemispherical photographs) were measured for each stand. Statistical analyses were applied to explore the effect of each factor on recruitment density of the competing pine species, and to elucidate patterns of interaction. Canopy openness was the most important parameter controlling the recruitment of P. brutia, while the regeneration density of P. nigra was mainly related to canopy openness and heat load. An idiosyncratic response of the recruitment vigour of the two species was identified along gradients of shade and drought stress. The decline in P. nigra recruitment density with drought conditions underlines threats to its population maintenance even in the absence of fire. On the other hand P. brutia seems to be a stronger invader in transitional zones. The studied species could be considered typical representatives of the two most widely distributed pine functional types across the Mediterranean basin, and our results agree with the theoretical ability of such species to maintain and expand their populations.  相似文献   

16.
Although the removal or addition of understory vegetation has been an important forest management practice in forest plantations, the effects of this management practice on soil respiration are unclear. The overall objective of this study was to measure and model soil respiration and its components in a mixed forest plantation with native species in south China and to assess the effects of understory species management on soil respiration and on the contribution of root respiration (Rr) to total soil respiration (Rs). An experiment was conducted in a plantation containing a mixture of 30 native tree species and in which understory plants had been removed or replaced by Cassia alata Linn. The four treatments were the control (Control), C. alata addition (CA), understory removal (UR) and understory removal with C. alata addition (UR + CA). Trenched subplots were used to quantify Rr by comparing Rs outside the 1-m2 trenched subplots (plants and roots present) and inside the trenched subplots (plants and roots absent) in each treatment. Annual soil respiration were modeled using the values measured for Rs, soil temperature and soil moisture. Our results indicate that understory removal reduced Rs rate and soil moisture but increased soil temperature. Regression models revealed that soil temperature was the main factor and soil moisture was secondary. Understory manipulations and trenching increased the temperature sensitivity of Rs. Annual Rs for the Control, CA, UR and UR + CA treatments averaged 594, 718, 557 and 608 g C m−2 yr−1, respectively. UR decreased annual Rs by 6%, but CA increased Rs by about 21%. Our results also indicate that management of understory species increased the contribution of Rr to Rs.  相似文献   

17.
The applicability of sap flux (Fd) measurements to bamboo forests has not been studied. This study was undertaken to establish an optimal and effective design for stand-scale transpiration (E) estimates in a Moso bamboo forest. To this aim, we validated Fd measurements in Moso bamboos in a cut bamboo experiment. In addition, we analyzed how sample sizes affect the reliability of E estimates calculated from Fd and conducting culm area (AS_b). In the cut bamboo experiments, we found that Fd measurement using a 10 mm probe was a valid means of determining the water-use behavior of a Moso bamboo, although a specific correction was needed. Furthermore, we calculated E from stand AS_b (AS_stand) and mean stand Fd (JS). Employing Monte Carlo analysis, we examined potential errors associated with sample size in E, AS_stand, and JS using an original dataset with AS_b and Fd measured for 40 and 16 individuals, respectively. Consequently, we determined the optimal sample size for both AS_stand and JS estimates as 11. The optimal sample sizes for JS were almost the same under different vapor pressure deficit and soil moisture conditions. The optimal sample size for JS at the study site was less than that of a coniferous plantation in the same region probably owing to small individual-to-individual variations in sap flux in the Moso bamboo forest. Our study concludes that sap flux measurements are an applicable technique for assessing water use in Moso bamboo forests.  相似文献   

18.
The relationship between the recovery of canopy trees after fire and root collar sprout dynamics was investigated during 1998–2000 in a secondary cool-temperate broad-leaved forest consisting of Quercus mongolica var. grosseserrata and Betula platyphylla var. japonica trees, in northern Hokkaido, Japan, which burned in April 1998. All of the Betula trees that were severely damaged, two-thirds of those slightly damaged, and half of those intact in 1998, died within three growing seasons after the fire. By contrast, half of the Quercus trees that were slightly damaged and half of those severely damaged recovered their foliage, and no slightly damaged or intact trees died during the three growing seasons after the fire. Many Betula trees developed several fruiting bodies of wood-destroying fungi on their stems, irrespective of damage severity. Fungi also infected some of the surviving Quercus, although the crowns tended to recover. Although many sprouting Betula were observed in 1998, the number of sprouts declined rapidly over the study period. Multiple regression analyses showed that the survival and growth of Betula sprouts were positively influenced by the number of sprouts in 1998, damage severity in 1998, and the degree of recover or decline during the study period, and were negatively influenced by parent tree size. On the other hand, a few sprouts of Quercus remained alive. Quercus remained dominant and the dominance of Betula was rapidly reduced after the fire. However, many Betula sprouts remained alive. Stand structure will change drastically for the time being.  相似文献   

19.
20.
Since the late 1990s, decline of B. maximowicziana Regel has been observed in mature secondary forests in various parts of Hokkaido, northern Japan. To develop a method of thinning for large-timber production of B. maximowicziana, we measured basal area growth and the mortality of 217 trees during a four-year period (1999–2003) in a 90-year-old secondary forest with serious tree damage. We analyzed growth and mortality in relation to the degree of crown dieback (DC), symmetric and asymmetric competition from neighbors, and initial tree size. Individual basal area growth decreased with increasing DC, with increasing symmetric (two-sided) competition, and with decreasing initial tree size. During the four-year period, 4.1% of the observed trees died. Logistic regression analysis revealed that mortality rate increased with increasing DC and with increasing symmetric competition. These results suggest that both growth and mortality rates were affected by the same factors (i.e., DC and symmetric competition). We concluded that the resource for which individuals were competing at the study site was underground, most likely water. Modeled growth and mortality rates can be used to improve the management of damaged forests. A management plan for the damaged study site is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号