首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire scars in dated sequences of tree-rings are regularly used for the reconstruction of histories of forest fire frequency and investigations of various exogenous factors (climate in particular) which may control such events. The potential of the tree-ring archive in this regard is such that in circumstances where no scarring occurs following a particular fire, or where sampling is limited to increment cores which may miss the zone of scarring, alternate means of detecting tree-ring evidence for fire impact must be sought. One possible alternative may be detection of changes in tree-ring chemistry associated with growth years following forest fires. If it was possible to characterize such a change in chemistry an independent proxy for forest fires in tree-ring series might be established. The behavior of various elements within the xylem is however extremely complex so for a dendrochemical approach to fire history to be established, new techniques are required to enhance existing knowledge of elemental behavior in trees affected by fire. In this study, elemental intensities were mapped across scarred and un-scarred vectors of Pseudotsuga macrocarpa (Vasey) Mayr (bigcone Douglas-fir) tree-rings from a site in the Los Padres National Forest, Southern California, using Scanning X-Ray Fluorescence Microscopy (SXFM). The aims were: to assess the potential of this technique for understanding elemental change in relation to fire scars and undamaged contemporary growth; to provide new information on specific elemental behavior in this species; and to contribute to wider research for dendrochemically establishing fire histories. The results highlight the potential of SXFM for mapping elemental changes associated with compartmentalization, callus and woundwood as well as providing some evidence for depletion of certain elements in contemporary un-scarred rings. They also provide a first step towards future work to use cores for dendrochemical construction of fire histories.  相似文献   

2.
We estimated the potential of plantation forests for the restoration of the original plant community. We compared the understory vegetation in hinoki (Chamaecyparis obtusa [Sieb. et Zucc.] Endlicher) plantations at the understory re-initiation stage and in adjacent natural forests. To estimate the effect of the original natural forests on the understory species composition of plantation forests, we established study sites in five types of natural forests (mature evergreen broadleaf, mature deciduous broadleaf, mature evergreen coniferous, immature deciduous broadleaf warm-temperate, and immature deciduous broadleaf cool-temperate) and nearby plantation forests. The understory vegetation of the plantation forests had a higher species richness, a higher proportion of early-seral species, and a higher proportion of herb or fern species than the natural forests. The differences between natural and plantation forests varied according to the species composition of the natural forests. The composition of the understory vegetation of the plantations at the understory re-initiation stage was similar to that of the immature deciduous forests. The characteristics of immature, disturbed forests remained in the understory vegetation of the hinoki forests. No great loss of species was observed. Our findings suggest that most of the original forest species still survive in the understory of the plantation forests. These forests have the potential to follow the successional pathway to broadleaf or mixed forests via thinning or clear-cutting without planting.  相似文献   

3.
Age structure and regeneration dynamics of subalpine fir (Abies fargesii) forest were studied across the altitudinal range in both the north and south aspects of the Qinling Mountains, China. Ages of individual fir trees were determined based on the number of rings counted from cores and the number of years to reach coring height estimated using age–height regression. Fir age structure and regeneration dynamics were similar in both the north and south aspects. A unimodal population age structure was found at the low- and mid-elevations in both aspects, indicating that environmental factors might play an important role in shaping A. fargesii age structure and regeneration at those sites. There was a recruitment pulse during the time period 1830–1890 at each altitudinal site, but no stem recruitment occurred at the low- and mid-elevations in the last century, which might be attributed to the intensive cover of understory bamboo. Fir trees were, however, persistently recruited at the upper limits during the last 150 years, and the fir tree density at the upper limits was significantly higher than that at the lower limits in both aspects. The fir population at the upper limits showed a significant increase in recruitment and stem density relative to the fir population at the low- and mid-elevations in the last century. We propose that the differences in recruitment might promote variations in stand structure and regeneration dynamics of the subalpine fir forests along the altitudinal gradient in the Qinling Mountains, China.  相似文献   

4.
Old growth stands of boreonemoral spruce (Picea abies) forests frequently have a shrub layer dominated by hazel (Corylus avellana) – a species which is generally excluded in intensively managed forests due to clearcutting activities. We sampled understory species composition, richness and biomass, as well as environmental variables beneath these two species and also within forest ‘gaps’ in order to determine the effect of overstory species on understory vegetation. Species richness and biomass of herbaceous plants was significantly greater under Corylus compared with plots under Picea and in forest gaps. Indicator species analysis found that many species were significantly associated with Corylus. We found 45% of the total species found under woody plants occurred exclusively under Corylus. Light availability in spring and summer was higher in gaps than under forest cover but no difference was found between plots under Corylus and Picea. Hence, reductions in light availability cannot explain the differences in species composition. However, Ellenberg indicator values showed that more light demanding species were found under Corylus compared to Picea, but most light demanding species were found in gaps. The litter layer under Picea was three times thicker than under Corylus and this may be an important mechanism determining differences in understory composition and richness between the woody species. The presence of Corylus is an important factor enhancing local diversity and small-scale species variation within coniferous stands. Hence, management should maintain areas of Corylus shrubs to maintain understory species diversity in boreal forests.  相似文献   

5.
马尾松人工林地力维护研究进展   总被引:2,自引:0,他引:2  
针对地力衰退与维护这一林业研究热点,文中从林分生产力、土壤理化性质、土壤养分、土壤微生物、土壤酶活性、自毒作用6个方面阐述了马尾松人工林的地力现状。众多研究表明,马尾松人工林尚未出现地力衰退,其产生地力衰退的原因主要是不合理的营林措施。同时从轮作、混交林、发展林下植被、林地施肥、生态系统管理等方面介绍了马尾松人工林地力维护进展,并对马尾松人工林地力维护研究趋势进行了展望。  相似文献   

6.
This study sought to clarify the recruitment dynamics and growth of Siberian larch (Larix sibirica) and Siberian spruce (Picea obovata) in relation to changing temperatures in northern Mongolia. These tree species are the primary forest species found in the closed-canopy boreal forest of north-central Mongolia. Mongolia’s boreal forests exist along the southern terminus of the Siberian boreal system in both pure and mixed species stands. I collected tree cores and cross-sections as well as site and tree stature parameters from 118 forest plots in the Darhad valley of north-central Mongolia. Principle components analysis of 130 L. sibirica tree ring series informed the construction of two composite chronologies for this species. A chronology for P. obovata was developed using 24 tree ring series. Correlation analysis between tree ring indices and temperature data showed two distinct growth signals: a positive response to growing season temperatures was exhibited by one L. sibirica chronology and a negative response to spring temperatures was exhibited by a second L. sibirica chronology. The P. obovata chronology exhibited strong negative correlations with mean monthly and mean maximum monthly growing season temperatures. Multiple analyses of variance (MANOVA) indicated that tree stature (dbh, height) and site parameters (latitude, longitude, slope, aspect, elevation) did not significantly predict growth response or species. Forest recruitment events appear episodic for both species. Synchronous establishment of saplings, based on approximate root collar age, suggests an initial floristic model for mixed composition stands likely due to supra-annual variations of fire, land-use and climate. Forest management activities in the region should consider the diverging growth response to temperature shown here by prioritizing protection forests and the various ecosystem services provided by forests in arid ecosystems. In addition, promoting selection harvests over clear-felling would maximize future alternatives under conditions of rapidly changing climate. Care should be taken in new forest management planning activities until adequate information exists on the likely trajectory of this system due to climate-induced forest change.  相似文献   

7.
There is limited understanding of the carbon (C) storage capacity and overall ecological structure of old-growth forests of western Montana, leaving little ability to evaluate the role of old-growth forests in regional C cycles and ecosystem level C storage capacity. To investigate the difference in C storage between equivalent stands of contrasting age classes and management histories, we surveyed paired old-growth and second growth western larch (Larix occidentalis Nutt)–Douglas-fir (Pseudostuga menziesii var. glauca) stands in northwestern Montana. The specific objectives of this study were to: (1) estimate ecosystem C of old-growth and second growth western larch stands; (2) compare C storage of paired old-growth–second growth stands; and (3) assess differences in ecosystem function and structure between the two age classes, specifically measuring C associated with mineral soil, forest floor, coarse woody debris (CWD), understory, and overstory, as well as overall structure of vegetation. Stands were surveyed using a modified USFS FIA protocol, focusing on ecological components related to soil, forest floor, and overstory C. All downed wood, forest floor, and soil samples were then analyzed for total C and total nitrogen (N). Total ecosystem C in the old-growth forests was significantly greater than that in second growth forests, storing over 3 times the C. Average total mineral soil C was not significantly different in second growth stands compared to old-growth stands; however, total C of the forest floor was significantly greater in old-growth (23.8 Mg ha−1) compared to second growth stands (4.9 Mg ha−1). Overstory and coarse root biomass held the greatest differences in ecosystem C between the two stand types (old-growth, second growth), with nearly 7 times more C in old-growth trees than trees found on second growth stands (144.2 Mg ha−1 vs. 23.8 Mg ha−1). Total CWD on old-growth stands accounted for almost 19 times more C than CWD found in second growth stands. Soil bulk density was also significantly higher on second growth stands some 30+ years after harvest, demonstrating long-term impacts of harvest on soil. Results suggest ecological components specific to old-growth western larch forests, such as coarse root biomass, large amounts of CWD, and a thick forest floor layer are important contributors to long-term C storage within these ecosystems. This, combined with functional implications of contrasts in C distribution and dynamics, suggest that old-growth western larch/Douglas-fir forests are both functionally and structurally distinctive from their second growth counterparts.  相似文献   

8.
Recurrent problems with regeneration of oaks (Quercus spp.) have been documented across a wide range of ecosystems. In oak-dominated forests of the central and Appalachian hardwood regions of the United States, a lack of competitive oak regeneration has been tied, in part, to fire suppression in these landscapes, and managers throughout the region are using prescribed fire to address this concern. To examine fire effects on oak regeneration, researchers have generally relied on inventories or population studies of existing seedlings. These studies are valuable but do not permit examination of the role of fire in enhancing the establishment and growth of new oak seedlings stemming from oak mast events. In this study, white (Quercus alba) and chestnut oak (Quercus prinus) acorn mast crops serendipitously occurred in year three (fall 2005) of a landscape-scale prescribed fire experiment. We examined establishment, survival, height and diameter of new seedlings on sites on the Cumberland Plateau in eastern Kentucky. Treatments were fire exclusion, a single prescribed fire (1x-burn; 2003), and repeated prescribed fire (3x-burn; 2003, 2004, and after acorn drop in 2006), all conducted in late spring. Initial densities of newly established chestnut and white oak seedlings were statistically similar across treatments (P = 0.42), despite fires on the 3x-burn site having occurred after acorns were on the ground. Oak seedling density was significantly predicted by oak basal area on all sites (R2 = 0.12–0.46), except for chestnut oak on fire-excluded sites (R2 = 0.04). Litter depth was less on 3x-burn sites compared to 1x-burn and fire-excluded sites, whereas canopy openness was greater on both burn treatments compared to fire-excluded sites. Seedling mortality was generally higher on fire-excluded sites compared to burn sites, especially for white oak. Oak seedling mortality in the first two growing seasons was significantly predicted by initial litter depth and open sky, with greater litter depth and lower percent open sky leading to higher mortality. In the third growing season none of the measured variables predicted chestnut oak seedling survival; for white oak, percent open sky remained a significant predictor of mortality. Initially, seedlings on the fire-excluded sites had similar height but smaller diameter; after three growing seasons there were few differences in seedling height or diameter among treatments. Our findings suggest a potential role for prescribed fire in establishing forest floor and light conditions that may enhance the success of new oak germinants, although different responses among species may suggest the need to target management for individual oak species.  相似文献   

9.
To evaluate the relationship of overstory residual trees to the growth of unmanaged young-to-mature understory Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.), the basal area and volume of 14 paired plots with and without residual trees were examined in the Willamette National Forest, Oregon. Residual trees were large survivors of the fires that initiated the understory between 55 and 121 yr ago. Understory stands were naturally regenerated and not managed in any way. High residual tree and understory densities were negatively associated with understory volume. The relation of density of residual trees to total understory and Douglas-fir basal areas and volumes was best described by a negative logarithmic function. The rate of decrease in total understory and Douglas-fir basal areas and volumes per individual residual tree became smaller with increasing residual-tree density. Predicted total understory volume reduction was 23% with five residual trees/ha and 47% with 50 residual trees/ha, averaging 4.6% and 0.9% per residual tree, respectively. After including the estimated volume growth of residual trees since initiation of the understory, stand volume was still 19% lower with five residual trees/ha and 41% lower with 50 residual trees/ha than in stands with no residual trees, averaging a reduction of 38% and 0.8% per residual tree, respectively. In mixed stands of Douglas fir and western hemlock, predicted Douglas-fir basal area and volume declined more rapidly than did total understory basal area and volume when residual-tree densities exceeded about 15 trees/ha. This difference was probably due to the relative shade-intolerance of Douglas fir. Predicted Douglas-fir volume reduction was 13% with five residual trees/ha and 75% with 50 residual trees/ha, averaging 2.6% and 1.5% per residual tree, respectively. The southern aspects had more than 150% the total understory basal area and volume and more than 200% the Douglas-fir volume and basal area of the northern aspects. Lower density and basal area of understory trees, particularly of dominant and codominant Douglas fir, were associated with increasing residual-tree densities. Given the same diameter at breast height (DBH), heights of Douglas fir were not related to residual trees. Regardless of understory age, understory volume was greatest in stands with the lowest understory densities. These results suggest that timber production in unthinned green-tree retention units may be reduced and may depend on the density of leave-trees. Thinning of understory trees is recommended to reduce growth loss from intraspecific competition.  相似文献   

10.
Remote ponderosa pine (Pinus ponderosa) forests on the North Rim of Grand Canyon National Park, Arizona, USA provide valuable examples of reference conditions due to their relatively uninterrupted fire regimes, limited grazing history, and protection from logging. Wildfire is an important disturbance agent in upland forests of the Interior West, yet repeated measurements taken before and after lightning-ignited fires are rare. In 1999, a low-severity Wildland Fire Use fire burned 156 ha on Fire Point, a peninsula dominated by old-growth ponderosa pines, which had not burned for at least 76 years. We measured understory plant community and forest floor characteristics in 1998 (1 year before the fire) and 2001 (2 years after the fire) at this site and at nearby reference sites that did not burn in 1999 but have had continuing fire regimes throughout the past century. After the wildfire, the plant community at Fire Point shifted toward higher compositional similarity with the reference sites. Analysis of functional group composition indicated that this change was due primarily to an increase in annual and biennial forbs. Gayophytum diffusum, Polygonum douglasii, Chenopodium spp., Solidago spp., Elymus elymoides, Calochortus nuttallii, Hesperostipa comata, and Lotus spp. were indicative of forests influenced by recent fires. Species richness, plant cover, plant layer density and plant diversity were significantly lower at Fire Point than at the reference sites, possibly due to long-term fire exclusion, but the fire did not increase the rate of change in these variables after 2 years. Few exotic species were present at any site. Forest floor depths at Fire Point were reduced to depths similar to the reference sites, primarily due to consumption of the duff layer. There was a significant inverse relationship between the ratio of duff:litter and species richness. Compared to fire-excluded forests, old-growth ponderosa pine forests influenced by low-intensity surface fires generally have greater plant species richness (especially annual forbs) and lighter fuel loads. This study supports the continued application of the Wildland Fire Use strategy in old-growth montane forests to maintain and improve forest health by altering understory species composition and reducing fuel loads.  相似文献   

11.
The frequency and intensity of ecosystem disturbance, including outbreaks of forest insects and forest fires, is expected to increase in the future as a result of higher temperatures and prolonged drought. While many studies have concentrated on the future climatic impacts on fire, little is known about the impact of future climate on insect infestation. Paleoecological techniques are important in this regard in identifying the potential relationships between climate and insect outbreaks in the past, as a predictive tool for the future. We examine a high-resolution 20th century record of spruce beetle (Dendroctonus rufipennis) infestation from a small, subalpine lake, comparing the paleoecological record to the historical and tree-ring record of the event. An extensive spruce beetle outbreak occurred in northwestern Colorado during the 1940s and 1950s, causing widespread mortality of mature Picea engelmannii. Pollen analysis of this period documents the decline of Picea and its replacement locally by Abies lasiocarpa, paralleling age and composition studies of modern forest stands in the region. This study is a proof of concept that, when applied to longer sedimentary records, could produce a detailed record of infestation for the Late Holocene or older time periods. This information will be useful to forest managers in efforts to plan for the effects of D. rufipennis infestations, and subsequent succession within high elevation conifer forests.  相似文献   

12.
Long-term patterns in nutrient cycling in regrowing Douglas-fir (Pseudosuga menziesii Mirb. Franco) and red alder (Alnus rubra Bong.) on native soils plus soils previously occupied by other species were simulated using the nutrient cycling model. Simulations of regrowing stands were also compared with observations of nutrient cycling in mature Douglas-fir and red alder. We hypothesized that (1) prolonged presence of red alder will cause a depletion in soil base cations due to increased nitrification and NO3 leaching; (2) lower base cation availability under red alder will ultimately cause biomass production to decline; (3) high N availability in red alder soils will favor regrowth of Douglas-fir; (4) higher base cation and P status of the Douglas-fir soils will favor growth of red alder both in the short- and long-term, since N is not limiting to red alder; and (5) in regrowing red alder, NO3 leaching will increase with time as a result of increased N fixation. All hypotheses were confirmed, but the effect of soil type on biomass production was minimal both for red alder and Douglas-fir. The higher soil organic matter content in the mature red alder stand most likely reflected previous occupation by old-growth Douglas-fir and also a large litter input from the understory vegetation. In general, the nutrient cycling model simulated differences in nutrient cycling patterns at least qualitatively between Douglas-fir and red alder and was helpful in identifying potential gaps in the understanding of biogeochemical cycling as well as uncertainties in the data. The nutrient cycling model did not fully elucidate differences in P cycling between Douglas-fir and red alder and overestimated weathering rates under Douglas-fir. Uncertainties in the data included: (1) temporal patterns in N fixation in the regrowing stands; (2) understory litterfall; and (3) site history and, consequently, presence of pre-existing differences in site conditions.  相似文献   

13.
Regional conservation planning frequently relies on general assumptions about historical disturbance regimes to inform decisions about landscape restoration, reserve allocations, and landscape management. Spatially explicit simulations of landscape dynamics provide quantitative estimates of landscape structure and allow for the testing of alternative scenarios. We used a landscape fire succession model to estimate the historical range of variability of vegetation and fire in a dry forest landscape (size ca. 7900 km2) where the present-day risk of high severity fire threatens the persistence of older closed canopy forest which may serve as Northern Spotted Owl (Strix occidentalis caurina) habitat. Our results indicated that historically, older forest may have comprised the largest percentage of the landscape (∼35%), followed by early successional forest (∼25%), with about 9% of the landscape in a closed canopy older forest condition. The amount and condition of older forest varied by potential vegetation type and land use allocation type. Vegetation successional stages had fine-grained spatial heterogeneity in patch characteristics, with older forest tending to have the largest patch sizes among the successional stages. Increasing fire severities posed a greater risk to Northern Spotted Owl habitat than increasing fire sizes or frequencies under historical fire regimes. Improved understanding of historical landscape-specific fire and vegetation conditions and their variability can assist forest managers to promote landscape resilience and increases of older forest, in dry forests with restricted amounts of habitat for sensitive species.  相似文献   

14.
We compared the understory communities (herbs, shrubs, and tree seedlings and saplings) of old-growth and second-growth eastern hemlock forests (Tsuga canadensis) in western Massachusetts, USA. Second-growth hemlock forests originated following clear-cut logging in the late 1800s and were 108–136 years old at the time of sampling. Old-growth hemlock forests contained total ground cover of herbaceous and shrub species that was approximately 4 times greater than in second-growth forests (4.02 ± 0.41%/m2 versus 1.06 ± 0.47%/m2) and supported greater overall species richness and diversity. In addition, seedling and sapling densities were greater in old-growth stands compared to second-growth stands and the composition of these layers was positively correlated with overstory species composition (Mantel tests, r > 0.26, P < 0.05) highlighting the strong positive neighborhood effects in these systems. Ordination of study site understory species composition identified a strong gradient in community composition from second-growth to old-growth stands. Vector overlays of environmental and forest structural variables indicated that these gradients were related to differences in overstory tree density, nitrogen availability, and coarse woody debris characteristics among hemlock stands. These relationships suggest that differences in resource availability (e.g., light, moisture, and nutrients) and microhabitat heterogeneity between old-growth and second-growth stands were likely driving these compositional patterns. Interestingly, several common forest understory plants, including Aralia nudicaulis, Dryopteris intermedia, and Viburnum alnifolium, were significant indicator species for old-growth hemlock stands, highlighting the lasting legacy of past land use on the reestablishment and growth of these common species within second-growth areas. The return of old-growth understory conditions to these second-growth areas will largely be dependent on disturbance and self-thinning mediated changes in overstory structure, resource availability, and microhabitat heterogeneity.  相似文献   

15.
Techniques for rapid visual assessment of fuel characteristics have a broad range of applications in wildland fire management and research. We developed and tested a technique for assessing forest fuels which provides hazard ratings for distinct layers within the overall fuel complex, including bark, elevated shrubs, near-surface and surface (forest litter) fuels. These layers are comprised predominantly of fine fuel particles <6 mm diameter. The technique was used to model fuel accumulation in dry eucalypt forest of Eucalyptus marginata at two locations with contrasting understorey structures. We found that visual fuel hazard ratings described patterns of fuel dynamics over time in a similar fashion to models for fuel load accumulation. Visual hazard ratings can be related qualitatively to factors that reflect the difficulty of fire suppression by experienced fire fighters including visibility through the forest, access, difficulty of working machinery, flame height and spotting potential. The ability to relate hazard ratings to fire spread prediction needs to be tested.  相似文献   

16.
This study investigated effects of a second-thinning entry on understory vegetation and tree regeneration development and understory vegetation composition. Study sites were located in the Coast Range and Cascade Range mountains of western Oregon and were dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests. Stands were initially thinned between 1975 and 1982 and parts of these same stands were thinned again approximately 20 yr later. Thinning stands a second time resulted in greater amounts of fern, graminoid, and open-site species, but the abundance of tree regeneration was not affected. Despite different site conditions, compositional patterns in the understory consistently shifted toward open-site early seral species following the second thinnings. These results suggest that the initial impacts of a second thinning are not simply predictable from studies in which only a single thinning was implemented. It is important to consider that vegetation trends were already influenced by the previous thinnings, and impacts of the second thinning are thus not as easily detectable. Within these limitations, repeated thinnings may be an effective management tool to maintain early seral species in older forests, while other aspects of understory vegetation and tree regeneration are less influenced in the short term.  相似文献   

17.
Characterization of forest fires in Catalonia (north-east Spain)   总被引:1,自引:0,他引:1  
The present study analyses the temporal variation in the distribution of the number of fires, area burned and fire sizes in Catalonia using fire data from 1942 to 2002. The study shows variations in the distribution of fire size over recent decades, with a significant increase in the number of very large fires. The study also analyses relationships between characteristics of the forest (altitude, slope, aspect, living fuels and species composition) and the probability of the fire occurrence. The analysis is based on the overlay of forest cover data and perimeters of forest fires during the period (1986–2002). Of the analysed variables, altitude affects most the probability of fire occurrence, with higher proportions of burned forest area at lower altitudes. Stand’s vertical structure is also relevant, with lower proportions of burned area in stands with mature tree cover without understory. The study helps to analyse the strengths and weaknesses of forest and fire management policies, especially those related to forest and fuel management at the landscape level.  相似文献   

18.
Fire regimes in temperate forests and woodlands have changed significantly in Australia since European settlement. We hypothesised that an absence of fire leads to the increased development of woody understorey/midstorey and that this may be correlated with decreased water and/or nutrient availability in overstorey temperate eucalypts currently declining in health. Sites with a history of being long unburnt or recently (and frequently in the case of Eucalyptus gomphocephala woodland) burnt (relative to median fire intervals for the vegetation type) were established in E. gomphocephala woodland in Western Australia and in Eucalyptus delegatensis forest in Tasmania. In long unburnt sites in both E. gomphocephala woodland and E. delegatensis forest, there was greater percent cover of understorey/midstorey and eucalypts had higher water use efficiency, indicative of greater soil water limitation, as estimated by foliar carbon isotope ratios. In E. gomphocephala woodland foliar Cu and Zn were significantly lower in eucalypts of long unburnt, relative to frequently burnt, sites. In E. gomphocephala woodland, understorey/midstorey (shrub) cover was positively correlated, and foliar copper and zinc levels were negatively correlated to health of overstorey trees. In E. delegatensis forest foliar phosphorus (P) was significantly lower in eucalypts of long unburnt, relative to recently burnt, sites. In E. delegatensis forest moss cover was positively correlated and foliar P was negatively correlated to health of overstorey trees. The understorey/midstorey that develops in the long absence of fire may alter ecological processes that lead to less favourable water- and nutrient-relations in E. gomphocephala woodland and E. delegatensis forest that are associated with decline in crown health. However this study does not definitively show a link between understorey/midstorey vegetation and overstorey tree water- and nutrient-relations. This link will be investigated in future research.  相似文献   

19.
The seasonal distribution of fires is one fire regime variable which has received little attention with regard to its effects on plants. For species with a short life-span that recruits after fire, the seasonal timing of a fire can be expected to be important due to effects on potential growth period and reproduction. We observed phenology and reproductive output in two annual and fire-dependent Geranium spp. in the southern part of the European boreal forest. In a garden experiment with the two species under two levels of nutrition, we established cohorts of seedlings at several dates over three summers. Time from germination to flowering and first mature seed differed little between the two species and levels of nutrition; i.e. plant size or level of nutrition had almost no effect on phenology. However, emergence time controlled the timing of reproduction. Most plants emerging before the second week of July in the garden experiment bolted the same year. Plants emerging later behaved as winter-annuals and started to flower in June the following year. A similar dichotomy was observed for populations of Geranium spp. at a number of burnt forest sites that differed in date of fire. This response is likely controlled by photoperiod. Nevertheless, at sites that burnt early some plants did not bolt in the same season; probably an effect of variable seedling emergence dates in the populations. In both the field and garden experiment, there were plants entering reproduction too late to produce mature seeds. Our results indicate that management fires should be conducted either very early, or during July and August to achieve a high seed production in these rare forest plants.  相似文献   

20.
Coastal Douglas-fir (Pseudotsuga menziesii spp. menziesii (Mirb.) Franco) occurs over a wide range of environmental conditions on Vancouver Island, British Columbia. Although ecological zones have been drawn, no formal spatial analysis of environmental limitations on tree growth has been carried out. Such an exercise is desirable to identify areas that may warrant intensive management and to evaluate the impacts of predicted climate change this century. We applied a physiologically based forest growth model, 3-PG (Physiological Principles Predicting Growth), to interpret and map current limitations to Douglas-fir growth across Vancouver Island at 100-m cell resolution. We first calibrated the model to reproduce the regional productivity estimates reported in yield table growth curves. Further analyses indicated that slope exposure is important; southwest slopes of 30 degrees receive 40% more incident radiation than similarly inclined northeast slopes. When combined with other environmental differences associated with aspect, the model predicted 60% more growth on southwest exposures than on northeast exposures. The model simulations support field observations that drought is rare in the wetter zones, but common on the eastern side of Vancouver Island at lower elevations and on more exposed slopes. We illustrate the current limitations on growth caused by suboptimal temperature, high vapor pressure deficits and other factors. The modeling approach complements ecological classifications and offers the potential to identify the most favorable sites for management of other native tree species under current and future climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号