首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

There is a growing interest in the effects of deciduous trees on biodiversity, soil processes and long-term productivity in boreal, conifer-dominated forests. This study investigated whether individual birch trees allowed to grow to maturity in the coniferous forest can have a local effect on floristic richness and regeneration of tree saplings. The ground vegetation was compared in 2?m radius plots around the stem under the canopies of matched conifer–deciduous trees in a mature, conifer-dominated forest, and included in the analysis variables that could potentially mediate the tree effect (soil pH, cover of lichens, bryophytes, leaf and needle litter). The field layer vegetation was more species rich under birch (Betula pendula and B. pubescens) than under conifers (Picea abies and Pinus sylvestris), and several vascular plant species (including saplings of tree species) occurred more often under birch than under conifers. However, when the effect of the number of subordinate trees was taken into account the difference between birch and pine was not significant. The number of tree regenerations (saplings) was lowest under pines, but did not differ between spruce and birch. There were no effects of the canopy species on soil pH or on cover of lichens and bryophytes. The difference in diversity may be caused by the different effects of leaf and needle litter, and it is also likely that canopy structure has an influence via interception and throughfall and by affecting the light and microclimate.  相似文献   

2.
Heavy logging leads to regrowth of dense forest, which may adversely affect the flight and foraging activities of bats. We compared insectivorous bat activity and insect abundance at three heights (understorey, subcanopy and canopy), two locations (forest and track) and three time periods (evening, night and dawn), in old and young regrowth sites in south-eastern Australia (456 detector-hours). We measured activity levels of all bats and four echolocation guilds—one open-space and three edge-space aerial-foraging guilds. Mean bat activity in the subcanopy and canopy was up to 11 times that in the understorey of forests, a pattern opposite to that of insect abundance. However, bat activity in the two upper strata was lower in young regrowth than in old regrowth. Vegetation was more cluttered in young regrowth at these upper heights (closer stems and less vertical space in the subcanopy). Mean activity on the track was 2–5 times higher than in the forest, particularly at understorey level (17 times higher for all bats), where vegetation was less cluttered (more distant understorey trees and shrubs, and less cover of ground vegetation). Time of night had little effect on bat activity. The negative response of bat guilds to increased clutter was strongest in the open-space guild and weakest in the edge-space guild with the highest frequency calls. There was an interaction between insect abundance and an index of vegetation openness, with high values of both variables producing high bat activity levels for all bats and the two highest frequency call guilds. Our results highlight the need for management practices in logged forests that increase or preserve the amount of flight and foraging space available to bats.  相似文献   

3.
Interactions between forest canopy characteristics and plants in the forest understory are important determinants of forest community structure and dynamics. In the highlands of southwestern, China the dwarf bamboo Bashania fangiana Yi is an understory dominant beneath a mixed canopy of the evergreen Abies faxoniana (Rheder & Wilson) and the deciduous Betula utilis (D. Don). The goal of this study was to better understand the role of bamboo dominance, canopy characteristics, and periodic bamboo dieback on forest development. To achieve this goal, we measured tree seedling, tree saplings, and trees, forest canopy characteristics, and bamboo cover in permanent forest (n = 4) and gap plots (n = 31) in a mixed A. faxoniana and B. utilis forest in Sichuan, China. Dwarf bamboos died off in 1983 in the gap plots, and in three of the four forest plots. Forest development was assessed for the period 1984–1996. The seedling bank in forest and gap plots increased after bamboo die-off. A. faxoniana seedlings increased more than B. utilis in forest plots; the opposite pattern characterized gap plots. The proportion of seedlings on raised micro-sites on the forest floor also changed and new seedling were more abundant on the forest floor. By 1996, bamboo seedling cover and biomass had recovered to ca. 45% or their pre-flowering values. Rates of bamboo seedling recovery were faster beneath canopy gaps and deciduous trees than beneath forest or evergreen trees. Tree mortality exceeded recruitment in plots with dense bamboo; the opposite pattern was found in the plot with little bamboo. The mortality rate for B. utilis trees (2.4% year−1) was higher than that for A. faxoniana (0.8% year−1) and forests with dense bamboos became more open over the census period. Tree mortality was size-dependent and intermediate sized trees had the lowest rates of mortality. Stand basal area increased mainly due to greater basal area gain than loss for A. faxoniana. Interactions between tree species life history, canopy type, and bamboo life-cycles create heterogeneous conditions that influence tree and bamboo regeneration and contribute to the coexistence of A. faxoniana and B. utilis in old-growth forests in southwestern China.  相似文献   

4.
IntroductionItissurethatpresentelevatiollsofCO2a11dotllergrcc11-housegasesinducedbyhumanactivitiesaren1akli1gglobalclimategothroughinexperielICedcl1anges(Scl1le-subgerl987).Thecurrentquasi-equilibriulllstatesofbio-sphereecosystCm,esPeciallyterrestrialecosystems,wouldbebrokenbecausetl1estructure,fu11ction,distributio11andtlledynamicsofanyexistedecosystemsareIberesultsoflongtermadaptationofbio-systemtocurrentclin1ate.Theec()systemsdistributedinhighlatitlldeareawouldhavemuchbiggerchai1ge(Bona…  相似文献   

5.
Estimating large herbivore density has been a major area of research in recent decades. Previous studies monitoring ungulate density, however, focused mostly on determining animal abundance, and did not interpret animal distribution in relation to habitat parameters. We surveyed large ungulates in the Biodiversity Exploratory Schorfheide-Chorin using faecal pellet group counts. This allowed us to explore the link between relative ungulate abundance, habitat use, and browsing damage on trees in a region with several types of forest, including unharvested and age-class beech forests, as well as age-class pine forests. Our results demonstrate that roe deer and fallow deer relative abundance is negatively correlated with large tree cover, and positively correlated with the cover of small shrubs (Rubus spec., Vaccinium spec.), and winter food supply. Habitat use of roe deer and fallow deer, as estimated by counting faecal pellet groups, revealed a preference for mature pine forests, and avoidance of deciduous forests. This differential habitat use is explained by different distributions of high quality food resources during winter. The response of deer to understory cover differed between roe deer and fallow deer at high cover percentages. The amount of browsing damage we observed on coniferous trees was not consistent with the relative deer abundance. Browsing damage was consistently higher on most deciduous trees, except for beech saplings which sustained less damage when roe deer density was low. Because roe deer is a highly selective feeder, it was reported to affect tree diversity by feeding only on trees with high nutritional value. Consequently, we propose that managing the number of all deer species by hunting is necessary to allow successful forest regeneration. Such an adjustment to deer numbers would need to account for both current tree diversity and alternative food resources. Our findings may be applicable to other forest landscapes in northeastern Germany including mature pine stands and differently harvested deciduous forests.  相似文献   

6.
Stream macroinvertebrate assemblages are expected to be affected by the abundance and constitution of litter from surrounding forests. We compared forest floor cover, overland flow, stream environment, and stream macroinvertebrate assemblages between the catchments of a Japanese cedar plantation (CP) and a primary deciduous forest (DF). Both systems experience excessive deer browsing. Understory vegetation cover was higher in the DF than in the CP in summer, although cover was low (<20 %), possibly because of excessive deer browsing. Litter cover was much higher in the CP than in the DF in summer as a result of the long abscission period, slow breakdown, and low rate of dispersal of Japanese cedar litter compared to deciduous litter. Monthly overland flow was always lower in the CP than in the DF, and substrate size was smaller in the DF stream. In the CP, cedar litter accumulated in the stream, probably because of its low breakdown rate and morphology, and abundant shredder taxa characterized the macroinvertebrate assemblage. In contrast, abundant burrower taxa characterized the macroinvertebrate assemblage in the DF stream. These results imply that Japanese cedar litter functions in structuring the macroinvertebrate assemblage by supplying persistent food resources for detritivores, and by buffering fine sedimentation via overland flow under excessive deer browsing.  相似文献   

7.
Over the past 50 years, forested landscapes of the Pacific Northwest have become increasingly patchy, dominated by early successional forests. Several amphibian species associated with forested headwater systems have emerged as management concerns, especially after clearcutting. Given that headwater streams comprise a large portion of the length of flowing waterways in western Oregon forests, there is a need to better understand how forest management affects headwater forest taxa and their habitats. Mitigation strategies include alternatives to clearcutting, such as harvests that remove only part of the canopy and maintenance of riparian buffer strips. Our study investigates effects of upland forest thinning coupled with riparian buffer treatments on riparian and upland headwater forest amphibians, habitat attributes, and species-habitat associations. Amphibian captures and habitat variables were examined 5–6 years post-thinning within forest stands subject to streamside-retention buffers and variable-width buffers, as well as unthinned reference stands. We found no treatments effects, however, our results suggest that ground surface conditions (e.g., amount of rocky or fine substrate) play a role in determining the response of riparian and upland amphibians to forest thinning along headwater streams. Distance from stream was associated with amphibian abundance, hence retention of riparian buffers is likely important in maintaining microclimates and microhabitats needed for amphibians and other taxa. Moderate thinning and preservation of conditions in riparian and nearby upland areas by way of variable-width and streamside-retention buffers may be sufficient to maintain suitable habitat and microclimatic conditions vital to amphibian assemblages in managed headwater forests.  相似文献   

8.
Riparian trees and shrubs are important providers of shade, bank stability, and woody debris needed for optimal stream quality and fish habitat in the coastal mountains of Oregon, but more data are needed to relate this woody vegetation to environmental variables. Trees, shrubs, and forest regeneration were studied in 22 riparian environments to provide those data. Conifer basal area increased with elevation, stream gradient, time since disturbance, and distance from the stream; it decreased with stream width. Salmonberry (Rubus spectabilis Pursh) cover and stink currant (Ribes bracteosum Dougl. ex Hook.) cover were highest near the streams. Dwarf Oregon grape (Berberis nervosa Pursh) cover and salal (Gaultheria shallon Pursh) cover were lowest near the streams. Although forest regeneration was poor everywhere, it decreased with total shrub cover and increased with stream gradient. Existing riparian conifer stands should be maintained wherever a continuing supply of coarse woody debris is required.  相似文献   

9.
江苏虞山国家森林公园的森林覆盖率达96%以上.根据样地调查研究,将虞山国家森林公园约占山地面积为74.8%的天然林依群落优势种划分14类群系,为7类植被型.虞山天然林以马尾松林和马尾松、阔叶树混交林为主,山麓有落叶阔叶林和小面积的常绿、落叶阔叶林.论述虞山天然植被的组成、结构、演替和多样性指数,分析虞山天然林顺向演替的稳定性群落.结果表明:依立地环境可分3种不同类型.从演替规律来研究分析虞山植被,从而提出保护和可持续发展该森林公园植被的建议,并从旅游观光角度提出虞山部分森林类型改造的原则和方法.  相似文献   

10.
A vegetation survey of semi-permanent plots was conducted between years 1955–1962 and 2005–2009, and aimed to determine floristic changes occurring in beech forests located on a scarcely populated, dense forest area. The survey encompassed all natural beech forest types within the Polish part of the “Eastern Carpathians” International Reserve of Biosphere. A comparison of trends in changes between unmanaged (Bieszczady National Park) and managed (the remaining part of the Biosphere Reserve) forests was attempted. DCA analysis was used for the determination of changes on the community level. The density of vegetation, species richness, frequency of occurrence and cover, and functional groups of species were determined. Much more profound community changes were determined to have occurred in managed beech forests. However, a similar direction in vegetation changes within both managed and unmanaged forests verifies the existence of a regional pattern of changes in beech forests. This regional pattern involves (1) a decrease in the shares of arborescent species within the shrub layer, (2) disturbance of the canopy layer, (3) acidification of the top layer of the soil, (4) change of light conditions, (5) increase in shares of generalist species and decrease in shares of specialist species. A decreasing anthropogenic pressure, aging of forest stands, functioning of large, dense forest areas and sustainable forest management strategies forestry management system mimicking natural deciduous forest disturbance regime constitute factors shaping the regional changes of the forest vegetation. The undergoing changes can lead to biotic and spatial homogenization of the Eastern Carpathian beech forests.  相似文献   

11.
This article reports the regeneration dynamics of a temperate Abies–Tsuga forest in Kirishima Yaku National Park, southwestern Japan, and examines the influence of species coexistence mediated by gap disturbances on biomass production. All trees taller than 2 m in a 1-ha plot were monitored over four growing seasons. Three growth-form groups occupied different vertical layers. Evergreen conifers and deciduous broad-leaved trees tended to be spatially segregated from evergreen broad-leaved trees, which formed thickets in the understorey. The regeneration of understorey evergreen broad-leaved trees was affected by canopy gaps. The recruitment of conifers and deciduous broad-leaved species was not observed during the four growing seasons. This suggests that regeneration is sporadic and the present environmental conditions are not favorable for these canopy species. The mortality and unsuccessful recruitment of conifers and deciduous trees appeared to cause fluctuations in the productivity of the stand. However, an abundance of canopy gaps accelerates the regrowth of shorter species, and the fluctuation of productivity resulting from the population dynamics of canopy species would be partly mitigated by the regeneration of evergreen understorey species. The horizontal and vertical heterogeneity of the temperate mixed forest was a result of the patch structures of the three growth-form groups. The different regeneration patterns among the three groups, which were driven by interactions of species-specific regeneration niches and disturbance regimes, might be an important factor in maintaining the aboveground productivity in a transitional mixed forest between warm-temperate and cool-temperate zones.  相似文献   

12.
We examined the relationship between landform types and riparian forest structure and succession in second-growth stands along mid order streams in the Cascade Mountains, Washington, USA. We sampled tree, sapling, seedling, and shrub characteristics across a range of fluvial geomorphic surfaces, which were classified into four landform classes, including low floodplain, high floodplain, terrace and hillslope. Landform classification was based on topographic characteristics, position relative to the stream channel, and estimated flood frequency. Statistical analyses using generalized estimating equations (GEE) showed that landform exerted a strong influence on the distribution and abundance of conifer and deciduous species and of different tree life stages. The floodplain landforms were characterized by initial disturbance from timber harvest, and ongoing fluvial disturbance, which favored the establishment of deciduous communities dominated by red alder (Alnus rubra) and maintenance of early successional riparian stands. In contrast, the terrace and hillslope landforms were also subject to timber harvest as the stand initiating agent but were unaffected by fluvial disturbance. However, based on differences in species distribution, we infer that forest structure on these two landforms differed from one another as a result of differences in soil moisture levels. Terraces and hillslopes were found to have high conifer tree abundance, but frequency of younger conifers was higher on hillslopes. Deciduous tree reproduction was very low on terraces and hillslopes. Our results also suggest that conifer recruitment in these second-growth riparian forests may be more successful on soil substrates than on coarse woody debris. We propose that the interplay between the disturbance regime (including type, frequency and intensity) and soil moisture conditions played an important role in influencing the course of riparian succession, present stand structure, and future successional trajectories and these were the primary mechanisms driving vegetation differences among landforms.  相似文献   

13.
Populus–Salix forests are a valued riparian vegetation type in western North America. These pioneer, obligate phreatophytes have declined on some rivers, raising conservation concerns and stimulating restoration plantings, but have increased on others. Understanding patterns and causes of forest change is essential for formulating conservation, restoration and management plans. Our goal was to assess spatio-temporal patterns of vegetation change on the Upper San Pedro River in semiarid Arizona, USA, one of the few undammed rivers in the region. Over 100 years ago, intense floods initiated channel incision and substantially altered hydrogeomorphology. Pioneer trees began to establish in the widening post-entrenchment zone as the surfaces began to stabilize. Using a time-series of aerial photographs (1955–2003) we quantified recent change in area of riparian cover types. Analysis indicated that wooded area in the post-entrenchment zone nearly tripled from 1955 to 2003, at the expense of bare ground, and the active channel narrowed appreciably. This forest expansion represents a long-term response to river entrenchment, with the temporal pattern influenced by recent flood cycles and biogeomorphic feedbacks. Populus–Salix have established episodically during the infrequent years with high winter flood runoff, sequentially filling available recruitment space. Older cohorts cover wide swaths of the floodplain while young trees form narrow bands lining the channel. Barring extreme flooding, the pioneer forests are expected to senesce over the coming century. An additional factor that has shaped the pattern of post-entrenchment forest expansion is anthropogenic water withdrawal. Populus–Salix forest increase has been greatest within a conservation area, where stream flows are largely perennial. In drier, agricultural sectors, Populus–Salix have declined while the more deeply-rooted Tamarix has increased. Overall, the study reveals that long-term fluctuations in pioneer forest area and age structure are common on dryland rivers, and shows how past events such as extreme floods can interact with recent environmental practices such as freshwater withdrawal to influence riparian forest patterns. This underscores the necessity of a long-term perspective for forest conservation and management.  相似文献   

14.
Riparian forests are classified as endangered ecosystems in general,particularly in sahelian countries like Burkina Faso because of human-induced alterations and civil engineering works.The modification of this important habitat is continuing,with little attention being paid to the ecological or human consequences of these changes.The objective of this study is to describe the variation of woody species diversity and dynamic in riparian forests on different type of watercourse banks along phytogeographical gradient in Burkina Faso.All woody species were systematically measured in 90 sample plots with sides of 50 m × 20 m.Density,dominance,frequency and species and family importance values were computed to characterize the species composition.Different diver-sity indices were calculated to examine the heterogeneity of riparian forests.A total of 196 species representing 139 genera and 51 families were recorded in the overall riparian forests.The species richness of individuals with dbh ≥ 5cm increased significantly from the North to the South along the phytogeographical gradient and varied significantly between the different types of riparian forests.Similarity in tree species composition between riparian forests was low,which indicates high beta diversity and reflects differences in habitat conditions and topography.The structural characteristics varied significantly along the phyto-geographical gradient and between the different types of riparian forests.The diameter class distribution of trees in all riparian forests showed a reverse "J" shaped curve except riparian forest of stream indicating vegetation dominated by juvenile individuals.Considering the ecological importance of riparian forest,there is a need to delineate and classify them along watercourses throughout the country.  相似文献   

15.
The impact of natural disturbances on the canopy (trees ≥14 m high) and sapling stratum (>0.3 and ≤14 m high) composition was studied in nemoral old-growth forests located within the southern boreal zone in Central Russia (Central Forest Reserve, 32°29′–33°01′E, 56°26′–56°31′N). I hypothesized that the current disturbance regime does not allow the maintenance of current spruce abundance in the canopy, and, as a result, there is a continuous shift in the canopy composition towards a greater abundance of deciduous species. Three 300×20 m2 transects were established to estimate the proportions of stand under non-closed unexpanded canopy gaps. Data on sapling composition of 49 canopy gaps were used to analyze pattern of gap refuting in these forests. Additionally, data from three forest inventories showed changes in canopy composition over a period from 1972 to 1990.

The current status of nemoral forests is characterized by the high proportion of stand area under treefall gaps (71%). The loss of spruce from the canopy caused by treefalls (53% of the total basal area of gap-makers) was slightly greater than its canopy abundance (45%). Canopy gaps of all sizes encouraged spruce regeneration which might be due to a decrease in sapling mortality and/or more active recruitment of spruce seedlings. After a gap was formed, the presence of spruce in sapling strata increased. However, within both small (<200 m2 in size) and large (>200 m2) gaps, tall (>6 m) spruce saplings did not reach the level of its abundance in the tree canopy. In gaps, tall (>6 m) saplings of lime (Tilia cordata) and elm (Ulmus glabra) grew more quickly than those of spruce and maple. These data suggested a decrease in canopy spruce and an increase in deciduous species in the near future which supported the original hypothesis. Analysis of forest inventory records revealed similar changes in the canopy structure over the past two decades. However, the observed high proportion of stand area under gaps implies that for the next few decades large areas of nemoral communities will be occupied by relatively young stands. This may, in turn, decrease the frequency of large-scale treefalls revegetated mainly by deciduous saplings.  相似文献   


16.
We investigated the effects of edge structure (i.e. side-canopy openness based on tree, sapling and shrub characteristics, and the composition of tree species) on the understorey vegetation at mesic urban conifer-dominated forest edges in southern Finland. Forest edge structure had an effect on understorey vegetation, and on the spatial extent of the edge effect into the forests. At open edges the edge effect (in terms of the abundances of understorey vegetation) penetrated at least up to 30 m into the forest patches whereas closed edges may prevent these effects. A multilayered canopy with saplings and shrubs at the edge is important to alleviate the effects of the edge. We found that 225–250 m3 ha−1 of trees (diameter at breast height (dbh) > 5 cm) is adequate to restrict the edge effect near the edge. However, the number of broad-leaved trees may be high at edges which, in turn, diminishes the abundance of mosses and favours herb species, thus changing the original natural understorey vegetation composition. Therefore we recommend that conifers be favoured at the edges of mesic conifer-dominated forest patches if the purpose is to restrict the extent of the effects of habitat edges. The appropriate proportion of conifers at these edges should be 80% or more.  相似文献   

17.
Riparian forests greatly influence aquatic ecosystems by providing shade cover, which controls water temperature and limits primary production. We examined the relationship between forest cover and summer stream temperature in northernmost Japan. Heat budget and statistical analyses were employed and the results were compared. Heat budget analysis revealed that the water temperature would decrease almost linearly from 29°C to 25°C with an increase in forested reaches along a 3.2 km stretch of the river. Multiple regression analysis by the stepwise method chose only open channel length as a variable to explain the variation in maximum stream temperature. A sharp increase in stream temperature was noted when riparian forest cover was removed in short lengths, of up to 1.0km; this increasing trend gradually flattened as the length of open stretch increased. Thus, even small openings in the riparian canopy resulted in drastic rises in summer stream temperature. The maximum summer temperatures estimated by the two methods were coincided, and can therefore be accurately estimated by regression analysis. Retrospective analysis based on the regression equation showed that the maximum summer temperature in 1947 was 6°C lower than at present, and that a sharp increase occurred from 1947 to 1960, a period of rapid expansion of agricultural land development in the watershed.  相似文献   

18.
Forest managers use prescribed fire to reduce wildfire risk and to provide resource benefits, yet little information is available on whether prescribed fires can function as ecological surrogates for wildfire in fire-prone landscapes. Information on impacts and benefits of this management tool on stream and riparian ecosystems is particularly lacking. We used a beyond-BACI (Before, After, Control, Impact) design to investigate the effects of a prescribed fire on a stream ecosystem and compared these findings to similar data collected after wildfire. For 3 years after prescribed fire treatment, we found no detectable changes in periphyton, macroinvertebrates, amphibians, fish, and riparian and stream habitats compared to data collected over the same time period in four unburned reference streams. Based on changes in fuels, plant and litter cover, and tree scorching, this prescribed fire was typical of those being implemented in ponderosa pine forests throughout the western U.S. However, we found that the extent and severity of riparian vegetation burned was substantially lower after prescribed fire compared to nearby wildfires. The early-season prescribed fire did not mimic the riparian or in-stream ecological effects observed following a nearby wildfire, even in catchments with burn extents similar to the prescribed fire. Little information exists on the effects of long-term fire exclusion from riparian forests, but a “prescribed fire regime” of repeatedly burning upland forests while excluding fire in adjacent riparian forests may eliminate an important natural disturbance from riparian and stream habitats.  相似文献   

19.
Novel fire mitigation treatments that chip harvested biomass on site are increasingly prescribed to reduce the density of small-diameter trees, yet the ecological effects of these treatments are unknown. Our objective was to investigate the impacts of mechanical thinning and whole tree chipping on Pinus ponderosa (ponderosa pine) regeneration and understory plant communities to guide applications of these new fuel disposal methods. We sampled in three treatments: (1) unthinned forests (control), (2) thinned forests with harvested biomass removed (thin-only), and (3) thinned forests with harvested biomass chipped and broadcast on site (thin + chip). Plots were located in a ponderosa pine forest of Colorado and vegetation was sampled three to five growing seasons following treatment. Forest litter depth, augmented with chipped biomass, had a negative relationship with cover of understory plant species. In situ chipping often produces a mosaic of chipped patches tens of meters in size, creating a range of woodchip depths including areas lacking woodchip cover within thinned and chipped forest stands. Thin-only and thin + chip treatments had similar overall abundance and species richness of understory plants at the stand scale, but at smaller spatial scales, areas within thin + chip treatments that were free of woodchip cover had an increased abundance of understory vegetation compared to all other areas sampled. Relative cover of non-native plant species was significantly higher in the thin-only treatments compared to control and thin + chip areas. Thin + chip treated forests also had a significantly different understory plant community composition compared to control or thin-only treatments, including an increased richness of rhizomatous plant species. We suggest that thinning followed by either chipping or removing the harvested biomass could alter understory plant species composition in ponderosa pine forests of Colorado. When considering post-treatment responses, managers should be particularly aware of both the depth and the distribution of chipped biomass that is left in forested landscapes.  相似文献   

20.
Selective logging is one of the main economical activities in tropical and subtropical forests. While most of the effects of this activity on bird communities have been studied by comparing exploited vs. non-exploited areas; the use of human-created treefall gaps by birds is relatively unknown. We studied habitat structure, resource abundance (fruits, flowers and arthropods) and bird activity in logging gaps of different age (1-year-old and 10- to 20-year-old) in a mountain forest (Yungas) of northwest Argentina in both dry and wet seasons. In less than a year after creation, short herbs colonize logging gaps increasing the abundance of arthropods in the ground and the activity of understory insectivores. During dry seasons recently created gaps become an important source of resources for understory frugivores-insectivores. Later on in succession logging gaps are invaded by exotic graminoid vegetation and tall herbs (dispersed through extraction tracks) which can impede the colonization and development of pioneer trees and natural regeneration. Probably as a consequence of a high abundance of fruits and flowers in the understory and a very low abundance of these resources in the canopy, old gaps were mainly used by understory frugivores-insectivores while arboreal frugivores were rare. Because arboreal frugivores disperse most tree seeds in tropical and subtropical forests, the low activity of this guild in logging gaps contribute to the low observed regeneration. Sustainable timber harvest in tropical and subtropical forests should include gap and logging track management to minimize the invasion by exotic graminoid vegetation and facilitate natural succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号