首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Habitats worldwide are increasingly threatened by degradation and conversion. Critical to the process of habitat loss is the organismal response, which can have effects on immediate conservation measures or future restoration. Among the most threatened and underappreciated habitats are headwater streams, which are small but abundant features of montane forests. These habitats comprise a significant proportion of the total stream length, can harbor remarkable biodiversity, and are critical for numerous ecosystem processes. One of the most abundant organisms in montane headwater ecosystems are salamanders, and therefore what happens to salamanders when the forest habitats surrounding headwater streams are altered? Three main hypotheses exist: (1) mortality hypothesis; (2) retreat hypothesis; and (3) evacuation hypothesis. To examine these hypotheses we evaluated the impacts of even-aged riparian timber harvest on stream-breeding salamanders. Riparian forests along headwater streams were logged, leaving riparian buffers of 0 m, 9 m, and 30 m. Responses to each riparian alteration were measured in terms of salamander terrestrial habitat use and growth in the riparian habitat, as well as changes in population density within headwater streams. Adult and juvenile salamander densities measured in headwater streams were significantly greater in logged riparian treatments than in unaltered riparian treatments. In addition, salamanders significantly reduced their terrestrial habitat use following riparian logging with both the average distance from the stream and the relative abundance of salamanders decreasing. It is unlikely that salamanders will persist in highly modified riparian habitats, as we measured significantly reduced body conditions over short periods of time at these sites. We present corroborative evidence that salamanders evacuate the riparian habitat following intensive riparian logging, emigrating to adjacent headwater streams. Our results underscore the sensitivity of stream salamanders to riparian habitat alteration as well as the importance of riparian buffers in preserving amphibian assemblages.  相似文献   

2.
Headwater streams are an important and prevalent feature of the eastern North American landscape. These streams provide a wealth of ecosystem services and support tremendous biological diversity, which is predominated by salamanders in the Appalachian region. Salamanders are ubiquitous throughout the region, contributing a significant biomass that supports ecological and ecosystem processes. One of the greatest threats to salamanders is loss of headwater-riparian habitat through timber harvest. In this study, we measured larval salamander abundance at five headwater streams with different riparian buffer widths retained following logging. By sampling larval salamanders using leaf litter bags, we assessed the impacts of even-aged timber harvest on aquatic larval salamander abundances, where it was found that larvae are negatively impacted by increased stream sedimentation and a decrease in riparian buffer width. We found that retention of a 9-m buffer was effectively no different than complete removal of all riparian forest, and as such, current regulations to protect headwater streams are ineffectual. Furthermore, no significant differences were observed between the 30 m buffer treatment and uncut control treatments suggesting that a 30 m or larger riparian buffer may assuage the in-stream effects of riparian timber harvest. Management guidelines for Appalachian forests should be revised to accommodate the biology of plethodontid salamanders.  相似文献   

3.
We addressed the efficacy of stream-side buffers in ameliorating the effects of clearcut timber harvest on Cascade torrent salamanders (Rhyacotriton cascadae), coastal/Cope's giant salamanders (Dicamptodon tenebrosus/D. copei), coastal tailed frogs (Ascaphus truei), and water temperature regimes in the Cascade Range in southern Washington. Forty-one streams in 4 categories were sampled; streams in clearcuts with and without buffers, streams in 35+ year old second-growth forest, and streams in unharvested forest (150+ years old). Tailed frog and Cascade torrent salamander densities were 2–7-fold lower (P < 0.05), respectively, in streams in managed forests than in streams in unharvested forest. In addition, both these species were less abundant (P < 0.05) in unbuffered streams than streams with buffers or in second-growth forest. In contrast, giant salamander densities were 5–50% greater (P > 0.05) in managed streams than unharvested, being greatest in unbuffered and second-growth streams. We used the differences in density estimates of unbuffered streams and unharvested streams to define an ecologically important effect size for each species and then compared the mean effect size and 95% confidence intervals of contrasts between managed stream categories to assess buffer effectiveness. Buffers had a positive ecologically important effect on the density of torrent salamanders and tailed frogs, but had an ecologically negative effect on giant salamanders. Water temperatures were similar among stream categories. However, Cascade torrent salamanders were nearly absent from streams where temperatures were ≥14 °C for ≥35 consecutive hours. Issues that need further study include effective buffer width and longitudinal extent, and confirmation of the water temperature threshold we identified.  相似文献   

4.
We surveyed cove hardwood stands aged 15, 25, 50, and ≥85 years following clearcutting in the southern Appalachian Mountains of northern Georgia to assess the effects of stand age and stand habitat characteristics on salamander communities using drift-fence array and pitfall methodologies from May 1994 to April 1995. Over a 60,060 pitfall trapnight effort, we collected 3937 salamanders represented by Desmognathus aeneus, Desmognathus monticola, Desmognathus ocoee, Desmognathus quadramaculatus, Eurycea bislineata, Gyrinophilus porphyriticus, Pseudotriton ruber, Plethodon glutinosus, Plethodon serratus, and Notophthalmus viridescens. Analysis of covariance with pitfall array to stream distance as the covariate showed that salamander species richness and diversity measures and numbers of Desmognathus aeneus and Desmognathus ocoee were highest in stands ≥85 years. Eurycea bislineata and Plethodon glutinosus were more abundant in stands ≤50 years old than in stands ≥85 years. Within cove hardwood stands, species richness and diversity measures and relative abundances of Desmognathus spp. and Gyrinophilus porphyriticus were negatively correlated with distance to stream. Species richness and diversity were positively correlated to amounts of emergent rock. Species richness, diversity and relative abundances of Desmognathus spp. were correlated with basal area within stands and extent of connected mesic, cove hardwood habitat and amount of cove habitat within 1 km radius among stands. Eurycea bislineata was negatively correlated with landform index, a measure of surrounding landform sheltering, and Plethodon glutinosus was positively correlated with elevation in cove hardwood stands. Our research indicates stand age is an important factor in explaining the abundance and community composition of salamanders in southern Appalachian cove hardwood communities. Because southern Appalachian woodland salamander communities are slow to recover and are substantially changed following disturbances such as clearcutting, populations in small, isolated cove hardwood stands might be more vulnerable to extirpation or may require longer recovery times than those in larger coves. Managers may need to assess habitat features such as cove extent and habitat connectivity to minimize impacts on these taxa by forest management activities in southern Appalachian cove hardwood communities.  相似文献   

5.
We assessed the effectiveness of alternative forest management strategies for maintaining American martens (Martes americana) in a sub-boreal landscape subject to an extensive mountain pine beetle (Dendroctonus ponderosae) outbreak, associated salvage logging, and climate change in north-central British Columbia, Canada. We structured the analysis in a Bayesian network (BN) meta-model that incorporated the results of spatially explicit modelling of landscape conditions (natural and logging disturbance, habitat quality, number of potential territories, and connectedness of territories) with analytical population modelling. The BN meta-model was then used to examine habitat and population size responses (adult females only are presented) to management scenarios, in the context of uncertainty of model parameters, management objectives, and climate change. Status quo management is dominantly clear-cutting with 3–20% of each harvest unit retained as mature patches, with reforestation by planting in the remainder. Management options we examined were: (1) the status quo, (2) varying the total annual timber harvest on the landscape (100%, 80% or 50% of current long-term sustained yield estimates), (3) the protection of understory trees during logging, and (4) 30–70% retention of overstory (partial cutting in distinct patches <1 ha in size) in each harvest unit, for 33% or 50% of the annual timber harvest. We found that marten habitat and population size declined substantively with the beetle outbreak and associated salvage cutting. The choice of management strategy then had a long-term effect on the potential for marten recovery after the beetle outbreak. Partial cutting scenarios had the greatest average long-term marten population levels, followed in order by reduced harvest rates, understory protection, and the status quo. Management scenarios with the best chance of meeting conservation goals without over-protecting habitat (and thus unnecessarily constraining timber management) varied with the population objective chosen. The choice of management strategy will depend on the weighting of marten outcomes against the economic desirability of timber harvest strategies, willingness to gamble on climate change, and the time-frame of interest.  相似文献   

6.
Relatively few evaluations of aquatic macroinvertebrate and fish communities have been published in peer-reviewed literature detailing the effect of varying residual basal area (RBA) after timber harvesting in riparian buffers. Our analysis investigated the effects of partial harvesting within riparian buffers on aquatic macroinvertebrate and fish communities in small streams from two experiments in northern Minnesota northern hardwood-aspen forests. Each experiment evaluated partial harvesting within riparian buffers. In both experiments, benthic macroinvertebrates and fish were collected 1 year prior to harvest and in each of 3 years after harvest. We observed interannual variation for the macroinvertebrate abundance, diversity and taxon richness in the single-basin study and abundance and diversity in the multiple-basin study, but few effects related to harvest treatments in either study. However, interannual variation was not evident in the fish communities and we detected no significant changes in the stream fish communities associated with partially harvested riparian buffers in either study. This would suggest that timber harvesting in riparian management zones along reaches ≤200 m in length on both sides of the stream that retains RBA ≥ 12.4 ± 1.3 m2 ha−1 or on a single side of the stream that retains RBA ≥ 8.7 ± 1.6 m2 ha−1 may be adequate to protect macroinvertebrate and fish communities in our Minnesota study systems given these specific timber harvesting techniques.  相似文献   

7.
Using coverboard arrays, we monitored woodland salamanders on the Fernow Experimental Forest in the central Appalachian Mountains, West Virginia, USA prior to and following two prescribed fires in mixed oak (Quercus spp.) forest stands. Treatments were burn plots on upper slopes or lower slopes fenced to prevent white-tailed deer (Odocoileus virginianus) herbivory or control plots that were unfenced and unburned. Most of the 7 species we observed were the mountain dusky salamander (Desmognathus ocropheaus), red-backed salamander (Plethodon cinereus) and slimy salamander (Plethodon glutinosis). Significant population responses were difficult to interpret with numerous treatment and year interactions. Results largely were equivocal. We found no change in woodland salamander assemblage prior to burning or afterwards. There were few differences in adult to juvenile ratios of salamanders among treatments. Still, a priori contrasts of mountain dusky salamanders and red-backed salamander counts corrected for detection probability were greater under coverboards in the 2 years monitored after both prescribed fires had occurred than before burning or in unburned controls. This suggests that these species responded to the reduced leaf litter on the forest floor by utilizing coverboards more. Similarly, the three predominate species of salamanders also were more numerous under coverboards in plots subjected to deer herbivory with less subsequent forest floor vegetation as compared to those burned plots that were fenced. Our observations would suggest that woodland salamanders somewhat are tolerant of two prescribed fires within close temporal proximity. However, because woodland salamanders can be significantly reduced following timber harvest, continued research is needed to fully understand impacts of fire as a pre-harvest management tool in central Appalachian forests.  相似文献   

8.
9.
Coarse woody debris (CWD) is thought to benefit herpetofauna in a variety of ways including serving as feeding sites, providing a moist environment, and providing protection from temperature extremes. We investigated the importance of CWD to amphibian and reptile communities in managed upland pine stands in the southeastern United States Coastal Plain during years 6 and 7 of a long-term study. Using a randomized complete block design, 1 of the following treatments was assigned to 9.3-ha plots: removal (n = 3; all downed CWD ≥10 cm in diameter and ≥60 cm long removed), downed addition (n = 3; five-fold increase in volume of down CWD), snag (n = 3; 10-fold increase in volume of standing dead CWD), and control (n = 3; unmanipulated). Herpetofauna were captured seasonally using drift-fence pitfall trapping arrays within treatment plots. We compared abundance, diversity, and richness of anurans, salamanders, lizards, and snakes using analysis of covariance with topographic variables (slope, elevation, aspect, and distance to nearest stream) included as covariates. We captured 355 amphibians and 668 reptiles seasonally from January 2007 to August 2008. Abundance, species richness, and species diversity were similar among treatments for anurans, salamanders, and lizards. Snake abundance, species richness, and diversity were higher in removal than downed addition plots. Anuran abundance increased as distance to nearest stream decreased. The majority of species captured during this study are adept at burrowing into the sandy soils of the region. Lack of reliance on CWD may be the result of herpetofaunal adaptation to the longleaf pine (Pinus palustris) ecosystem that historically dominated the upland areas of the study area.  相似文献   

10.
11.
12.
Seed production in tropical timber trees is limited by abiotic resources, pollination and pre-dispersal seed predation. Resource availability is influenced by the number of competing trees and by lianas that often reach high densities in disturbed parts of tropical forests. The distance between conspecific trees affects pollination efficiency and seed predation intensity, and may therefore indirectly affect the long-term sustainability of selective logging. Here we investigate how reproductive status and the number of seeds dispersed per tree are affected by liana load, distance to the nearest conspecifics, number of competing neighbours and tree diameter in the timber trees Cariniana ianeirensis and Terminalia oblonga. The study is based on a large-scale silvicultural experiment in lowland Bolivia. We found that the reproductive status of the two species was negatively correlated with liana cover and positively with tree diameter. In C. ianeirensis the most liana-infested trees dispersed fewer seeds. In T. oblonga the intensity of pre-dispersal seed predation decreased with distance to the nearest conspecifics. There was no evidence that seed viability or seed production decreased with distance to nearest conspecifics in either species as would be expected if isolation resulted in increased self-pollination. Our results indicate that reproduction can be severely reduced in timber trees if the largest, most healthy and least liana-covered trees are logged, but that liana cutting on the remaining seed trees can considerably improve seed production. In some species seed production may be further improved by ensuring that seed trees are located far apart.  相似文献   

13.
Wildfires and timber harvest are two of the most prevalent disturbances in North American forests. To evaluate and compare their impact on small mammals, I conducted meta-analyses on (1) the effect of stand-replacement wildfires and several types of forest harvest (clearcutting followed by burning, clearcutting, and uniform partial harvest) on the abundance of deer mice (Peromyscus maniculatus) and red-backed voles (Myodes gapperi), (2) the impact of clearcutting and partial harvest on a broader array of small mammal species, and (3) the responses of small mammals to recent and older clearcuts (i.e. less than 10 years vs. 10–20 years after harvest). In coniferous and mixed forest, all disturbances except for partial harvest triggered significant increases in the abundance of deer mice and declines in red-backed voles. The increase in deer mice after wildfire was stronger than after clearcutting and marginally stronger than after clearcutting and burning. The abundance of red-backed voles was greatest in undisturbed or partially harvested stands, intermediate after clearcutting, and lowest after wildfire or clearcutting and burning. While the positive effect of clearcutting on deer mice did not persist beyond 10 years after disturbance, the negative effect on red-backed voles was similar between recent and older clearcuts. In deciduous forest, clearcutting did not result in a consistent change in abundance of deer mice and red-backed voles. For other small mammals, recent clearcutting tended to increase the abundance of yellow-pine chipmunks (Tamias amoenus), and meadow and long-tailed voles (Microtus pennsylvanicus and Microtus longicaudus). Woodland jumping mouse (Neozapus insignis), masked shrew (Sorex cinereus), and short-tailed shrew (Blarina brevicauda) did not show consistent response to timber harvest. Overall, the impact of different disturbances on the abundance of small mammals (i.e. positive or negative) appears to be species-specific, but disturbance type may influence the magnitude of this effect. Disturbance types can be ranked from severe to mild in terms of small mammal responses. The effects of forest harvest on small mammals are not equivalent to those of wildfire.  相似文献   

14.
15.
Complex mixed-species forests are the focus of conservation efforts that seek to maintain native biodiversity. However, much of this forestland is privately owned and is managed for timber income as well as for conservation. Management of these high-diversity forests is particularly difficult when only one tree species produces the majority of high-value timber. We examined the past and current management of two regions which have those characteristics: Massachusetts, USA, with red oak (Quercus rubra L.) as the key timber species, and Quintana Roo, México, with big-leaf mahogany (Swietenia macrophylla King) as the most valuable species. These regions have different ecological characteristics, forest ownership types, landowner income, and importance of timber in total income, yet the silvicultural approach (low-intensity selective cutting) is surprisingly similar, and is generally failing to provide the conditions needed for regeneration and growth of key species. In both situations, the reluctance to harvest low-value species and interest in minimizing forest disturbance complicates management. Successful balance of timber harvest and forest conservation may be an important factor in preventing conversion of these lands to agriculture or residential development, but socioeconomic conditions (property tax policies and landowner affluence) play an important part in the outcome.  相似文献   

16.
Stream–riparian areas represent a nexus of biodiversity, with disproportionate numbers of species tied to and interacting within this key habitat. New research in Pacific Northwest headwater forests, especially the characterization of microclimates and amphibian distributions, is expanding our perspective of riparian zones, and suggests the need for alternative designs to manage stream–riparian zones and their adjacent uplands. High biodiversity in riparian areas can be attributed to cool moist conditions, high productivity and complex habitat. All 47 northwestern amphibian species have stream–riparian associations, with a third being obligate forms to general stream–riparian areas, and a quarter with life histories reliant on headwater landscapes in particular. Recent recognition that stream-breeding amphibians can disperse hundreds of meters into uplands implies that connectivity among neighboring drainages may be important to their population structures and dynamics. Microclimate studies substantiate a “stream effect” of cool moist conditions permeating upslope into warmer, drier forests. We review forest management approaches relative to headwater riparian areas in the U.S. Pacific Northwest, and we propose scenarios designed to retain all habitats used by amphibians with complex life histories. These include a mix of riparian and upslope management approaches to address the breeding, foraging, overwintering, and dispersal functions of these animals. We speculate that the stream microclimate effect can partly counterbalance edge effects imposed by upslope forest disturbances, hence appropriately sized and managed riparian buffers can protect suitable microclimates at streams and within riparian forests. We propose one approach that focuses habitat conservation in headwater areas – where present management allows extensive logging – on sensitive target species, such as tailed frogs and torrent salamanders that often occur patchily. Assuming both high patchiness and some concordance among the distribution of sensitive species, protecting areas with higher abundances of these animals could justify less protection of currently unoccupied or low-density habitats, where more intensive forest management for timber production could occur. Also, we outline an approach that protects juxtaposed headwater patches, retaining connectivity among sub-drainages using a 6th-field watershed spatial scale for assuring well-distributed protected areas across forested landscapes. However, research is needed to test this approach and to determine whether it is sufficient to buffer downstream water quality and habitat from impacts of headwater management. Offering too-sparse protection everywhere is likely insufficient to conserve headwater habitats and biodiversity, while our alternative targeted protection of selected headwaters does not bind the entire forest landscape into a biodiversity reserve.  相似文献   

17.
Forest managers often seek to balance economic benefits from timber harvesting with maintenance of habitat for wildlife, ecosystem function, and human uses. Most research on the relationship between avian abundance and active timber management has been short-term, lasting one to two years, creating the need to investigate long-term avian responses and to identify harvest thresholds when a small change in habitat results in a disproportionate response in relative abundance and nest success. Our objectives were to identify trends in relative abundance and nest success and to identify landscape-scale disturbance thresholds for avian species and habitat guilds in response to a variety of harvest treatments (clear-cuts, heavy and light partial harvests) over 14 years. We conducted point counts and monitored nests at an industrial forest in the central Appalachians of West Virginia during 1996-1998, 2001-2003, and 2007-2009. Early successional species increased in relative abundance across all three time periods, whereas interior-edge and forest-interior guilds peaked in relative abundance mid-study after which the forest-interior guild declined. Of 41 species with >10 detections, four (10%) declined significantly, 13 (32%) increased significantly (only three species among all periods), and 9 (22%) peaked in abundance mid-study (over the entire study period, four species had no significant change in abundance, four declined, and one increased). Based on piecewise linear models, forest-interior and interior-edge guilds’ relative abundance harvest thresholds were 28% total harvests (all harvests combined), 10% clear-cut harvests, and 18% light partial harvests, after which abundances declined. Harvest thresholds for the early successional guild were 42% total harvests, 11% clear-cut harvest, and 10% light partial harvests, and relative abundances increased after surpassing thresholds albeit at a reduced rate of increase after the clear-cut threshold. Threshold confidence intervals for individual species overlapped their guild threshold intervals 91% of the time. Even though relative abundance of most species (80%) did not decline as the area affected by timber management increased, implementing management at or below our approximate forest-interior and interior-edge harvest thresholds would reduce the number of declining species by half, maintain higher relative abundances of four species with a net decline in abundance but that peaked in abundance mid-study, and maintain higher relative abundances of ten additional species. In contrast, this management strategy also would prevent the increase in relative abundance of seven species and limit the increase in abundance of three species that increased throughout the study.  相似文献   

18.
19.
Managing for stand structural complexity in northern hardwood forests has been proposed as a method for promoting microhabitat characteristics important to eastern red-backed salamanders (Plethodon cinereus). We evaluated the effects of alternate, structure-based silvicultural systems on red-backed salamander populations at two research sites in northwestern Vermont. Treatments included two uneven-aged approaches (single-tree selection and group-selection) and one unconventional approach, termed “structural complexity enhancement” (SCE), that promotes development of late-successional structure, including elevated levels of coarse woody debris (CWD). Treatments were applied to 2 ha units and were replicated two to four times depending on treatment. We surveyed red-backed salamanders with a natural cover search method of transects nested within vegetation plots 1 year after logging. Abundance estimates corrected for detection probability were calculated from survey data with a binomial mixture model. Abundance estimates differed between study areas and were influenced by forest structural characteristics. Model selection was conducted using Akaike Information Criteria, corrected for over-dispersed data and small sample size (QAICc). We found no difference in abundance as a response to treatment as a whole, suggesting that all of the uneven-aged silvicultural systems evaluated can maintain salamander populations after harvest. However, abundance was tied to specific structural habitat attributes associated with study plots within treatments. The most parsimonious model of habitat covariates included site, relative density of overstory trees, and density of more-decayed and less-decayed downed CWD. Abundance responded positively to the density of downed, well-decayed CWD and negatively to the density of poorly decayed CWD and to overstory relative density. CWD volume was not a strong predictor of salamander abundance. We conclude that structural complexity enhancement and the two uneven-aged approaches maintained important microhabitat characteristics for red-backed salamander populations in the short term. Over the long-term, given decay processes as a determinant of biological availability, forestry practices such as SCE that enhance CWD availability and recruitment may result in associated population responses.  相似文献   

20.
Silvopastoral systems—the management of trees within pastures from natural regeneration or planting—are a strategy to promote sustainable livestock systems and ecosystems services. Timber is one of the products from these systems with potential to increase family revenues. The management of natural regeneration and population dynamics of trees is a feasible way to harvest timber and maintain environmental services. In this research, we modeled the population dynamics of Pinus oocarpa and Tabebuia rosea, two important timber species of silvopastoral systems in Central America. The results showed that farmers manage a significant density of different tree species from natural regeneration. However, only the species with well-known uses or desired services are allowed to remain. The natural regeneration is more impressive in silvopastoral systems with natural grass than those with exotic grass. Farming practices, for instance use of fire for weed control, are the main reasons for low rates of natural regeneration in pastures with exotic grass. The models of population dynamics for both species showed that the sustainable timber harvest plans are a viable activity in pasturelands under natural-regeneration management plans. Innovative farmers are willing to adopt silvicultural practices and management of population dynamics to increase timber revenues and sustainability if forestry regulations for sustainable use of trees in farms are simplified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号