首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.— Bighead carp Hypophthalmichthys nobilis have been raised in the United States for two decades and sold through the livehaul market, but their profitability in monoculture has not been evaluated. Three studies were conducted in 0.10-ha earthen ponds to evaluate the effect of bighead carp stocking density on growth, yield, dressout yield. and net returns. Initially, bighead carp (average weight of 0.36 kg) were stocked at rates of 500, 320, or 130 fish/ha with three replicates of each treatment. Stocking rates for 2-yr-old fish (average weight of 2.45 kg) were reduced to 320, 220, or 130 fish/ha in the second year. Net yields of bighead carp stocked at 500 fish/ha (963 kg/ha) were significantly higher ( P < 0.05) than net yields at the 320 fishha density (771 kg/ha), and these were significantly greater ( P < 0.05) than net yields at 130 fish/ha (369 kg/ha) in the first growing season. Net yields in the second growing season were not significantly different ( P > 0.05) among densities. There were no significant differences ( P > 0.05) among treatments in yearly growth which ranged from 11–17 g/d in the first and from 6–13 g/d in the second growing season. Dressout percentages for whole-dressed, steak, shank fillet, and shank fillets with white meat only did not differ with stocking density ( P > 0.05). Enterprise and partial budget analysis indicated that monoculture of bighead carp in fertilized ponds is profitable only in the short run at average livehaul market prices, because revenues exceeded variable but not fixed costs. The negative net returns, when all costs were accounted for, indicated that it is not profitable to construct ponds solely for monoculture of bighead carp.  相似文献   

2.
Growth of second-year triploid and diploid bighead carp, Hypophthalmichthys nobilis, was compared in a 189- to 190-day yield trial; the fish were grown separately in 0.04-ha earthen ponds at 625/ha and were also grown communally in 0.05-ha earthen ponds at 640ha. When grown communally, bighead carp were polycultured with channel catfish, Ictalurus punctatus (7,50Oha), and grass carp, Cienopharyngodon idella (40/ha); when they were grown separately, they were polycultured with grass carp at 501ha. When cultured separately, diploids were longer (526 vs 499 mm) and heavier (1,645 vs 1,427 g) than the triploids at harvest, but the differences were not significant (P 5 0.05). When cultured communally, the diploids were significantly longer (519 vs 485 mm) and heavier (1,621 vs 1,321 g) than their triploid counterparts at harvest. Ploidy of all bighead carp was determined after fish were harvested, and 7.9% of the presumed triploids that were stocked separately were actually diploids. Growth of the triploids appeared to be acceptable for commercial use where diploid bighead carp are banned. The efficiency of producing triploid bighead carp must be improved if they are to be cultured in states where bighead carp are illegal.  相似文献   

3.
ABSTRACT

Animal protein, generally fish meal, has traditionally been used in the diet of channel catfish. However, our previous research indicates that animal protein is not needed for growing stocker-size catfish to food fish when the fish are stocked at densities typical of those used in commercial catfish culture. Whether this holds when fish are stocked at high densities is not known; thus, we conducted an experiment to evaluate the effect of feeding diets with and without fish meal to channel catfish stocked in earthen ponds at different densities. Two 32% protein-practical diets containing 0% or 6% menhaden fish meal were compared for pond-raised channel catfish, Ictalurus punctatus, stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48 g/fish were stocked into 30 0.04-ha ponds. Five ponds were randomly allotted for each fish meal level?×?stocking density combination. Fish were fed once daily to satiation for two growing seasons. There was a significant interaction between stocking density and fish meal for net production; net production increased in fish fed a diet containing fish meal compared with those fed an all-plant diet at the highest stocking density, but not at the two lower stocking densities. Net production of fish fed diets with and without fish meal increased as stocking density increased. Viewing the main effect means, weight gain decreased and feed conversion ratio increased for fish stocked at the two highest densities, and survival was significantly lower at the highest stocking density. Visceral fat decreased in fish at the two highest stocking densities. Body composition data were largely unaffected by experimental treatment except for a reduction in percentage filet fat in fish at the highest stocking density, and fish that were fed diets containing fish meal had a lower percentage fillet protein and a higher percentage fillet fat. It appears that at stocking densities two to three times higher than generally used, animal protein (fish meal) may be beneficial in the diet of channel catfish. In regard to stocking densities, high stocking results in higher overall production, but the average fish size decreased as stocking density increased.  相似文献   

4.
孟家段水库鲢、鳙的生长及提高鱼产量措施   总被引:6,自引:1,他引:6  
孟家段水库渔获鲢鳙中,鲢年龄组成不合理,5~7龄鱼占其总尾数67%。鲢、鳙生长较慢。应加大放养规格至13~14cm,降低放养量至每年2.5万kg,鲢鳙比例调整为3:7,加大对凶猛的捕捞力度。  相似文献   

5.
为全面了解密云水库鲢鱼、鳙鱼的营养特征,以密云水库秋季鲢鱼和鳙鱼为研究对象,对其肌肉的水分、蛋白质、粗脂肪、灰分、矿物质元素含量以及氨基酸、脂肪酸组成进行分析。研究结果表明,密云水库鲢鱼和鳙鱼肌肉蛋白质含量分别为(18.40±0.40)%和(18.60±0.57)%,粗脂肪含量为(0.60±0.10)%和(1.48±0.91)%,富含人体所需的钾、钠、钙、镁、磷等常量元素及铁、锰、锌、硒等微量元素;鲢鱼、鳙鱼肌肉中,18种常见氨基酸均被检出,其中谷氨酸含量高,必需氨基酸分别占氨基酸总量的40.00%和40.16%,必需氨基酸指数分别为99.15和98.76;鲢鱼、鳙鱼肌肉中分别检出脂肪酸12种和19种,相对含量均表现为多不饱和脂肪酸>饱和脂肪酸>单不饱和脂肪酸,而多不饱和脂肪酸中均以二十二碳六烯酸相对含量最高,其次为二十碳五烯酸,两者之和分别达30.64%和23.79%。研究结果表明,密云水库鲢鱼、鳙鱼是良好的蛋白质来源,氨基酸组成合理,富含矿物质和有益脂肪酸,具有很好的营养价值和可食用性。  相似文献   

6.
7.
Research was conducted to determine the influence of water velocity on growth, dressout characteristics and fillet proximate composition of channel catfish, Ictalurus punctatus, raised in circular tanks. In this study, channel catfish cultured in water velocities of 4 cm/second averaged 75 g/fish higher weight gain and 0.12%/day greater specific growth rates than channel catfish cultured in tanks having no water velocity (P < 0.05). Channel catfish cultured at water velocities of 4 cm/second had significantly higher (P < 0.05) feed conversion efficiency and condition factor than channel catfish cultured in tanks having no water velocity. Channel catfish cultured at water velocities of 4 cm/second had significantly higher (P < 0.05) percentage carcass weight, fillet weight, and fillet moisture. The percentage visceral and fillet fat of channel catfish cultured at 4 cm/second was significantly lower (P < 0.05) than that for channel catfish raised in tanks having no water velocity. These results indicate that when cultured from initial weights of approximately 100 g to final weights exceeding 454 g in an environment having a water velocity of 4 cm/second, channel catfish have greater growth, dressout and lower fat levels than channel catfish produced in tanks having the identical water exchange rates but no water velocity.  相似文献   

8.
A comparative study was conducted on growth and protein requirements of channel catfish, Ictalurus punctatus, and blue catfish, Ictalurus furcatus. Four diets containing 24, 28, 32, or 36% protein were fed to both channel (initial weight 6.9 g/fish) and blue (6.6 g/fish) catfish for two growing seasons. There were significant interactions between dietary protein and fish species for weight gain and feed conversion ratio (FCR). No significant differences were observed in weight gain of channel catfish fed various protein diets, whereas higher protein diets (32 and 36%) resulted in better weight gain in blue catfish than lower protein diets (24 and 28%). No consistent differences were observed in the FCR of channel catfish fed various levels of dietary protein, whereas significantly higher FCRs were noted in blue catfish fed the 24 and 28% protein diets compared with fish fed 32 and 36% protein diets. Regardless of dietary protein levels, blue catfish had higher carcass, nugget, and total meat yield, and higher fillet moisture and protein, but lower fillet yield and fillet fat. Regardless of fish species, fish fed the 36% protein diet had higher carcass, fillet, and total meat yield than fish fed the 28 and 32% protein diets, which in turn had higher yields than fish fed the 24% protein diet. It appears that blue catfish can be successfully cultured by feeding a 32% protein diet.  相似文献   

9.
This study was conducted to evaluate the use of low protein diets for channel catfish Ictalurus punctatus raised in earthen ponds at high density. Fingerling channel catfish were stocked into 0.04-ha earthen ponds at a rate 24,700 fish/ha and fed experimental diets daily to satiation from April to October 1995. The five diets contained either 32, 28, 24, 20, or 16% crude protein with digestible energy to protein (DE:P) ratios ranging from 8.9 to 16.2 kcal/ g protein. Weight gain was not different among channel catfish fed diets containing 32, 28, or 24% crude protein. Fish fed diets containing 20% or 16% crude protein gained less weight than fish fed the diets containing 28% or 24% crude protein, but not statistically less than the fish fed the 32% crude protein diet. Feed consumption data followed similar trends as weight gain data. Feed conversion ratio increased linearly as dietary protein decreased, but was not significantly different (multiple range test) for fish fed diets containing either 32% or 28% crude protein. There were no differences in survival and hematocrit of fish fed the different diets. No differences (multiple range test) were observed in dressout percentages for fish fed the various diets, but dressout percentage tended to decrease linearly as dietary protein decreased. Visceral fat and fillet fat increased and fillet protein and moisture decreased linearly as dietary protein decreased. Results from this study indicated that dietary protein concentrations as low as 24% are adequate for maximum weight gain of pond-raised channel catfish fed daily to satiation. Fish fed dietary protein levels below 24% grew relatively well, particularly considering that dietary protein was reduced 40–50% below that typically used in commercial channel catfish feeds. However, dietary protein levels below 24% may increase fattiness to an unacceptable level presumably because of the high digestible energy to protein ratio.  相似文献   

10.
The efficacy of short-term feed withdrawal as a method of reducing ammonia concentrations in catfish production ponds was investigated. Channel catfish, Ictalurus punctatus, fingerlings averaging 35 g were stocked at 9,880 fish/ha into six 0.04-ha ponds and fed twice daily to satiation for 131 days. For a 9-day period immediately prior to harvest (days 132-140), feeding of fish in three ponds was terminated, while feeding of fish in three other ponds was continued. Total ammonia-nitrogen concentrations were not significantly reduced (P > 0.05) in unfed ponds until 9 days after feeding was terminated. However, after 7 days without feed, un-ionized ammonia concentrations were significantly higher (P < 0.05) in ponds where fish were not fed, due to significantly higher (P < 0.05) pH levels. Short-term (9 days) feed withdrawal had little effect on lowering total ammonia and actually increased concentrations of toxic un-ionized ammonia in ponds.  相似文献   

11.
Seasonal trends in types and intensities of fish flavors were determined for channel catfish, Ictalurus punctatus, from 10 ponds located on a commercial farm in west-central Mississippi. Fish were sampled bimonthly from July-September, 1990 and monthly from October, 1990-July, 1991. Sensory evaluation indicated that, on a yearly basis, 19% of ponds could be considered on- flavor. Off-flavors were strongest from July through September when 76% of ponds had fish tainted by 2-methylisoborneol (MIB). In nine ponds, the onset of MIB off-flavor episodes could be correlated with the presence of an MIB-producing cyanobacterium Oscillatoria chalybea. In seven ponds, fish lost the MIB off-flavor within 3 to 8 weeks after the fist date in September that 0. chalybea was noticed to be absent from the water. In June, 0. chalybea reappeared and caused MIB off-flavors in eight ponds. During the winter and spring, ponds were affected by woody (22%) and decay (25%) offflavors. The most prevalent algal species-Raphidiopsis brookii, 0. aaardhii. and Microcystis aeruginosa-were not associated with off flavor problems. On average, MIB off-flavor episodes lasted for 115 days (range: 27-344), and seven ponds were considered free of off-flavors for an average of 74 days (range: 14-140) in October, November, and December.  相似文献   

12.
During the summers of 1990 and 1991 in the Lowcountry region of South Carolina, high mortality rates (50-90%) of channel catfish, Ictalurus punctatus, in production ponds were attributed to the toxic form of the blue-green alga (Cyanobacterium) Aphanizomenon flos-aquae. Toxicity varied with algal strain and/or stage in life history, and a simple bioassay was developed to account for the differential toxicity of algae within ponds. The bioassay required an intraperitoneal injection of a sonicated, 30X concentrate of algal cells that are injected into 8- to 20-g fish. Injection with 0.05 ml of concentrate from the toxic strains caused hyperactivity and paralysis in fish within 10 minutes and mortality within an hour. The endotoxin from A. flos-aquae (aphantoxin) was neutralized with the equivalent of 1.7 mg/L potassium permanganate beyond demand. In production ponds, an application of copper sulfate followed with potassium permanganate had variable success. Muddying the ponds had only limited success but appeared promising. Water and soil chemistry in this geographic area probably influenced the frequency of toxic A. flos-aquae blooms.  相似文献   

13.
Feed represents the largest cost input in intensive catfish Ictalurus punctatus production. Daily feed rations are generally related to stocking densities, up to a point at which high feeding rates begin to affect water quality. There has been no prior research to analyze the economic interactions between feeding and stocking rates. Econometric techniques were used to estimate a Just-Pope catfish production function, which was used to compute marginal products of inputs, and to identify stocking and feeding rates associated with the boundaries between Stages I, II, and III of the production function. Survey data collected by USDA National Animal Health Monitoring System were used for this analysis. Maximum yield, when accounting for both stocking and feeding rates, occurred at about 30,000 fingerlings/ha. However, profit-maximizing stocking densities ranged between 16,942 and 21,312 fingerlings/ha, depending upon expected catfish and feed prices. Farmers stocking at higher rates could be attempting to maximize yield instead of profit.  相似文献   

14.
This study evaluated the use of black carp Mylopharyngodon piceus and salinity manipulation for controlling the infection of channel catfish Ictalurus puncratus by a digenetic trematode (tentatively identified as Bolbophorus confusus ). Control methods focussed mainly on the eradication of the intermediate snail host, the marsh rams-horn Phanorbella trivolvis (previously referred to as Helisoma trivolvis ), and were evaluated in laboratory tests and field experiments at a commercial catfish culture facility in southern Louisiana that was seriously impacted by the trematode. Introduction of fingerling black carp into catfish ponds at a density of 62 carpha resulted in an almost total elimination of P. trivolvis . The farm is now successfully using a facility-wide stocking rate of 40 carp/ha. Laboratory experiments were conducted to investigate the effect of salinity manipulation using NaCl on free-swimming trematode cercariae, the snail P. trivolvis , and catfish fingerlings infected with the cercariae. A salinity of 2.5 ppt had a detrimental effect on snail survival, growth, and reproduction. Salinity did not have a negative effect on the other two aspects of the trematode life cycle tested (in fact, survival of both cercariae and infected catfish fingerlings showed a positive dependence on NaCl over the 0–2.5 ppt range). A field-experiment was then conducted in catfish ponds maintained at three salinities (2.5, 1.25, and 0.25 ppt) with rock salt, NaCl. Snail densities in ponds at 2.5 ppt salinity were consistently lower than in the other treatments and no trematode infection was noted among snails or catfish in the 2.5 ppt salinity ponds. Both the use of 2.5 ppt NaCl and black carp appear valuable management tools for controlling the digenetic trematode in caffish ponds.  相似文献   

15.
Abstract.— This study was conducted to evaluate the effect of dietary protein concentration and an all‐plant diet on growth and processing yield of pond‐raised channel catfish Ictalurus punctatus. Four diets were formulated using plant and animal proteins to contain 24%n, 28%, 32%, or 36% crude protein with digestible energy to protein (DE/P) ratios of 11.7, 10.2, 9.0, and 8.1 kcal/g, respectively. An all‐plant diet containing 28% protein with a DE/P ratio of 10.2 kcal/g was also included. Channel catfish fingerlings averaging 40 g/fish were stocked into 24, 0.04‐ha ponds at a density of 18,530 fish/ha. Five ponds were used for each dietary treatment except for the all‐plant diet which had four replicates. The fish were fed once daily to apparent satiation for 160 d. No differences were observed in feed consumption, weight gain, survival, carcass and nugget yield, or fillet moisture and protein concentrations among treatments. Fish fed the 28% protein diet had a lower feed conversion ratio (FCR) than fish fed diets containing 24% and 32% protein, but had a FCR similar to fish fed the 36% protein diet. Fillet yield was higher for fish fed the 36% protein diet than fish fed the 24% protein diet. Visceral fat was lower in fish fed the 36% protein diet than fish fed other diets. Fish fed the 32% and 36% protein diets exhibited a lower level of fillet fat than fish fed the 24% protein diet. The 36% protein diet resulted in a lower level of fillet fat than fish fed the 28% protein diet. There was a positive linear regression in fillet yield and fillet moisture concentration and a negative linear regression in visceral fat and fillet fat against dietary protein concentration. No differences in any variables were noted between the 28% protein diets with and without animal protein except that fish fed the 28% protein diet without animal protein had a higher FCR than fish fed the 28% protein diet with animal protein. This observation did not appear to be diet related since FCR of fish fed the 32% protein diet containing animal protein was not different from that of fish fed the 28% all‐plant protein diet. Data from the present study indicate that dietary protein concentrations ranging from 24% to 36% provided for similar feed consumption, growth, feed efficiency, and carcass yield. However, since there is a general increase in fattiness and a decrease in fillet yield as the dietary protein concentration decreases or DEP ratio increases, it is suggested that a minimum of 28% dietary protein with a maximum DEIP ratio of 10 kcal/g protein is optimal for channel catfish growout.  相似文献   

16.
Channel catfish Ictalurus punctatus farming is the largest component of aquaculture in the USA. Culture technologies have evolved over time, and little recent work has been conducted on the effects of stocking density on production characteristics and water quality. Twelve 0.1‐ha ponds were stocked with 13‐ to 15‐cm fingerlings (16 g) at either 8600, 17,300, 26,000, or 34,600 fish/ha in single‐batch culture with three replicates per treatment. Fish were fed daily to apparent satiation with a 32% floating commercial catfish feed. Nitrite‐N, nitrate‐N, total ammonia nitrogen (TAN), total nitrogen, total phosphorus, chemical oxygen demand (COD), Secchi disk visibility, chlorophyll a, chloride, total alkalinity, total hardness, pH, temperature, and dissolved oxygen (DO) were monitored. Ponds were harvested after a 201‐d culture period (March 26, 2003 to October 13, 2003). Net yield increased significantly (P < 0.05) as stocking density increased, reaching an average of 9026 kg/ha at the highest density. Growth and marketable yield (>0.57 kg) decreased with increasing stocking density. Survival was not significantly different among densities. Mean and maximum daily feeding rates increased with density, but feed conversion ratios did not differ significantly among treatments (overall average of 1.42), despite the fact that at the higher stocking densities, the feeding rates sometimes exceeded 112 kg/ha per d (100 lb/ac per d). Morning DO concentrations fell below 3 mg/L only once in a 34,600 fish/ha pond. Concentrations of chlorophyll a, COD, nitrite‐N, and TAN increased nominally with increasing feed quantities but did not reach levels considered problematic even at the highest stocking densities. Breakeven prices were lowest for the highest stocking density even after accounting for the additional time and growth required for submarketable fish to reach market size. While total costs were higher for the higher density treatments, the relatively higher yields more than compensated for higher costs.  相似文献   

17.
Abstract

The passive sock grading method used by commercial channel catfish, Ictalurus punctatus, farmers to grade and reduce the number of under-sized fish delivered to processing plants was assessed on an experimental scale. The assessment was conducted at the Aquaculture Research Station at the University of Arkansas, Pine Bluff in 0.1-ha earthen ponds. A rectangular holding sock was fabricated with dimensions of 0.9 m in width, 2.4 m in length, and 1.2 m in depth. The mesh size of the sock was 4.4 cm and the mesh material was nylon netting, 0.64 cm in diameter. Seventeen groups of channel catfish, were graded, with group weights ranging from approximately 115 to 370 kilograms. Fish were held in the sock for approximately three hours (±0.27 hours). The water temperature during the trials ranged from 7.3°C to 28.7°C. The percent removal of fish less than 0.45 kg during the three-hour holding period ranged from 27.6% to 73.3%. Overall, sock grading efficiency increased with increasing water temperature and at water temperatures above 15°C a greater percentage of fish less than 0.45 kg were not retained in the socks.  相似文献   

18.
Four treatment groups that received repeating cycles of fixed feed deprivation for either 0, 1, 2, or 3 d (control, treatment 1, treatment 2, and treatment 3, respectively), followed by periods of refeeding with a 36% protein commercial catfish feed once daily as long as the active phase of compensatory growth (CG) persisted, were assessed in flow-through aquaria. No-feed periods elicited the CG state and were immediately followed by days of ad libatum refeeding. At the end of 10 wk, average growth rate (AGR) of fish was higher ( P < 0.05) than the control by 40%, 180%, and 191% for treatment 1, treatment 2, and treatment 3, respectively. The average weight of fish in treatment 3 was heavier ( P < 0.05) than the average control group at the end of the study period. Mean daily feed consumption was 3.91%, 5.03%, 5.36%, and 5.98% for control, treatment 1, treatment 2, and treatment 3, respectively. Mean feed consumption per fish per day was 24%, 71.3%, and 70.7% higher than the control in treatment 1, treatment 2, and treatment 3, respectively. Restricted feeding is one of the effective methods to contain ESC-related losses in commercial channel catfish fingerling operations. The mean cumulative survival of treatment groups registered higher ( P < 0.05) survival to Edwardsiella ictaluri infection compared to the daily fed control fish. Results from this study show that compensatory growth response triggered by periodic non-feeding days can improve growth rate, feed consumption, and improved survival to ESC infections in channel catfish fingerlings.  相似文献   

19.
Coefficients of net absorption for copper, iron, manganese, selenium, and zinc were determined for chelated sources (copper proteinate, iron proteinate, manganese proteinate, selenium proteinate, zinc proteinate) and inorganic sources (copper sulfate pentahydrate, ferrous sulfate heptahydrate, manganese sulfate monohydrate, sodium selenite, zinc sulfate hep-tahydrate) of these elements with channel catfish Ictalurus punctatus . Fish weighing approximately 60 g were placed into 40-L aquaria (12 fish/aquarium) at a temperature of 28 f 2 C and fed either an egg white-based, purified diet or a soybean meal-based, practical diet with and without the test mineral sources for 6 wk then killed and feces collected from the hindgut. Treatments were arranged in a 2 × 2 factorial design. Absorption coefficients for the elements in the basal and mineral supplemented diets were calculated by the indirect indicator (chromic oxide) method and corrected for residual amounts of element in the basal diets. Net absorption of the chelated minerals was significantly higher ( p < 0.05) than net absorption of the inorganic minerals in both basal diets. Average percentage improvement in net absorption of chelated minerals over inorganic minerals was 39.3% in the purified diets and 81.1% in the practical diets. These results may indicate that appreciably lower amounts of chelated trace minerals than inorganic trace minerals can be used as supplements in catfish feeds.  相似文献   

20.
Four 20m3 cages stocked with 120 bighead carp x silver carp hybrids per cage were placed in each of four ponds varying in trophic status from mesotrophic to hypereutophic. Fish were cultured, without feeding, from 13 March to 1 Octorber 1987. Fish in the mesotrophic pond survived but lost weight (-0.37 g/fish/d). The mesotrophic pond produced insufficient food to sustain fish growth. Maximum fish growth rate occured in the two eutotrophic ponds (6.61vand 7/04 g/fish/d). Fish growth in the hypereutrophic pond was about one-half (3.64 g/fish/d) that in the two eutrophic ponds. Guy analysis of fish in the hypereutrophic pond revealed consumption of larger quantities (P < 0.05) of colonial blue-green algae that were apparently poorly digested and less (P < 0.05) zooplankton (primarily cladocerans) than was found in fish from the eutrophic ponds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号