首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nor98 is an atypical scrapie strain characterized by a molecular pattern and brain distribution of the pathological prion protein (PrPSc) different from classical scrapie. In Italy, 69 atypical cases have been identified so far and all were characterized as Nor98 strain. In this paper we report an unusual case in a sheep which showed immunohistochemical and molecular features of PrPSc different from the other atypical cases. The sheep was from an outbreak where the index and the other four cases were affected by classical scrapie. Histopathological, immunohistochemical and Western blot analyses on the brain of the unusual case revealed the simultaneous presence of pathological features characteristic of Nor98 and classical scrapie. Interestingly, the prevalent disease phenotype in the brainstem was classical scrapie-like, while in the cerebral cortex and cerebellum the Nor98 phenotype was dominant. The sub-mandibular lymph node was positive and showed a PrPSc molecular pattern referable to classical scrapie. The PrP genotype was AL141RQ/AF141RQ. Taken together, the occurrence of classical scrapie in the outbreak, the PrP genotype, the involvement of different cellular targets in the brain and the pathological and molecular PrPSc features observed suggest that this unusual case may result from the co-existence of Nor98 and classical scrapie.  相似文献   

2.
Atypical/Nor98 scrapie cases in sheep were diagnosed for the first time in Norway in 1998. They are now identified in small ruminants in most European countries and represent an increasingly large proportion of the scrapie cases diagnosed in Europe. Atypical/Nor98 scrapie isolates have shown to be experimentally transmissible into transgenic mice and sheep but the properties of the TSE agent involved, like its biological and biochemical features, are so clearly distinct from the agent involved in classical scrapie that they have provided a challenging diagnostic for many years. No strain diversity has yet been identified among the atypical/Nor98 scrapie sample cases. The genetic predisposition of the sheep affected by atypical/Nor98 scrapie is almost inverted compared to classical scrapie, and the exact origin of this sporadic TSE strain is still speculative, but a spontaneous, non-contagious origin, like sporadic Creutzfeldt-Jakob disease in humans, can not be excluded. Further transmission and epidemiological studies are needed to better address this hypothesis.  相似文献   

3.
ABSTRACT: Classical scrapie is a naturally transmitted prion disease of sheep and goats. Contaminated environments may contribute to the spread of disease and evidence from animal models has implicated urine, blood, saliva, placenta and faeces as possible sources of the infection. Here we sought to determine whether sheep naturally infected with classical scrapie shed prions in their faeces. We used serial protein misfolding cyclic amplification (sPMCA) along with two extraction methods to examine faeces from sheep during both the clinical and preclinical phases of the disease and showed amplification of PrPSc in 7 of 15 and 14 of 14 sheep respectively. However PrPSc was not amplified from the faeces of 25 sheep not exposed to scrapie. These data represent the first demonstration of prion shedding in faeces from a naturally infected host and thus a likely source of prion contamination in the environment.  相似文献   

4.
Within the framework of the active surveillance for transmissible spongiform encephalopathies in sheep in Sweden, 4 cases of the atypical form of scrapie, Nor98, were identified during 2003. Nor98 is a recently recognized and poorly understood variant of scrapie, first described in Norway. The cases were positive by the rapid test (enzyme-linked immunosorbent assay). Immunohistochemical staining showed diffuse thin-granular staining of the cerebellar cortex. Western immunoblotting analysis of specimens of brain stem and cerebellum showed a light band of approximately 12 kDa. Typical scrapie was ruled out based on the confirmatory testing. The affected ewes were from 4 different flocks. They were between 7 and 9 years old. Two were of the ARQ/ARQ genotype, 1 ARR/ARQ, and 1 ARR/AHQ. Two ewes had shown ataxia, and the other 2 had no clinical signs. Whole-flock slaughter was applied, and testing of the flock mates did not reveal additional cases. Nor98 differs from typical scrapie in its epidemiology, frequency of genotypes of sheep affected, clinical signs, microscopic lesions, distribution of scrapie prion protein in the brain, and characteristics of the immunostaining and immunoblotting profiles.  相似文献   

5.
ABSTRACT: Interspecies transmission studies afford the opportunity to better understand the potential host range and origins of prion diseases. The purpose of this experiment was to determine susceptibility of white-tailed deer to the agent of scrapie after intracerebral inoculation and to compare clinical signs and lesions to those reported for chronic wasting disease (CWD). Deer (n = 5) were inoculated with 1 mL of a 10% (wt/vol) brain homogenate derived from a sheep clinically affected with scrapie. A non-inoculated deer was maintained as a negative control. Deer were observed daily for clinical signs of disease and euthanized and necropsied when unequivocal signs of scrapie were noted. One animal died 7 months post inoculation (pi) due to intercurrent disease. Examinations of brain tissue for the presence of the disease-associated abnormal prion protein (PrPSc) by western blot (WB) and immunohistochemistry (IHC) were negative whereas IHC of lymphoid tissues was positive. Deer necropsied at 15-22 months pi were positive for scrapie by IHC and WB. Deer necropsied after 20 months pi had clinical signs of depression and progressive weight loss. Tissues with PrPSc immunoreactivity included brain (at levels of cerebrum, hippocampus, colliculus, cerebellum, and brainstem), trigeminal ganglion, neurohypophysis, retina, spinal cord, and various lymphoid tissues including tonsil, retropharyngeal and mesenteric lymph nodes, Peyer's patches, and spleen. This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation. To further test the susceptibility of white-tailed deer to scrapie these experiments will be repeated with a more natural route of inoculation.  相似文献   

6.
Five cases of scrapie with unusual features have been diagnosed in Norway since 1998. The affected sheep showed neurological signs dominated by ataxia, and had the PrP genotypes homozygous A136 H154 Q171/ A136H154Q171 or heterozygous A136H154Q171/A136R154Q171, which are rarely associated with scrapie. Brain histopathology revealed neuropil vacuolisation essentially in the cerebellar and cerebral cortices; vacuolation was less prominent in the brainstem, and no lesions were observed at the level of the obex. The deposits of PrPSc were mainly in the cortex of the cerebellum and cerebrum, and no PrPSC was detectable by immunohistochemistry and ELISA in the lymphoid tissues investigated. Western blot analysis showed that the glycotype was different from other known scrapie strains and from the BSE strain. From a diagnostic point of view, these features indicate that this type of scrapie, designated Nor98, could have been overlooked and may be of significance for sampling in scrapie surveillance programmes.  相似文献   

7.
The aim of this study was to analyze the epidemiology and prion protein (PrP) genetics in scrapie-affected sheep flocks in Germany. For this purpose, 224 German scrapie cases in sheep diagnosed between January 2002 and February 2006 were classified as classical or atypical scrapie and the amino acids at codons 136, 141, 154 and 171 were determined. Likewise, representative numbers of flock mates were genotyped. Significant epidemiological differences were observed between classical and atypical scrapie cases in regard to the numbers of scrapie-affected sheep within a flock, the sizes of flocks with only a single scrapie-positive sheep or more than one scrapie-positive sheep and the age distribution of the scrapie-positive sheep. Sheep with the ARQ/ARQ genotype had by far the highest risk for acquiring classical scrapie, but the risk for atypical scrapie was the highest for sheep carrying phenylalanine (F) at position 141 (AF(141)RQ) and/or the AHQ haplotype. However, atypical scrapie also occurred with a notable frequency in sheep with the PrP haplotypes ARR and/or ARQ in combination with Leucine at position 141 (AL(141)RQ). Furthermore, six atypical scrapie-positive sheep carried the PrP genotype ARR/ARR. The high proportion of sheep flocks affected by atypical scrapie underscores the importance of this scrapie type.  相似文献   

8.
During active surveillance for transmissible spongiform encephalopathies (TSEs) in sheep, an initial reactor was detected using a rapid test on a brain sample. Immunohistochemistry confirmed an atypical TSE presentation that closely resembled the previously described Nor98 cases. Sequencing of the prnp gene confirmed the ARQ/AHQ genotype with the L141F mutation at codon 141 associated with this phenotype. The head, including the brain and cranial lymphoid tissues, was sampled and examined thoroughly. Non-purulent encephalitis, with ectopic lymphoid follicle formation within the brain, was diagnosed concomitant to the TSE. When scrapie-associated prion protein (PrP(sc)) deposition was studied by immunohistochemistry there was a noticeable lack of lymphotropism. The distribution of PrP(sc) in the brain differed considerably from that of classical scrapie cases. Astrogliosis and microgliosis were demonstrated by histochemical procedures.  相似文献   

9.
Different types of transmissible spongiform encephalopathies (TSEs) affect sheep and goats. In addition to the classical form of scrapie, both species are susceptible to experimental infections with the bovine spongiform encephalopathy (BSE) agent, and in recent years atypical scrapie cases have been reported in sheep from different European countries. Atypical scrapie in sheep is characterized by distinct histopathologic lesions and molecular characteristics of the abnormal scrapie prion protein (PrP(sc)). Characteristics of atypical scrapie have not yet been described in detail in goats. A goat presenting features of atypical scrapie was identified in Switzerland. Although there was no difference between the molecular characteristics of PrP(sc) in this animal and those of atypical scrapie in sheep, differences in the distribution of histopathologic lesions and PrP(sc) deposition were observed. In particular the cerebellar cortex, a major site of PrP(sc) deposition in atypical scrapie in sheep, was found to be virtually unaffected in this goat. In contrast, severe lesions and PrP(sc) deposition were detected in more rostral brain structures, such as thalamus and midbrain. Two TSE screening tests and PrP(sc) immunohistochemistry were either negative or barely positive when applied to cerebellum and obex tissues, the target samples for TSE surveillance in sheep and goats. These findings suggest that such cases may have been missed in the past and could be overlooked in the future if sampling and testing procedures are not adapted. The epidemiological and veterinary public health implications of these atypical cases, however, are not yet known.  相似文献   

10.
The development of clinical signs of TSE/scrapie in sheep has been linked to polymorphisms in the prion protein (PRNP) gene. The most important polymorphisms appear to be at codons 136, 154, and 171. The objective of this study was to investigate the polymorphisms at these codons in the Belgian sheep population, including clinical healthy animals, healthy animals at the slaughterhouse and animals in TSE/scrapie positive farms (including a Nor98 farm).  相似文献   

11.
Transmissible spongiform encephalopathies are degenerative disorders affecting the central nervous system (CNS) occurring in a variety of species. The causative agent is thought to be composed of an abnormal form of the host encoded prion protein (PrPC), termed PrPSc. The conformational change of PrPC into PrPSc can occur spontaneously, however, it can also be induced by PrPSc. Prion diseases such as bovine spongiform encephalopathy (BSE), scrapie and variant Creutzfeldt-Jakob-Disease (vCJD) are most likely caused by peripheral uptake of prions. The process by which prions proceed to the CNS following peripheral uptake is referred to as neuroinvasion. Infection with prions is thought to occur in two phases: After ingestion prions first replicate in lymphatic tissue and then gain access to the CNS via peripheral nerves. Studies looking at the biochemical and clinical characteristics of BSE and vCJD demonstrated that BSE is most likely responsible for vCJD in humans.  相似文献   

12.
The term of 'TSE infections in small ruminants' summarises BSE as well as classical and the recently discovered atypical scrapie infections in sheep and goats.There are fundamental differences between the TSE infections in small and large ruminants. Other than in bovines the TSE pathogenesis in small ruminants implies that various peripheral tissues become infectious long before the onset of clinical symptoms. At least in sheep, classical scrapie is efficiently transmitted horizontally within affected flocks. On the other hand, BSE poses a distinctly higher zoonotic risk than scrapie. Therefore, regulatory measures for the protection of animals and humans from a BSE infection must be substantially different for large and small ruminants. While culling of the birth and feeding cohort of a BSE affected cattle is considered to be effective to prevent any further BSE cases in the affected herd, an effective BSE and classical scrapie eradication programme in small ruminants requires a much more stringent eradication strategy and the rendering of all susceptible animals. The situation became even more complicated when atypical scrapie cases with divergent transmission and pathogenesis characteristics and with a novel biochemical phenotype of the infectious agent came into play. The discovery of these atypical scrapie cases has initiated a discussion about the suitability of the current TSE eradication measures in sheep (which are selective breeding and genotype based culling), in particular when such cases were also found in sheep carrying the believed scrapie resistant genotypes.  相似文献   

13.
Formalin-fixed, paraffin-embedded tissue sections from a 3-year-old female Angora goat suffering from clinical scrapie were immunostained after hydrated autoclaving using a monoclonal antibody (mAb, F99/97.6.1; IgG1) specific for a conserved epitope on the prion protein. Widespread and prominent deposition of the scrapie isoform of the prion protein (PrPSc) was observed in the brain, brainstem, spinal cord, retina, postganglionic neurons associated with parasympathetic ganglia of myenteric and submucosal plexuses, Peyer's patches, peripheral lymph nodes, and pharyngeal and palatine tonsils. The goat was homozygous for PrP alleles encoding 5 octapeptide repeat sequences in the N-terminal region of the prion protein and isoleucine at codon 142, a genotype associated with high susceptibility and short incubation times in goats. The results of this study indicate that mAb F99/97.6.1 is useful for detection of PrPSc deposition, and this is a specific and reliable immunohistochemical adjunct to histopathology for diagnosis of natural caprine scrapie, although precise determination of the diagnostic sensitivity and specificity of the assay as a diagnostic test for scrapie in goats will require examination of a sufficiently large sample size. As with ovine scrapie, prion protein is widely distributed in the central and peripheral nervous systems, gastrointestinal tract, and lymphoid tissues in natural caprine scrapie.  相似文献   

14.
Scrapie, a transmissible spongiform encephalopathy (TSE), is a naturally occurring fatal neurodegenerative disease of sheep and goats. This study documents survival periods, pathological findings, and the presence of abnormal prion protein (PrP(Sc)) in genetically susceptible sheep inoculated with scrapie agent. Suffolk lambs (AA/RR/QQ at codons 136, 154, and 171, respectively) aged 4 mo were injected by the intralingual (IL) or intracerebral (IC) route with an inoculum prepared from a pool of scrapie-affected US sheep brains. The animals were euthanized when advanced clinical signs of scrapie were observed. Spongiform lesions in the brain and PrPsc deposits in the central nervous system (CNS) and lymphoid tissues were detected by immunohistochemical and Western blot (WB) testing in all the sheep with clinical prion disease. The mean survival period was 18.3 mo for the sheep inoculated by the IL route and 17.6 mo for those inoculated by the IC route. Since the IC method is occasionally associated with anesthesia-induced complications, intracranial hematoma, and CNS infections, and the IL method is very efficient, it may be more humane to use the latter. However, before this method can be recommended for inoculation of TSE agents, research needs to show that other TSE agents can also transmit disease via the tongue.  相似文献   

15.
All sheep older than 1 year of age from a flock of the Rygja breed in which clinical scrapie was detected for the first time in two animals (4%) were examined for accumulation of pathogenic prion protein (PrPSc) by immunohistochemistry in the obex, the cerebellum, and the medial retrophayngeal lymph node. In addition, six lambs, 2-3 months old, all offspring of PrPSc-positive dams, were examined for PrPSc in the ileal Peyers' patch (IPP), the distal jejunal lymph node, the spleen, and the medial retropharyngeal lymph node (RPLN). In this flock, 35% (17/48) of the adult sheep showed accumulation of PrPSc, an eightfold increase compared with clinical disease. All positives carried susceptible PrP genotypes. Three sheep had deposits of PrPSc in the RPLN and not in the brain, suggesting that this organ, easily accessible at slaughter, is suitable for screening purposes. Two 7-year-old clinically healthy homozygous V136Q171 ewes showed sparse immunostaining in the central nervous system and may have been infected as adults. Further, two littermates, 86-days-old, showed PrPSc in the IPP. Interestingly, one of these lambs had the intermediate susceptible PrP genotype, VA136QR171. In addition to early immunolabeling in the dorsal motor nucleus of the vagal nerve, a few of the sheep had early involvement of the cerebellum. In fact, a 2-year-old sheep had sparse deposits of PrPSc in the cerebellum only. Because experimental bovine spongiform encephalopathy (BSE) in sheep seems to behave in a similar manner as natural scrapie, these results, particularly regarding spread of infectivity, may have implications for the handling of BSE should it be diagnosed in sheep.  相似文献   

16.
Molecular profiling of the proteinase K resistant prion protein (PrP(res)) is a technique that has been applied to the characterisation of transmissible spongiform encephalopathy (TSE) strains. An interesting example of the application of this technique is the ability to differentiate, at the experimental level, between bovine spongiform encephalopathy (BSE) and scrapie infection in sheep, and to distinguish between classical and atypical BSE and scrapie cases. Twenty-six BSE cases and two scrapie cases from an active TSE surveillance program and diagnosed at the PRIOCAT, TSE Reference Laboratory (Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Catalunya, Spain) were examined by Western blotting. Molecular profiling was achieved by comparing the glycosylation profile, deglycosylated PrP molecular weight and 6H4/P4 monoclonal antibody binding ratio. The results obtained during the characterisation of these field cases indicated an absence of atypical BSE cases in Catalunya.  相似文献   

17.
In 2005, a prion disease identified in a goat from France was reported to be consistent with disease from the bovine spongiform encephalopathy (BSE) agent. Subsequent retrospective examination of UK goat scrapie cases led to the identification of one potentially similar, but as yet unconfirmed, case from Scotland. These findings strengthened concerns that small ruminant populations exposed to the BSE agent have become infected. The lack of data relating specifically to scrapie in goats has been contributory to past assumptions that, in general, sheep and goats respond similarly to prion infections. In this study, brain material from 22 archived caprine scrapie cases from the UK was reviewed by histopathology and by immunohistochemical examination for accumulations of disease-specific prion protein (PrP(Sc)) to provide additional data on the lesions of caprine scrapie and to identify any BSE-like features. The vacuolar change observed in the goats was characteristic of transmissible spongiform encephalopathies in general. PrP(Sc) immunohistochemical morphologic forms described in scrapie and experimental BSE infections of sheep were demonstrable in the goats, but these were generally more extensive and variable in PrP(Sc) accumulation. None of the cases examined showed a PrP(Sc) immunohistochemical pattern indicative of BSE.  相似文献   

18.
This report describes the genetics of the prion protein gene (PRNP) at codons 136, 154, and 171 for sheep diagnosed with naturally acquired classical scrapie in Canada between 1998 and 2008. Genotyping analysis was performed on 249 sheep with confirmed classical scrapie infection representing 98 flocks from 6 provinces. A further case-control analysis of 3 of these flocks compared the genotypes between infected sheep (n = 72) and those of their healthy flockmates (n = 1990). The incidence of classical scrapie in the Canadian sheep population was highly associated with the ARQ haplotype (91.8%) and the ARQ/ARQ genotype (91.6%). In addition, the ARQ haplotype was found at significantly higher frequency in scrapie-infected sheep when compared with their healthy flockmates. Comparison with other published data suggests that the scrapie risk of PRNP genotypes differs between Canada and countries where the VRQ allele is associated with the highest susceptibility to infection.  相似文献   

19.
Before the emergence of bovine spongiform encephalopathy (BSE) and recognition of its zoonotic potential, the major example of the transmissible spongiform encephalopathies (TSEs) of animals was scrapie of sheep. But there is no evidence that scrapie transmits naturally to any species other than sheep and goats. The pathogenesis of scrapie has been studied most in experimental laboratory rodent species. In most experimental models of scrapie, after peripheral non-neural routes of infection, replication of the agent can first be detected in lymphoreticular system (LRS) tissue. When the route of introduction of agent into the body is localized, initial involvement will be in LRS tissue draining the infection site. Thereafter, there is a striking amplification of the agent in the LRS and spread by lymphatic/haematogenous routes, giving widespread dissemination in the LRS. This precedes replication in the CNS, but is not the means by which infection reaches the CNS. There is now substantial evidence from experimental models of scrapie that involvement of the CNS is by peripheral nervous system (PNS) pathways. In some models employing oral exposure the earliest localized LRS replication is in the gut-associated lymphoid tissue (GALT) and autonomic PNS routing to the CNS has been implicated. However, the relative importance of different routes of spread of TSEs within the body is determined by a number of host- and agent-dependent factors and, therefore, generalizations from an experimental model to a natural disease across a species barrier may not be appropriate. With the occurrence of BSE and recognition of its food-borne route of transmission via meat and bone meal, has come greater awareness of the probable importance of the oral route of infection in ruminant species affected by TSEs. In consequence, studies have increasingly focused on the natural host species to examine pathogenetic events.  相似文献   

20.
Before the emergence of bovine spongiform encephalopathy (BSE) and recognition of its zoonotic potential, the major example of the transmissible spongiform encephalopathies (TSEs) of animals was scrapie of sheep. But there is no evidence that scrapie transmits naturally to any species other than sheep and goats. The pathogenesis of scrapie has been studied most in experimental laboratory rodent species. In most experimental models of scrapie, after peripheral non-neural routes of infection, replication of the agent can first be detected in lymphoreticular system (LRS) tissue. When the route of introduction of agent into the body is localized, initial involvement will be in LRS tissue draining the infection site. Thereafter, there is a striking amplification of the agent in the LRS and spread by lymphatic/haematogenous routes, giving widespread dissemination in the LRS. This precedes replication in the CNS, but is not the means by which infection reaches the CNS. There is now substantial evidence from experimental models of scrapie that involvement of the CNS is by peripheral nervous system (PNS) pathways. In some models employing oral exposure the earliest localized LRS replication is in the gut-associated lymphoid tissue (GALT) and autonomic PNS routing to the CNS has been implicated. However, the relative importance of different routes of spread of TSEs within the body is determined by a number of host- and agent-dependent factors and, therefore, generalizations from an experimental model to a natural disease across a species barrier may not be appropriate. With the occurrence of BSE and recognition of its food-borne route of transmission via meat and bone meal, has come greater awareness of the probable importance of the oral route of infection in ruminant species affected by TSEs. In consequence, studies have increasingly focused on the natural host species to examine pathogenetic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号