首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective The present study was undertaken to establish reference values for Schirmer tear test (STT) and intraocular pressure (IOP) in the long‐eared hedgehog (Hemiechinus auritus). Animals Fourteen healthy long‐eared hedgehogs (H. auritus) of either sex were studied. Procedures The hedgehogs were individually immobilized with an intramuscular injection of combined Ketamine (20 mg/kg) and Diazepam (0.5 mg/kg), and each animal underwent ophthalmic examinations including: STT, tonometry, biomicroscopy, and indirect ophthalmoscopy. Results No significant effects of animal gender, weight, side (right vs. left eye) were found in this study. Mean (SD) STT values for all eyes (n = 28) were 1.7 ± 1.2 mm/1 min with a range of 0–4 mm/1 min. Mean STT in male animals was 2.2 ± 1.2. Mean STT in female Hedgehogs was 1.3 ± 1.1. Mean (SD) IOP values by applanation tonometry were 20.1 ± 4.0 mmHg (range 11.5–26.5 mmHg). Mean (SD) IOP values by applanation tonometry were 18.2 ± 4.0 and 22.0 ± 3.2 mmHg for males and females, respectively. Conclusions This study reports STT and IOP findings in long‐eared hedgehogs (H. auritus).  相似文献   

2.
Objective To detect and categorize time‐specific variations in daytime intraocular pressure (IOP) found in Rhesus monkeys with laser‐induced ocular hypertension. Procedures Ten male monkeys with argon laser‐induced ocular hypertension in one eye were anesthetized with ketamine hydrochloride, and the IOP measured in both eyes at 7 a.m., 7.30 a.m., and then hourly until 1 p.m. with a Tonopen? XL applanation tonometer. Intraocular pressure time profiles for both eyes in each animal were developed. The means ± SD of the IOPs for both eyes were calculated for the whole 6‐h study period, and the values compared statistically. The difference between the lasered eye mean IOP standard deviation and the normal eye mean IOP standard deviation for each animal during the 6‐h follow‐up was also calculated and compared. Results Mean IOP (± SD) in the glaucoma and normal eyes for the 10 animals during the 6‐h study was 32.6 ± 2.5 and 14.9 ± 2.5 mmHg, respectively. The IOP was significantly higher in the experimental eye than in the normal eye (P = 0.0008). The mean IOP in the lasered eye did not significantly change during the study period, whereas a slight but significant increase in IOP of the normal eye over the study period was recorded (P = 0.003). The variance in IOP in the hypertensive eyes was considerably greater than that in the untreated control eyes. From 7 a.m. to 1 p.m. the IOP declined in five eyes and increased in the other five eyes with laser‐induced ocular hypertension. Conclusions The time‐specific IOP variation pattern in the daytime in the laser treated eyes is significantly greater than the variation in the normotensive eyes. This shows that in order to detect statistical differences between IOP variations induced by an IOP‐reducing drug, and the exaggerated spontaneous IOP variations present in the laser‐induced hypertensive eye, sufficient animals should be included in any study. Understanding the time‐specific IOP variation present in a group of monkeys with laser‐induced ocular hypertension is essential prior to using the model for the evaluation of IOP‐reducing drugs.  相似文献   

3.
Intraocular pressure (IOP) reflects a balance between aqueous humor production and outflow and is often an essential ophthalmic diagnostic procedure in animals. The objective of this study was to estimate IOP in clinically normal red-footed tortoises (Geochelone carbonaria) of various sizes by using applanation tonometry. Intraocular pressures were estimated for 25 captive red-footed tortoises (10 males, 10 females, and 5 animals of unknown sex) by using an applanation tonometer after topical anesthesia. Body length ranged from 5.1 to 54.9 cm, measured from nuchal to anal scutes. Five measurements from each eye were obtained by a single observer in an ambient temperature of approximately 30 degrees C. Observer's reliability was good (intraclass r = 0.75), and IOP did not change over the ordered sequence of five replicate measurements. For individual tortoises the correlation for IOP between the left and right eyes was low (r = 0.20). The paired t-test did not show any statistical effect (P = 0.426) for the difference in IOP between the left and right eyes. Mean IOP determined for 10 confirmed males and 10 confirmed females did not differ between sexes (P = 0.244). The mean IOP of five small tortoises (< 10 cm long) was not significantly different (P = 0.244) from that of 20 large tortoises (> 10 cm long). In red-footed tortoises there does not appear to be any relation between carapace length and IOP.  相似文献   

4.
Objective To compare intraocular pressure (IOP) measurements made on healthy adult rabbits without the effect of tranquilizers using the new applanation tonometer, Tono‐Pen Avia®, and the rebound tonometer Tonovet®. Methods Intraocular pressure was measured throughout the day (6:00, 9:00, 12:00, 15:00, and 18:00 h) in 38 adult New Zealand White rabbits (76 eyes). The animals were 20 males and 18 females, with a mean weight of 3.5 kg and an average age of 6 months. A complete ocular exam (including Schirmer tear test, fluorescein staining, slit‐lamp biomicroscopy, and direct ophthalmoscopy) was performed on all animals at the beginning of the trial. Rebound tonometry was performed, and after 10 min, anesthetic drops were instilled and applanation tonometry was carried out. IOP values obtained using the two techniques were analyzed statistically. Results The mean IOP was 9.51 ± 2.62 mmHg with Tonovet®, and 15.44 ± 2.16 mmHg with the Tono‐Pen Avia®. Significant differences between measurements with the two tonometers were observed (P < 0.001). The linear regression equation describing the relationship between the two tonometers was y = 0.4923x + 10.754 (y = Tonovet® and x = Tono‐Pen Avia®). High IOPs were recorded in the early measurements (6:00), but the average IOPs from both devices were statistically similar throughout the day (P = 0.086). The correlation coefficient was r2 = 0.357. No significant difference in IOP regarding gender was observed. Conclusion The Tono‐Pen Avia® recorded higher levels of IOP compared with the Tonovet®. Early in the day, the IOP of rabbits was higher than later in the day, regardless of the tonometer used.  相似文献   

5.
Ophthalmic examination findings in adult pygmy goats (Capra hicus)   总被引:1,自引:1,他引:0  
Objective To document normal ophthalmic findings and ocular abnormalities in captive adult pygmy goats. Animals studied Ten healthy adult pygmy goats (five male, five female; 5–11 years of age; 26–45 kg body mass) underwent complete ophthalmic examinations. Procedure Direct illumination, diffuse and slit‐beam biomicroscopy, indirect ophthalmoscopy, IOP measurements and Schirmer tear tests were performed. TonoVet® rebound tonometry, followed by topical application of 0.5% ophthalmic proparacaine, and Tono‐Pen XL® applanation tonometry were performed in each eye to obtain estimates of IOP. Results Ophthalmic abnormalities included corneal scars and pigmentation, incipient cataracts, lenticular sclerosis, and vitreal veiling. Mean STT values were 15.8 mm/min, with a range of 10–30 mm/min. Mean IOP values were 11.8 mmHg for TonoVet®‐D, with a range of 9–14 mmHg; 7.9 mmHg for TonoVet®‐P, with a range of 6–12 mmHg; and 10.8 mmHg for Tono‐Pen XL®, with a range of 8–14 mmHg. Conclusions Ophthalmic examination findings in adult pygmy goats, including normal means and ranges for STT and IOP measurements, using applanation and rebound tonometry, are provided.  相似文献   

6.
The relationship of cataract maturity to intraocular pressure in dogs   总被引:2,自引:2,他引:0  
Objective To determine the distribution of intraocular pressure, as measured by applanation tonometry, in dogs with cataracts, and compare these tonometric results to the different stages of cataract formation (incipient, immature, mature, and hypermature). Animals studied Retrospection study of canine clinical patients (86 dogs). Procedures All records of dogs presented from 1991 to 1996 to the university veterinary medical teaching hospital for diagnosis of cataracts and evaluation for cataract surgery were reviewed. The tonometric measurements from the initial ophthalmic examination were selected in cataractous and nonglaucomatous eyes either receiving no topical or no systemic medications. The stage of cataracts was based on the degree of opacification, tapetal reflection, clinical vision, and visibility of the ocular fundus by indirect ophthalmoscopy. The distribution of tonometric results were grouped by the cataract maturity, and compared by anova and Tukey’s general linear tests. Results Intraocular pressure with incipient cataracts ranged from 9 to 17 mmHg (mean 12.7 ± 1.2 mmHg). Intraocular pressure with immature cataracts ranged from 3 to 27 mmHg (mean 13.6 ± 0.6 mmHg). For the mature cataracts, IOP ranged from 5 to 22 mmHg (mean 11.9 ± 0.7 mmHg). For the hypermature cataract group, IOP ranged from 4 to 23 mmHg (mean 10.8 ± 0.6 mmHg). Comparison of the tonometric results among the different stages of cataract formation indicated a significant difference (P = 0.0086) between only the immature and hypermature groups. Conclusions Intraocular pressure in lens‐induced uveitis (LIU) is lowered but the relationship to the stage of cataract maturity is less clear. Significant tonometric differences were present between the immature and hypermature cataract groups, but these differences are too small to be clinically useful. Decreased intraocular pressure of dogs with all stages of cataract formation suggests concurrent LIU during all stages of cataract formation, especially with the mature and hypermature stages. The average tonometric measurements in dogs with these cataracts were about two standard deviations below the mean IOP reported in normal dogs.  相似文献   

7.
Objective To evaluate the changes in intraocular pressure and pupil size in glaucomatous dogs after instillation of 0.005% latanoprost (Xalatan, Pharmacia and Upjohn, Kalamazoo, MI, USA) once in the morning, or once in the evening, or twice daily in five‐day multiple‐dose studies. Animals studied Eight Beagles with the moderate stage of inherited primary open‐angle glaucoma. Procedures Applanation tonometry (IOP) and pupil size (PS) measurements were obtained at 8 am, 10 am, 12 noon, 2 pm, and 4 pm in eight glaucoma dogs. Methylcellulose (0.5% as placebo) was instilled in the control eye, and 0.005% latanoprost was instilled in the opposite drug eye. Control and drug eyes were selected using a random table. For these three studies, 0.5% methylcellulose and 0.005% latanoprost were instilled the second through the fifth days with instillations in the morning (8.30 am), or evening (8 pm), or twice daily (8.30 am and 8 pm). Statistical comparisons between drug groups included control, placebo, and treated (0.005% latanoprost) eyes for three multiple‐dose studies. Results In the 8‐am latanoprost study, the mean ± SEM diurnal declines in IOP for the placebo and drug eyes for the first day were 6.5 ± 3.6 mmHg and 8.4 ± 4.0 mmHg, respectively. The mean ± SEM diurnal changes in IOP after 0.005% latanoprost at 8 am once daily for the next four days were 23.3 ± 5.0 mmHg, 25.4 ± 2.1 mmHg, 25.7 ± 1.7 mmHg, and 26.1 ± 1.7 mmHg, respectively, and were significantly different from the control eye. A significant miosis also occurred starting 2 h postdrug instillation, and the resultant mean ± SD pupil size was 1.0 ± 0.1 mm. In the first day of the second latanoprost study, the mean ± SEM diurnal changes in the placebo and drug eye IOPs were 11.6 ± 3.8 mmHg, and 12.0 ± 4.4 mmHg, respectively. For the following four days with latanoprost instilled at 8 pm, the mean ± SEM diurnal changes in IOP in the drug eyes were 24.9 ± 2.1 mmHg, 22.4 ± 1.8 mmHg, 21.6 ± 1.9 mmHg, and 26.6 ± 2.2 mmHg, respectively. Compared to the fellow placebo eyes, the diurnal changes in IOP were significantly different. Significant changes in pupil size were similar to the IOP changes, with miosis throughout the day and return to baseline pupil size the following morning before drug instillation. In the last study, the mean ± SEM diurnal changes in IOP for the placebo and drug eyes for the first day were 6.6 ± 2.1 mmHg and 9.4 ± 2.8 mmHg, respectively. For the four subsequent days with latanoprost instilled twice daily, the mean ± SEM diurnal IOP changes were 19.6 ± 1.5 mmHg, 19.1 ± 1.4 mmHg, 19.9 ± 1.7 mmHg, and 20.3 ± 0.7 mmHg, respectively, and were significantly different from the placebo eyes. The mean changes in PS were 3.1 ± 0.7 mm. Conclusion 0.005% latanoprost instilled once daily (am or pm) as well as twice daily produces significant decreases in IOP and PS in the glaucomatous Beagle. The evening instillation of 0.005% latanoprost produced less daily fluctuations in IOP than when the drug was instilled in the morning. 0.005% latanoprost instilled twice daily produced the greatest decline in IOP with the least daily fluctuations, but longer duration miosis.  相似文献   

8.
Objective To report ophthalmic findings in the Screech owl (Megascops asio). Sample population Twenty‐three, apparently healthy adult captive Screech owls in Maryland. Procedures OU of all owls underwent complete ophthalmic examination. One randomly assigned eye of each bird was measured by phenol red thread tear test (PRT), and the other eye by Schirmer tear test (STT). TonoVet® rebound tonometry and TonoPen‐XL® applanation tonometry were performed in each eye to measure IOP. Conjunctival swabs were cultured from one eye of 10 birds, corneal diameter was measured in OU of eight birds, and streak retinoscopy was performed on OU of seven birds. Ten birds were anesthetized, and A‐scan ultrasonography using a 15‐MHz probe was performed to obtain axial intraocular measurements. Results Ophthalmic abnormalities were noted in 24/46 (52%) of eyes. Median STT result was ≤ 2 mm/min, ranging ≤ 2–6 mm/min, and mean ± SD PRT was 15 ± 4.3 mm/15 s. Mean ± SD IOP were 9 ± 1.8 mmHg TonoVet®‐P, 14 ± 2.4 mmHg TonoVet®‐D, and 11 ± 1.9 mmHg TonoPen‐XL®. Coagulase negative staphylococcal organisms were cultured from all conjunctival swabs. Mean ± SD corneal dimensions were 14.5 ± 0.5 mm vertically and 15.25 ± 0.5 mm horizontally. All refracted birds were within one diopter of emmetropia. Mean ± SD axial distance from the cornea to the anterior lens capsule was 4.03 ± 0.3 mm, from cornea to the posterior lens capsule was 10.8 ± 0.5 mm, and from cornea to sclera was 20.33 ± 0.6 mm. Conclusions This study reports ophthalmic examination findings in Screech owls, and provide means and ranges for various ocular measurements. This is the first report of rebound tonometry and PRT in owls.  相似文献   

9.
Objective To estimate mean Schirmer tear test (STT) and intraocular pressure (IOP) values in healthy koalas both conscious and anesthetized. Methods Data were gathered from koalas in Victoria, Australia. Conscious examinations were performed on captive koalas. Free‐ranging (wild) koalas were examined under anesthesia. Anesthesia was induced using alfaxalone, and animals were maintained on oxygen and isoflurane if required. All animals were healthy and had no surface ocular pathology detectable during slit lamp biomicroscopy. STT I tests were performed using commercial STT test strips placed in the lower fornix for 1 min. IOP was measured using an applanation tonometer after topical anesthesia. The higher value of the two eyes for both STT and IOP was analyzed. STT was measured in 53 koalas (34 conscious, 19 anesthetized) and IOP was measured in 43 koalas (30 conscious, 13 anesthetized). A two‐sample t‐test was used to compare means. A P‐value <0.05 was regarded as significant. Mean ± SD is presented. Results The mean higher STT in conscious koalas was 10.3 ± 3.6 mm wetting/min and in anesthetized koalas it decreased to 3.8 ± 4.0 mm wetting/min (P < 0.0001). The mean higher IOP in conscious koalas was 15.3 ± 5.1 mmHg, and in anesthetized koalas it was 13.8 ± 3.4 mmHg (P = 0.32). There was no effect of sex on either STT or IOP. Conclusions The mean and SD of STT and IOP values for koalas both conscious and anesthetized were reported. The mean STT was significantly reduced by alfaxalone anesthesia.  相似文献   

10.
Objectives To establish normal reference ranges of ocular parameters including phenol read thread, palpebral fissure length, horizontal and vertical corneal diameter, upright and hanging intraocular pressure (IOP) and to report ophthalmic examination findings of the anterior segment and lens, in a population of captive fruit bats. Animals studied Eyes of 30 bats of three species were included in this study: 10 (5 males, 5 females) Malayan Flying Foxes (Pteropus vampyrus), 10 (5 males, 5 females) Little Golden‐mantled Flying Foxes (Pteropus pumilus), and 10 (4 males, 6 females) Island Flying Foxes (Pteropus hypomelanus). Results The most common ophthalmic examination findings included iris‐iris persistent pupillary membranes (83%), nuclear sclerosis (56.7%), prominent arterial circle (40%), iridal hyperpigmented foci (30%), pupillary margin cysts (27%), and third eyelid defects (20%). The mean, among all species for: phenol red thread was 20.23 ± 1.28 mm/15 s both eyes (OU); palpebral fissure length was 13.34 ± 0.33 mm for OU; for horizontal corneal diameter was 10.72 ± 0.32 mm for OU; for vertical corneal diameter was 9.90 ± 0.30 mm for OU; for the hanging intraocular pressures was 19.38 ± 0.77 mmHg for OU; for upright IOP was 13.95 ± 0.60 mmHg for OU. Measurements for the individual species groups and eyes were also calculated. Conclusions Results revealed the IOP of bats in a hanging position were significantly higher than the IOP of bats in an upright position. The size of the bat, between the species, affected palpebral fissure length, horizontal corneal diameter, and vertical corneal diameter. Information about the ocular structures and normal ophthalmic parameters for the Pteropus species is crucial for species protection because of dependence on vision for survival.  相似文献   

11.
Objective To evaluate effects of Coherin? on intraocular pressure (IOP), pupil size (PS), and heart rate (HR) in glaucomatous Beagles in single‐dose studies in a pilot study. Materials and methods Intraocular pressure, PS, and HR were measured in eight glaucomatous Beagles. One randomly chosen eye received single 50 μL doses of differing concentrations of Coherin? (treated eye) or vehicle (placebo‐treated eye), and the fellow eye served as the untreated control. After the first measurements, a single dose of either Coherin? or sterile water vehicle was instilled in the drug and placebo eyes, respectively. Results The mean ± SEM diurnal changes in IOP after 0.005%, 0.01%, 0.2%, 0.284%, 1%, 2%, and 4% topical Coherin? once daily were 7.6 ± 3.2 mmHg, 15.5 ± 5.3 mmHg, 11.2 ± 4.4 mmHg, 11.8 ± 4.4 mmHg, 19.1 ± 3.8 mmHg, 5.0 ± 1.8 mmHg, and 8.8 ± 2.8 mmHg, respectively. The declines in IOP were significantly different (P < 0.05) from the untreated control eyes with the 0.2% and 0.284% Coherin?‐treated eyes and suggestive for 1% Coherin? concentrations. No signs of irritation, significant PS, and HR changes were detected in the Coherin?‐treated eyes. Conclusion Of seven different concentrations, 2% and 0.248% Coherin? produced significant declines in IOP in the glaucomatous beagle in single‐dose studies when compared to both untreated control and placebo‐treated eyes. One percent Coherin? solution produced significant IOP decreases compared with the placebo‐treated eye but not the untreated control eyes. No local ocular irritation, PS and HR changes were observed in Coherin?‐treated eyes. This pilot study suggests that topical Coherin? has potential as an ocular hypotensive agent.  相似文献   

12.
Tonometry was performed to estimate intraocular pressure (IOP) in 12 Nubian ibexes ( Capra ibex nubiana ), 10 Grant zebras ( Equus burchelli  ) and five Arabian oryxes ( Oryx leucoryx ), using both applanation (Tono-Pen) and/or indentation (Schiotz) tonometers. Animals were anesthetized with a mixture of etorphine hydrochloride and acepromazine maleate. Mean (± SD) IOP in the ibex was 17.95 ± 4.78 mmHg (24 eyes, indentation tonometry). In the zebra, indentation tonometry (20 eyes) yielded a mean IOP of 25.30 ± 3.06 mmHg, and applanation tonometry (six eyes) yielded a mean IOP of 29.47 ± 3.43 mmHg. In the oryx, indentation tonometry (five eyes) yielded a mean IOP of 22.68 ± 8.15 mmHg, and applanation tonometry (10 eyes) yielded a mean IOP of 11.76 ± 3.43 mmHg. There were no significant effects of gender, age, weight, side or reading number on the IOP measured in any of the three species. No significant differences were found between the IOP of the three species, nor between the readings of the two instruments, although some of the P -values were close to the significance level.  相似文献   

13.
Objective To evaluate changes in intraocular pressure and pupil size in glaucomatous dogs after instillation of 0.004% travoprost once in the morning, or once in the evening, or twice daily in 5‐day multiple dose studies. Materials and methods Applanation tonometry (IOP) and pupil size (PS) measurements were obtained at 8 a.m., 10 a.m., 12 noon, 2 p.m. and 4 p.m. in eight glaucoma dogs. Methylcellulose (0.5% as placebo) was instilled in the control eye, and 0.004% travoprost was instilled in the opposite drug eye. Methylcellulose (0.5%) and 0.004% travoprost were instilled on the 2nd through to the 5th day with instillations in the morning (8.30 a.m.), or evening (8 p.m.), or twice daily (8.30 a.m. and 8 p.m.). Results The mean ± SEM diurnal changes from baseline IOP in the control and placebo eyes in all three studies ranged from 1.2 ± 0.3 mmHg to 3.2 ± 0.9 mmHg. The mean ± SEM diurnal changes from the baseline IOP after 0.004% travoprost at 8 a.m. once daily for the next 4 days were 19.0 ± 2.7 mmHg, 24.7 ± 2.7 mmHg, 24.9 ± 3.1 mmHg, and 24.7 ± 3.1 mmHg, respectively, and were significantly different from the control eye. After travoprost was instilled at 8 p.m., the mean ± SEM baseline changes from the baseline IOP in the drug eyes were 23.5 ± 2.2 mmHg, 24.2 ± 2.2 mmHg, 24.5 ± 2.3 mmHg, and 24.2 ± 2.3 mmHg, respectively. When 0.004% travoprost was instilled twice daily, the mean ± SEM baseline IOP changes were 27.7 ± 2.1 mmHg, 28.1 ± 2.1 mmHg, 28.4 ± 2.2 mmHg, and 28.5 ± 2.2 mmHg, respectively, and were significantly different from the control eyes. Miosis of varying duration was frequent during the three studies. Conclusion Travoprost instilled once daily (a.m. or p.m.) as well as twice daily produces significant decreases in IOP and PS in the glaucomatous Beagle.  相似文献   

14.
Objective  To determine the accuracy of and to establish reference values for a rebound tonometer (Tonovet®) in normal feline eyes, to compare it with an applanation tonometer (Tonopen Vet®) and to evaluate the effect of topical anesthesia on rebound tonometry.
Procedures  Six enucleated eyes were used to compare both tonometers with direct manometry. Intraocular pressure (IOP) was measured in 100 cats to establish reference values for rebound tonometry. Of these, 22 cats were used to compare rebound tonometry with and without topical anesthesia and 33 cats to compare the rebound and applanation tonometers. All evaluated eyes were free of ocular disease.
Results  Both tonometers correlated well with direct manometry. The best agreement with the rebound tonometer was achieved between 25–50 mmHg. The applanation tonometer was accurate at pressures between 0 and 30 mmHg. The mean IOP in clinically normal cats was 20.74 mmHg with the rebound tonometer and 18.4 mmHg with the applanation tonometer. Topical anesthesia did not significantly affect rebound tonometry.
Conclusions  As the rebound tonometer correlated well with direct manometry in the clinically important pressure range and was well tolerated by cats, it appears suitable for glaucoma diagnosis. The mean IOP obtained with the rebound tonometer was 2–3 mmHg higher than that measured with the applanation tonometer. This difference is within clinically acceptable limits, but indicates that the same type of tonometer should be used in follow-up examinations in a given cat.  相似文献   

15.
Intraocular pressure (IOP) evaluated by applanation tonometry via TONO-PEN XL (TP), and rebound tonometry via TonoVet (TV) were compared in enucleated canine eyes with varied pressure of the anterior chamber (AC) and in clinical cases. TV measured IOP values were lower than IOP measurements of TP in the enucleated eyes with 5-10 mmHg of AC (P<0.0001), though there was no significant difference in IOP values obtained with TP and TV on the pressure ranges of 15-20 mmHg. However, TP detected IOP values were lower than IOP measurements of TV in the eyes with over 25 mmHg of AC (P<0.0001). The results of clinical cases were similar to the enucleated eye model. There was no significant difference in IOP values obtained from TP and TV in dogs with normotensive eyes. IOP measurements of TP were lower than those of TV in glaucomatous eyes (P<0.0001). TV was a reliable tonometer for measurement of IOP in hypertensive eyes, whereas it was less accurate than TP in hypotensive eyes. The characteristics of TP and TV should be considered in the evaluation of IOP in practice.  相似文献   

16.
Intraocular pressure in normal llamas (Lama glama) and alpacas (Lama pacos)   总被引:1,自引:1,他引:0  
Objective: To determine the mean intraocular pressure in llamas ( Lama glama ) and alpacas ( Lama pacos ) using applanation tonometry. Animals studied: Ten llamas and 10 alpacas. Procedures: Intraocular pressure (IOP) was measured with a Tono-Pen™ XL (Mentor Ophthalmics, Inc., Norwell, MA, USA). Three values, with 5% variance, were recorded for each eye. Least-squares means were determined for IOP for each eye of llamas and alpacas. Controlling for age, differences between left and right eye were analyzed using anova . Two age groups were established, less than 5 years and greater than 5 years. The effect of age on IOP within each group was analyzed by linear regression. Probability values of less than 0.05 were considered significant. Results: Comparison of mean IOP between right ( n  = 20) and left eyes ( n  = 20), independent of species type, showed no differences in IOPs for llamas and alpacas. Mean IOP declined with increasing age in llamas and alpacas. Mean IOPs for 20 eyes in 10 llamas was 16.96 ± 3.51 mmHg. Mean IOP for 20 eyes in 10 alpacas was 16.14 ± 3.74 mmHg. Mean IOP for all eyes ( n  = 40), independent of species, was 16.55 ± 3.55 mmHg. The range of IOP in normal llamas and alpacas within 2 SD (95% of the population) was 14.89±18.21 mmHg. Conclusions: There was no significant difference in IOP between alpacas and llamas. Mean IOP in both species decreased with increased age.  相似文献   

17.
Objective To evaluate the effect of central corneal thickness (CCT) on the measurement of intraocular pressure (IOP) with the rebound (TonoVet®) and applanation (TonoPen XL®) tonometers in beagle dogs. Animal studied Both eyes of 60 clinically normal dogs were used. Procedures The IOP was measured by the TonoVet®, followed by the TonoPen XL® in half of the dogs, while the other half was measured in the reverse order. All CCT measurements were performed 10 min after the use of the second tonometer. Results The mean IOP value measured by the TonoVet® (16.9 ± 3.7 mmHg) was significantly higher than the TonoPen XL® (11.6 ± 2.7 mmHg; P < 0.001). The IOP values obtained by both tonometers were correlated in the regression analysis (γ2 = 0.4393, P < 0.001). Bland–Altman analysis showed that the lower and upper limits of agreement between the two devices were ?0.1 and +10.8 mmHg, respectively. The mean CCT was 549.7 ± 51.0 μm. There was a correlation between the IOP values obtained by the two tonometers and CCT readings in the regression analysis (TonoVet® : P = 0.002, TonoPen XL® : P = 0.035). The regression equation demonstrated that for every 100 μm increase in CCT, there was an elevation of 1 and 2 mmHg in IOP measured by the TonoPen XL® and TonoVet®, respectively. Conclusions The IOP obtained by the TonoVet® and TonoPen XL® would be affected by variations in the CCT. Therefore, the CCT should be considered when interpreting IOP values measured by tonometers in dogs.  相似文献   

18.
Objective The aim of the study was to assess the ocular features, normal conjunctival bacterial and fungal flora, and intraocular pressure (IOP) in the Canadian beaver (Castor canadensis). Sample population Sixteen, apparently healthy beavers with no evidence of ocular disease, and live‐trapped in regions throughout Prince Edward Island. Procedures The beavers were sedated with intramuscular ketamine (12–15 mg/kg). Two culture specimens were obtained from the ventral conjunctival sac of both eyes of 10/16 beavers for aerobic and anaerobic bacterial and fungal identifications. The anterior ocular structures of all beavers were evaluated using a transilluminator and slit lamp biomicroscope. Palpebral fissure length (11/16 beavers), and horizontal and vertical corneal diameters (10/16 beavers) were measured. IOPs were measured in both eyes of 11/16 beavers using applanation tonometry. Both eyes of 3/16 beavers and one eye of 1/16 beavers were dilated using topical tropicamide prior to sedation to effect timely maximal dilation. Culture specimens and IOPs were not evaluated in these four animals. Indirect ophthalmoscopy was performed on 7/8 eyes of these four beavers. Results Conjunctival specimens from all eyes cultured positively for one or more isolates of aerobic bacteria. The most common isolate was Micrococcus spp. (five beavers; 9/20 eyes). Other isolates included a Gram‐positive coccobacilli‐like organism (four beavers; 7/20 eyes), Aeromonas hydrophila (three beavers; 4/20 eyes), Staphylococcus spp. (three beavers; 4/20 eyes), Gram positive bacilli (one beaver; 2/20 eyes), Enterobacter spp. (two beavers; 2/20 eyes), Streptococcus spp. (two beavers; 2/20 eyes), aerobic diphtheroids (one beaver; 1/20 eyes), and Pseudomonas spp. (one beaver; 1/20 eyes). Clostridium sordellii (one beaver; 1/20 eyes) and Peptostreptococcus spp. (one beaver; 1/20 eyes) were the sole anaerobic bacteria isolated. All conjunctival specimens were negative for growth of fungi. Ophthalmic examinations revealed the normal beaver eye and ocular adnexa included dorsal and ventral puncta, a vestigial third eyelid, and a circular pupil. Average palpebral fissure length was 9.36 mm (SD = 1.00) for both eyes. Mean horizontal and vertical corneal diameters of both eyes were 9.05 mm (SD = 0.64) and 8.45 mm (SD = 0.69), respectively. Mean IOP for the right and left eyes were 17.11 mmHg (SD = 6.39) and 18.79 mmHg (SD = 5.63), respectively. Indirect ophthalmoscopic examinations revealed normal anangiotic retinas. Conclusions Gram‐positive aerobes were most commonly cultured from the conjunctival sac of normal beavers, with Micrococcus spp. predominating. The overall mean IOP in ketamine‐sedated beavers was 17.95 mmHg. The beaver, an amphibious rodent, has an anangiotic retina.  相似文献   

19.
Objective To compare the reduction in intraocular pressure (IOP) by topical 2% dorzolamide to oral methazolamide (5 mg/kg) in dogs, and determine if the combination of both drugs would reduce IOP more than either drug administered alone. Animals studied Thirteen glaucomatous beagles. Procedures Measurements, including applanation tonometry, pupil size and heart rate, were obtained at 8 am, 12 noon, and 5 pm on days 1, 3 and 5. The 5‐day drug studies included placebo (0.5% methylcellulose); 2% dorzolamide administered in one eye twice daily (8 am and 5 pm), and repeated again in one eye three times (8 am, 12 noon and 5 pm) daily; methazolamide (5 mg/kg per os administered at 8 am and 5 pm); 2% dorzolamide instilled twice daily (5 days) combined with oral methazolamide on the last 3 days, and methazolamide (5 days) combined with 2% dorzolamide on the last 3 days and instilled twice daily. Statistical comparisons between drug groups included control (nondrug) eye and treated (placebo/drug) eyes for days 1, day 3 and 5. Results Topical 2% dorzolamide, administered twice and three times daily, significantly decreased IOP (mean ± SEM) in glaucomatous dogs on the first day (twice daily 7.6 ± 2.4 mmHg, and three times daily 16.4 ± 3.6 mmHg) that was even greater by day 5 (twice daily 10.4 ± 2.0 mmHg, and three times daily 13.9 ± 2.7). Oral methazolamide also significantly lowered IOP in both eyes. Oral methazolamide (administered from day 1 through to day 5) combined with 2% topical dorzolamide (instilled in the drug eye for day 3 through to day 5) also significantly lowered IOP of both eyes for all days, and for day 5 the mean ± SEM IOP was decreased by 7.9 ± 1.7 mmHg (methazolamide plus dorzolamide) and 7.5 ± 2.6 mmHg (methazolamide only). Topical dorzolamide (instilled in the drug eye for day 1 through to day 5) combined with oral methazolamide (administered from day 3 through to day 5) significantly lowered IOP in the drug eye on day 1 (5 pm: 9.6 ± 1.9 mmHg), for day 3 (11 am and 5 pm) and for all of day 5 for both eyes (5 pm: control eye 9.5 ± 1.8 mmHg; drug eye 9.2 ± 1.9 mmHg). Topical dorzolamide (2%) instilled three times daily produces similar IOP declines compared to the combination of oral methazolamide and 2% dorzolamide administered twice daily. Conclusions Dorzolamide (2%) instilled twice or three times daily causes significant decreases in IOP in glaucomatous dogs. Twice daily instillations caused progressive declines in IOP from day 1 to day 5. Dorzolamide (2%) combined with oral methazolamide (5 mg/kg per os twice daily) produces similar but not additional declines in IOP.  相似文献   

20.
This study was aimed to evaluate the effect of 0.0015% preservative-free tafluprost (Zioptan®) and 0.005% preservative containing latanoprost ophthalmic solutions (Lataprost®) on intraocular pressure (IOP) in healthy male guinea pigs (Cavia porcellus). A total of 16 male guinea pigs were randomly assigned to receive one drop of tafluprost or one drop of latanoprost in the right eye. The contralateral eye served as control. IOP was measured using a rebound tonometer at time 0(baseline), after 30 minutes and every 60 minutes for the next three hours and then every three hours for the next 21 hours. Administration of tafluprost and latanoprost was not associated with changes in IOP in the treated eyes. The maximum IOP-lowering effect of the ophthalmic solutions was observed 30 minutes post-instillation in the treated eyes (-1.25 ± 1.50 mmHg, P-value = 0.194 in group A and -1.50 ± 1.29 mmHg, P-value = 0.103 in group B) and returned to normal after 9 and 12 hours in group A and B, respectively. There was no significant difference between the IOP measurements of the right and left eyes in neither groups during the study (repeated measure test and Generalized Linear Mixed Model). The administration of one drop of tafluprost and latanoprost had no significant effect on the IOP of healthy guinea pigs. Further studies are needed in guinea pigs affected by glaucoma to explore the effectiveness of these drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号