首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 4 毫秒
1.
Pathogen development and host responses in wheat spikes of resistant and susceptible cultivars infected by Fusarium culmorum causing Fusarium head blight (FHB), were investigated by means of electron microscopy as well as immunogold labelling techniques. The studies revealed similarities in the infection process and the initial spreading of the pathogen in wheat spikes between resistant and susceptible cultivars. However, the pathogen’s development was obviously more slow in the resistant cultivars as in comparison to a susceptible one. The structural defence reactions such as the formation of thick layered appositions and large papillae were essentially more pronounced in the infected host tissues of the resistant cultivars, than in the susceptible one. β -1,3-glucan was detected in the appositions and papillae. Furthermore, immunogold labelling of lignin demonstrated that there were no differences in the lignin contents of the wheat spikes between susceptible and resistant cultivars regarding the uninoculated healthy tissue, but densities of lignin in host cell walls of the infected wheat spikes differed distinctly between resistant and susceptible cultivars. The lignin content in the cell walls of the infected tissues of the susceptible wheat cultivar increased slightly, while the lignin accumulated intensely in the host cell walls of the infected wheat spikes of the resistant cultivars. These findings indicate that lignin accumulation in the infected wheat spikes may play an important role in resistance to the spreading of the pathogen in the host tissues. Immunogold labelling of the Fusarium toxin DON in the infected lemma showed the same labelling patterns in the host tissues of resistant and susceptible cultivars. However, there were distinct differences in the toxin concentration between the tissues of the susceptible and resistant cultivars. At the early stage of infection, the labelling densities for DON in resistant cultivars were significantly lower than those in the susceptible one. The present study indicates that the FHB resistant cultivars are able to develop active defence reactions during infection and spreading of the pathogen in the host tissues. The lower accumulation of the toxin DON in the tissues of the infected spikes of resistant cultivars which results from the host’s defence mechanisms may allow more intensive defence responses to the pathogen by the host.  相似文献   

2.
Data from surveys of winter wheat fields in the period 1974–1986 and of seed lots in the period 1962–1986 and identifications of diseases on plant samples were compiled to describe the occurrence of snow mould (Monographella nivalis) andFusarium spp. On average,M. nivalis dominated overFusarium spp. The complex ofFusarium spp. constituted mainly ofF. culmorum, followed byF. avenaceum andF. graminearum. M. nivalis was dominant in May on stem-bases and in July on leaves and leaf sheaths. On seedsM. nivalis predominated only in years with low temperatures in July and August.Average brown footrot infection in the field was 4% tillers in May and 5% culms in July. Brown footrot intensity in July was high in cropping seasons with high precipitation in October and with low temperatures in October, November and December. In July during the early eighties, an average of 8% of leaves and 6% of flag leaf sheaths were infected byM. nivalis. Average ear blight incidence was 1.2% glumes infected. Seed contamination by these pathogens averaged 16% in the years 1962–1986. The contamination was high in years with high precipitation in June, July and August. Aspects of cv. resistance and yield loss are illustrated.  相似文献   

3.
The infection process of Fusarium avenaceum on wheat spikes and the alteration of cell wall components in the infected host tissue were examined by means of electron microscopy and cytochemical labelling techniques following spray inoculation at growth stage (GS) 65 (mid-flowering). Macroconidia of the pathogen germinated with one to several germ-tubes 6–12 h after inoculation (hai) on host surfaces. The germ-tubes did not penetrate host tissues immediately, but extended and branched on the host surfaces. Hyphal growth on abaxial surfaces of the glume, lemma and palea was scanty 3–4 days after inoculation (dai) and no direct penetration of the outer surfaces of the spikelet was observed. Dense mycelial networks formed on the inner surfaces of the glume, lemma, palea and ovary 36–48 hai. Penetration of the host tissue occurred 36 hai by infection hyphae only on the adaxial surfaces of the glume, lemma, palea and upper part of ovary. The fungus penetrated the cuticle and hyphae extended subcuticularly or between the epidermal wall layers. The subcuticular growth phase was followed by penetration of the epidermal wall, and hyphae spread rapidly inter- and intracellularly in the glume, lemma, palea and ovary. During this necrotrophic colonization phase of the wheat spike, a series of alterations occurred in the host tissues, such as degeneration of cytoplasm and cell organelles, collapse of host cells and disintegration of host cell walls. Immunogold labelling techniques showed that cell walls of spike tissues contained reduced amounts of cellulose, xylan and pectin near intercellular hyphae or infection pegs compared to walls of healthy host tissues. These studies suggest that cell wall degrading enzymes produced by F. avenaceum facilitated rapid colonization of wheat spikes. The different penetration properties of abaxial and adaxial surfaces of the spikelet tissues as well as the two distinct colonization strategies of host tissues by F. avenaceum are discussed. The penetration and colonization behaviour of F. avenaceum in wheat spikelets resembled that of F. culmorum and F. graminearum, although mycotoxins produced by F. avenaceum differed from those of the latter two Fusarium species.  相似文献   

4.
Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (FO), is one of the major diseases in cucumber (Cucumis sativus) production. Root and foliar applications of 24-epibrassinolide (EBL), an immobile phytohormone with antistress activity, were evaluated for their effects on the incidence of Fusarium wilt and changes in the microbial population and community in roots of cucumber plants. EBL pre-treatment to either roots or shoots significantly reduced disease severity followed by an improved plant growth regardless of the treatment methods applied. EBL applications decreased the Fusarium population on root surfaces and in nutrient solution, but increased the population of fungi and actinobacteria on root surfaces. PCR-DGGE analysis showed that FO-inoculation had significant effects on the bacterial community on root surfaces as expressed by a decreased diversity index and evenness index, but EBL applications alleviated these changes. Moreover, several kinds of decomposing bacteria and growth-promoting bacteria were identified from root surfaces of FO-inoculated plants and EBL-pre-treated plants, respectively. Overall, these results show that the microbial community on root surfaces was affected by a complex interaction between phytohormone-induced resistance and plant pathogens.  相似文献   

5.
The relative levels of tolerance of two wild barley lines (Hordeum spontaneum), B19909 and I-17-40, and one cultivated barley (Hordeum vulgare), cv. Prisma, to Blumeria graminis f.sp. hordei were determined by comparing the effects of different levels of infection on the photosynthesis and respiration rates of the third leaf. Infection caused the early onset of senescence in all three lines, and in particular in cv. Prisma, and was accompanied by decreases in gross and net photosynthesis rates, increases in respiration rates, and loss of chlorophyll. The onset of senescence occurred at approximately the same time in infected leaves of the two wild lines, but once triggered, photosynthesis rates and chlorophyll levels declined more rapidly in I-17-40 than in B19909. A burst of respiratory activity accompanied the onset of senescence, and this was greatest in cv. Prisma. Conidial production was higher in B19909, indicating a higher level of tolerance in this line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号