首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
小型联合收获机旋风分离系统清选性能试验   总被引:1,自引:0,他引:1  
为了解决小型联合收获机清选装置谷糠分离不彻底和损失率较高的问题,利用高速摄影装置研究了吸杂风机转速、扬谷器风机转速和通气孔直径对清选性能的影响机理,以小麦籽粒、颖糠、茎秆混合物料为对象,利用研制的旋风分离系统试验台,选取气孔排布方式、通气孔直径、吸杂风机转速和扬谷器风机转速为试验因素,清洁率和损失率为试验指标,进行了单因素和多因素清选性能试验。单因素试验结果表明,气孔排布方式为螺旋形时,清选效果较好,随着吸杂风机转速、扬谷器风机转速和通气孔直径的增加,清洁率先上升后降低,损失率则逐渐增加,最大损失率不超过2%;正交试验表明:吸杂风机转速为1 900 r/min、扬谷器风机转速为1 100 r/min、通气孔直径为8 mm时,清洁率平均值大于93%,损失率平均值低于1.5%,损失率比优化前降低了25%。  相似文献   

2.
针对小区联合收获机清选装置存在的籽粒损失率和含杂率偏高等问题,结合内外滚筒旋转式脱粒装置,搭建脱粒清选试验平台,仿真分析结果表明,该清选装置符合筛分要求。以脱出籽粒中含杂率及损失率作为试验指标,选取对清选性能影响较大的风机转速和振动筛曲柄转速为试验因素,分别进行单因素试验,得到风机转速为1 000 r/min时,含杂率与损失率分别为0.65%和1.06%;振动筛曲柄转速为275 r/min时,含杂率与损失率分别为0.55%和0.87%。最后运用Central Composite中心复合设计方法进行响应面试验,研究因素交互作用对试验指标的影响规律。试验结果表明,最佳匹配参数为风机转速900 r/min、振动筛曲柄转速300 r/min;在最佳参数组合下,对该装置进行多次验证试验,得到其含杂率和损失率的平均值分别为0.75%和0.62%,表明在该参数组合下此装置能够满足小区收获的清选性能要求。   相似文献   

3.
针对目前玉米籽粒收获机不能适应15kg/s以上的大喂入量清选需要,设计了一种具备预清选功能的清选装置。首先对玉米脱出物离开螺旋输送器到达预清选筛前的玉米籽粒进行受力分析,然后对曲柄连杆机构的运动模型加以简化。其次分析玉米籽粒在筛面上的运动状态;对离心风机叶轮、蜗壳进行设计计算。采用单因素试验确定风机转速、振动频率、上筛筛孔开度取值范围;以风机转速、振动频率、上筛筛孔开度为试验因素,以籽粒含杂率和清选损失率为评价指标,设计三因素三水平中心组合试验,建立各因素与指标之间的回归模型。通过响应曲面方法对试验结果进行分析,并采用Design-Expert12对回归模型进行多目标优化。玉米脱出物喂入量为16kg/s时,得出较优组合为:风机转速1202.50r/min、振动频率5.41Hz、上筛筛孔开度18mm,在此条件下籽粒含杂率为0.79%,清选损失率为1.10%;验证试验结果表明,当风机转速1200r/min、振动频率5Hz、上筛筛孔开度18mm时,籽粒含杂率为0.82%,清选损失率为1.14%,试验值与优化值相对误差小于5%,与传统双层往复振动筛清选装置相比籽粒含杂率降低2.07个百分点,清选损失率降低2.13个百分点,证明所设计合理。  相似文献   

4.
玉米籽粒收获机清选装置参数优化试验   总被引:6,自引:0,他引:6  
针对玉米籽粒直收过程中清选作业损失率高、籽粒含杂率高的问题,开展玉米籽粒收获机清选作业参数优化试验,探究整机作业工况下清选装置作业参数对籽粒损失率和含杂率的影响规律,得到清选作业参数最优组合,并进行田间验证试验。玉米籽粒收获机清选作业参数较优水平区间为风机转速800~1 000 r/min,振动频率6~8 Hz,上清选筛筛孔开度15~25 mm。清选作业籽粒含杂率最优作业参数组合为风机转速1 000 r/min,振动频率7 Hz,上清选筛筛孔开度20 mm;籽粒损失率最优作业参数组合为风机转速900 r/min,振动频率6 Hz,上清选筛筛孔开度20 mm;清选作业综合指标最优作业参数组合为风机转速900 r/min,振动频率7 Hz,上清选筛筛孔开度20 mm。得到玉米籽粒收获机清选作业籽粒含杂率、籽粒损失率和综合指标的回归模型,田间验证试验表明,籽粒含杂率相对误差为5. 56%,籽粒损失率相对误差为5. 10%,综合指标相对误差为4. 60%,最优作业参数组合表现良好,且回归模型可靠。  相似文献   

5.
双吸风口振动式花生荚果清选装置设计与试验   总被引:7,自引:0,他引:7  
为改进花生摘果机、花生捡拾收获机的清选装置,提高花生清选性能,在花生摘果机清选物飘浮速度试验基础上,根据饱满花生荚果、空瘪果、碎茎秆、果柄和花生叶等各组分飘浮速度差异,提出了前、后2个吸风口(双吸风口)与振动筛组合式清选原理,进行了总体方案与关键部件设计并研制出5XT-2Z型花生摘果机,通过清选性能试验研究了振动筛振动频率、吸风口高度和风机转速对花生清选损失率和含杂率的影响。试验结果表明,3种饱满花生荚果飘浮速度为10.30~14.39 m/s,空瘪果、碎茎秆、花生果柄和花生飘浮速度分别为7.03~8.89 m/s、4.51~5.46 m/s、2.80~3.35 m/s、1.74~2.13 m/s;优化后的振动筛曲柄转速为200 r/min,吸风口高度为135 mm,风机转速为390 r/min,此参数下清选损失率为1.35%,含杂率为1.75%。  相似文献   

6.
青稞作物机械收获存在清选损失率和含杂率高等问题。为提高青稞作物机械收获的清选质量,测试分析了青稞作物脱粒物料各组分的相关物性和悬浮特性。采用气吹式农业物料悬浮速度测量装置,测得青稞作物脱粒物料中籽粒、麦芒和颖壳、断穗、短茎秆及碎叶的悬浮速度分别为7.07~12.51、1.29~4.08、2.23~6.32、1.82~8.16和1.18~3.65 m/s。采用风筛式清选试验装置,以离心风机风速和风向、振动筛振动频率和振幅为试验因素进行单因素和正交试验,以籽粒清洁率和清选损失率为试验指标,运用极差分析法得出试验因素最佳组合为风机风速8.5 m/s、风向35°、振动筛振幅30 mm和频率190 r/min,其试验结果为清洁率97.32%、损失率3.73%。该试验可为青稞联合收割机清选装置结构参数和工作参数设计提供参考。   相似文献   

7.
为了减少谷子联合收获的清选损失,对谷子收获机风筛式清选装置进行了试验分析。运用参数可调的风筛式谷子清选装置,以清选风速、风向、筛分振幅和曲柄转速为试验因素,以籽粒损失率和含杂率为试验指标,对谷子联合收获机脱出物进行了清选试验。试验结果表明:籽粒损失率随清选风速、筛分振幅、曲柄转速的增大而增大,随清选风向角度的增大呈先增大后减小再增大趋势;含杂率随清选风速、筛分振幅、曲柄转速的增大而减小,随清选风向角度的增大呈先减小后增大再减小趋势;最优清选工作参数为清选风速4.19 m/s、清选风向30.3°、筛分振幅22 mm和曲柄转速218 r/min,籽粒损失率为2.02 %,含杂率为8.01 %。该研究为谷子联合收获机清选装置结构与工作参数设计提供参考。   相似文献   

8.
辊搓圆筒筛式谷子清选装置设计与试验   总被引:3,自引:0,他引:3  
为解决谷子初脱后因物料中残留谷码多、含水率高而导致清选含杂率和损失率较高的问题,设计了辊搓圆筒筛式谷子清选装置。该装置主要由谷码辊搓装置、圆筒筛装置、横流风机和离心风机等组成,实现了先脱谷码后清选的功能。选取离心风机转速及角度、横流风机转速、圆筒筛转速和谷码辊搓装置主动辊转速作为试验因素,籽粒含杂率和损失率作为试验指标进行了正交试验,试验表明:谷码辊搓装置主动辊转速250 r/min、离心风机角度3°、小圆筒筛转速60 r/min、离心风机转速700 r/min、中圆筒筛转速60 r/min、大圆筒筛转速70 r/min,横流风机转速600 r/min为该清选装置的最优组合。对该参数组合进行验证试验,并对该装置清选性能进行对比试验,结果表明,在最优组合条件下籽粒含杂率为1.64%、总损失率为0.86%,该装置籽粒含杂率与总损失率均低于传统型风机圆筒筛式和风机振动筛式清选装置。  相似文献   

9.
为了了解玉米籽粒收获机清选参数对清选性能的影响情况,基于脱粒清选试验台对风机转速、鱼鳞筛开度、调风板倾角、曲轴转速进行了单因素试验和正交实验,以清选损失率和含杂率为评价指标,利用极差分析法得出了最优清选参数组合,即当风机转速为1 150r/min、鱼鳞筛开度为16mm、调风板倾角为54°、曲轴转速为325r/min时,清选效果最好,损失率为0.286%,含杂率为0.149%。  相似文献   

10.
玉米清选装置结构优化设计与试验   总被引:2,自引:0,他引:2  
针对目前玉米籽粒直收机的清选装置存在籽粒损失率和含杂率偏高、传统试验受季节性影响大等问题,基于CASE 4099型联合收获机清选系统,搭建玉米脱粒清选试验平台,设计了一种竖式可调节分风板,并采用数学建模、仿真模拟和试验验证相结合的方法对清选装置作业性能进行优化。建立籽粒在振动筛上运动过程的数学模型,分析了振动筛倾角、振幅、频率、振动方向角和风机风力与振动筛筛面夹角等因素与籽粒在振动筛上平均运动速度和移动距离的关系;对清选装置内部流场风速分布进行仿真和试验,仿真结果表明,分风板左或右偏18°时,流场中风速分布均匀,在垂直方向上差值较小,验证试验结果表明,分风板右偏18°时流场内各测量点风速分布均匀,适于籽粒与杂质分离,清选效果较好;以振动筛转速、风机转速为主要影响因素,以籽粒损失率、含杂率为指标进行正交试验,结果表明当振动筛曲柄转速为275r/min、风机转速900r/min为最优作业参数组合,损失率和含杂率分别为1.34%、1.66%。  相似文献   

11.
半喂入联合收获机脱粒装置栅格凹板分离的谷粒混合物,虽经抖动板均布,进入清选筛后仍存在筛面两侧多中间少的问题,影响清选质量。为此提出了利用双圆锥离心风机均布筛面谷粒混合物的筛面双侧横向气流均布思想。双圆锥离心风机工作时,具有K字形叶片叶轮的大小端之间存在风压差Δp,它可以产生横向气流。根据喂入量所需的清选气流全压、风量和风速,设计了具有K形叶片叶轮的双圆锥离心风机;计算了理论压力差及其所产生的横向风速;进行了气流流场数值模拟比较分析。经二次旋转正交组合模拟试验和多目标优化表明:当叶轮大端直径x1为308.72mm,风机转速x2为1186.71r/min、叶片锥度x3为3.12°时,最大横向风速va为3.26m/s,清选损失率y1为1.08%,籽粒含杂率y2为0.68%,指标达到相关标准要求,优于现有机型水平(清选损失率为1.5%左右,籽粒含杂率大于0.8%)。  相似文献   

12.
针对目前研究的蛋壳膜清选装置存在蛋膜清洁率低、功耗大、结构复杂等问题,设计了气吸式蛋壳膜多级清选装置。在分析颗粒碰撞对蛋壳、膜颗粒运动影响的基础上,采用CFD-DEM耦合仿真研究在清选室进口挡板数量不同的情况下,蛋壳、膜的运动轨迹和清选装置内部流场特性,仿真结果表明:随着进气口挡板数量的增多,清选室内错流风区的气流速度增大、蛋膜损失率下降,清选室下出口无涡流产生,避免了因气流阻碍蛋壳下落而导致蛋膜清洁率下降。以喂入量和吸风机连接口风速为试验因素、以蛋膜损失率和清洁率为评价指标进行了两因素三水平正交试验,并进行了参数优化和试验验证。试验得到:当喂入量为200 g/s、吸风机连接口风速为5.5 m/s时,蛋膜损失率为9.4%,蛋膜清洁率为96.3%,吸风机功率为330 W。  相似文献   

13.
水稻悬浮速度试验研究   总被引:6,自引:0,他引:6  
研制了一种农业物料悬浮速度测定试验台,测定了水稻脱出物中的饱满籽粒、干瘪籽粒、大枝梗、小枝梗、带柄籽粒、茎秆和茎叶等的悬浮速度。根据试验结果得到了清选时理想气流速度范围大约为2~6m/s。通过在DFQX-3物料清选仿真与控制试验台上的试验,得出离心风机转速为1050r/min时清选效果最好的结论。此时清洁率为97.77%,损失率为0.41%,对水稻清选具有一定的指导意义。  相似文献   

14.
燕麦弧形栅格筛复清选式圆筒筛清选装置设计与试验   总被引:3,自引:0,他引:3  
为了解决燕麦清选装置清选性能低的问题,根据燕麦的物理特性对单风机三圆筒筛清选装置进行了结构改进,设计了一种燕麦弧形栅格筛复清选式圆筒筛清选装置。在大圆筒筛上安装了能使物料跳起、充分分离的跳跃板结构,并且设计和加装了弧形栅格式挡板筛及复清选部件,对大圆筒筛的跳跃板及弧形栅格式挡板筛的清选原理及受力进行了理论分析。以离心风机转速、大圆筒筛转速、弧形栅格式挡板筛倾角为试验因素,燕麦籽粒含杂率和损失率为试验指标,进行了室内三元二次正交旋转组合试验。室内试验结果表明:当离心风机转速为1 500 r/min、大圆筒筛转速为110 r/min、弧形栅格式挡板筛倾角为41°时,本装置清选效果最好,含杂率为1. 96%,损失率为2. 64%。田间验证试验结果表明,在最优参数下,含杂率为1. 97%,损失率为2. 68%。  相似文献   

15.
针对目前研究的蛋壳膜清选装置存在蛋膜清洁率低、功耗大、结构复杂等问题,设计了气吸式蛋壳膜多级清选装置。在分析颗粒碰撞对蛋壳、膜颗粒运动影响的基础上,采用CFD-DEM耦合仿真研究在清选室进口挡板数量不同的情况下,蛋壳、膜的运动轨迹和清选装置内部流场特性,仿真结果表明:随着进气口挡板数量的增多,清选室内错流风区的气流速度增大、蛋膜损失率下降,清选室下出口无涡流产生,避免了因气流阻碍蛋壳下落而导致蛋膜清洁率下降。以喂入量和吸风机连接口风速为试验因素、以蛋膜损失率和清洁率为评价指标进行了两因素三水平正交试验,并进行了参数优化和试验验证。试验得到:当喂入量为200g/s、吸风机连接口风速为5.5m/s时,蛋膜损失率为9.4%,蛋膜清洁率为96.3%,吸风机功率为330W。  相似文献   

16.
为提高核桃分离装置的清选性能,保证核桃收获品质,设计了一种气力式核桃分选机。首先,阐述了其整体结构和工作原理。然后,根据理论分析及前期试验确定调风板倾角、风机转速、振动筛振动频率为试验因素,核桃清选率与损失率为目标值,利用Design-expert数据处理软件对其目标值进行响应面优化分析,影响目标值的显著顺序为风机转速振动筛振动频率调风板倾角,并进行优化分析与试验验证。结果表明:当调风板倾角为82°、风机转速为3300 r/min、振动筛振动频率为23 r/s时,核桃清选率为97.88%,损失率为1.11%,试验值与优化结果的相对误差分别为1.96%、1.83%,均小于5%。试验结果可为核桃清选机械的设计提供理论依据。  相似文献   

17.
为了降低荞麦机械收获中清选环节的含杂率及损失率,提高机械收获性能及效率,在谷物清选试验台上进行了曲柄长度、曲柄转速、上筛面倾角、下筛面倾角、筛面摆动角、风机风向及风机转速的单因素试验,并对这7个因素分别取3水平进行了正交试验和分析。试验结果表明:上筛面倾角、曲柄转速、曲柄长度和风机转速对清选损失率影响显著且影响程度依次降低,风机转速、风机风向角、上筛面倾角、下筛面倾角对籽粒含杂率影响显著,对清选时间影响显著的因素由主及次分别为曲柄转速、曲柄长度、上筛面倾角和风机风速。建立了含杂率、损失率和清选时间的回归模型,并应用遗传算法对该模型进行了优化,得到最佳参数组合,即曲柄长度30mm,曲柄转速和风机转速分别为231、600r/min,风机风向角、上下筛面倾角及基本筛面振动方向角依次为30°、-3.8°、-1°、 5°,此时,清选损失率、含杂率和清选时间分别为1.59%、1.91%、7.93s。经试验验证,在最优参数下,各评价指标的试验值与理论值相对误差分别为3.14%、1.22%、3.24%,且优化所得结果与极差方差分析结果高度一致,说明采用遗传算法对清选回归模型进行优化是可行的,优化结果可...  相似文献   

18.
油菜分段收获脱粒清选试验   总被引:9,自引:3,他引:6  
对我国南方油菜分段收获割晒后的脱粒清选特性和脱粒清选参数进行了研究。通过在试验台上脱粒和清选正交试验,得出了分段收获捡拾脱粒机脱粒、清选部件形式和两组合理的工作参数。试验结果表明:脱粒分离夹带损失最小的优选参数组合为喂入量1.6kg/s、滚筒转速750r/min、脱粒间隙15mm、滚筒形式钉齿6排;影响脱粒分离夹带损失率的主次因素为滚筒形式、喂入量、脱粒间隙和滚筒转速。综合考虑清选损失率和含杂率最〖JP3〗小的优选参数组合为开度10mm鱼鳞筛、振动筛曲柄转速260r/min、离心风机转速860r/min、离心风机倾角15°;由模糊综合评价值的极差分析可得因素的主次排序为离心风机倾角、振动筛曲柄转速、筛片结构形式和离心风机转速。  相似文献   

19.
联合收获机风筛式清选装置清选室内涡流试验   总被引:7,自引:0,他引:7  
在DFQX-3型物料清选试验台上,采用数字风速仪测得清选室内多点风速,利用绘制等速线的方法得出气流流速为零的点(涡心)。通过分析离心风机转速和出风口倾角对涡心位置的影响,得出在离心风机不同出风口倾角下风机转速与涡心位置变化关系,以及不同风机转速下出风口倾角对涡心位置变化的影响规律。通过水稻清选试验对比分析表明,涡心位置变化对清选的清洁率和损失率有较大影响,并得到离心风机转速为950r/min且出风口倾角为25°时,清选效果最佳。  相似文献   

20.
针对目前全喂入联合收获机收获羊草种子过程中存在损失率大、含杂率高的问题,根据清选作业流程,结合羊草种子自身物理特性,搭建羊草种子风筛清选装置,并对清选部件、喂料装置、接料装置进行设计优化。进行风筛清选装置室内性能试验研究,通过单因素试验,得出清选性能随各因素变化的规律,利用响应面试验建立各因素与含杂率和损失率的关系,并对各因素及其交互作用进行分析。最后得出较优工作参数组合为:振动筛转速275 r/min,风机转速985 r/min,喂入量0.087 kg/s,在此参数组合下试验的含杂率为27.3%,损失率为3.3%,风筛清选装置满足设计要求,可为研发羊草等禾本科牧草种子全喂入联合收获机提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号