首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了实现作物生长过程中叶绿素的动态在线监测,设计开发了一款叶绿素在线检测传感器系统。应用可见-近红外(660、880 nm)波段光谱检测植物叶绿素含量的体积小、功耗低的模块,通过AD转换电路、数字滤波电路得到叶片反射光数字信号,利用灰度板对反射光信号进行反射率校准,660 nm和880 nm波段的反射率校正模型的R~2分别为0. 999 6和0. 999 5;取10个不同等级叶绿素溶液样本共80个,使用国标法检测叶绿素含量后将溶液倒入无纺布开展叶绿素梯度仿真测量。叶绿素检测模块测量双波长反射率后,分别计算归一化差值植被指数(NDVI)和叶绿素指标SPAD指数值。建立相应的叶绿素含量检测数学模型,其决定系数R~2分别为0. 955 7、0. 958 7。开展活体植株叶绿素检测验证试验,叶片原位光谱测量后,再将叶片剪碎,使用国标法测量叶绿素真实值,检测样本与真实值的相关系数分别为0. 888 7、0. 874 5。进而开展在线动态监测试验,实时监测水肥胁迫组和正常水肥管理对照组玉米幼苗植株,监测90 h内的叶绿素含量变化,可知,相同管理条件下植株叶绿素含量变化规律大致相同,受水肥胁迫的影响,水肥胁迫组的叶绿素浓度呈下降趋势。证明了传感器系统在线监测作物叶绿素动态的可行性,可为农作物生长与胁迫动态监测提供技术支持。  相似文献   

2.
为了无损和高效地检测作物叶绿素含量,设计了一种采用主动光源的双波长便携式叶绿素含量检测装置,获取作物在红色范围660 nm附近的光谱深吸收和近红外850 nm附近的光谱强反射特征。采集作物叶片的反射光信号,经转换、调制和放大后,利用灰度标准板拟合反射率,660 nm和850 nm拟合的校正模型R~2分别为0. 993、0. 979。光源稳定性与抗干扰性测试结果显示,660 nm和850 nm光源的稳定性均方差分别为0. 007 9和0. 004 4,误差率分别为2. 378%和1. 223%;抗干扰性的均方差分别为0. 009 9和0. 018 7,误差率分别为2. 000%和4. 360%。通过叶绿素浸提溶液配比,设计了叶绿素梯度与双波长反射率的相关性试验,结果显示,660 nm和850 nm与叶绿素浓度相关系数分别为-0. 919和0. 272。660 nm附近叶绿素对光谱有深吸收的特征,将其作为主要测试波长;850 nm附近是叶片结构和以环境光学响应为主,反射光与叶绿素相关性不强,将其作为检测的参比波长。以田间玉米苗期植株为试验对象,利用双波长采集作物反射率,计算归一化植被指数(NDVI)、差值植被指数(DVI)、比值植被指数(RVI)和土壤调整型植被指数(SAVI),其与SPAD仪器测量值的相关系数r分别为0. 892、0. 846、0. 867、0. 883。基于NDVI、DVI、RVI和SAVI建立SPAD多元线性回归模型,其决定系数R~2为0. 831。利用该装置提供的模型嵌入功能导入诊断模型可直接输出叶绿素诊断结果,为作物叶绿素含量快速检测提供支持。  相似文献   

3.
为了快速准确获取田间作物生长营养水平信息,设计了作物冠层营养诊断光谱检测仪,并进行了小麦大田测试。系统由光学传感器,信号采集驱动模块和控制器组成。光学传感器可测量300~1 100 nm范围内连续光谱,信号采集驱动模块用于提供稳定电压以及数据的A/D转换。开发了光谱采集控制软件安装于控制器,主要功能包括接收、处理、显示和存储采集到的数据。应用该仪器进行了标定试验,并针对大田冬小麦开展了大田试验,试验结果表明该仪器所测反射率与美国ASD FieldSpec HandHeld 2光谱辐射仪所测的反射率之间具有较高的相关性,相关系数最低为0.991 8。分析了冬小麦叶绿素含量指标SPAD值与仪器所测反射率之间的相关性。选出相关性较高的550~900 nm波段进行主成分分析建立叶绿素预测模型,建模 R 2 C 为0.575,模型检验 R 2 V 为0.595。结果表明利用研发的便携式光谱检测仪能有效评估小麦营养叶绿素含量,为小麦的精细栽培提供理论与技术支持。  相似文献   

4.
在设施水培条件下,以黄金四季奶油小白菜为试验材料,LED灯为人工光源,自然光为对照,研究不同光谱LED植物光灯的红蓝光波段组合对黄金四季奶油小白菜生长参数的影响,为植物工厂水培小白菜提供人工补光数据支撑。试验设定为蓝光(455nm)相对光谱固定不变,红光相对光谱分别为T1(7.53%)、T2(15.40%)、T3(30.28%)条件下的生长速度及品质。结果表明,红光相对光谱为30.28%时试验组小白菜的菜叶长度、株高、蛋白质以及叶绿素含量均显著高于其他处理,30.28%的红光相对光谱可作为水培小白菜的适宜光配合。  相似文献   

5.
基于SPAD的水稻氮素含量测量指标及模型研究   总被引:1,自引:0,他引:1  
叶绿素相对含量(SPAD)与水稻氮素含量有较好的相关性,但田间叶片的SPAD值测量影响因素较多。本文分析了在不同生长期,不同氮肥胁迫下水稻植株的氮素敏感叶片的叶绿素值的测量影响因素以及随氮素水平变化规律,构建最佳水稻氮素测量指标,并建立叶绿素值与水稻氮素含量检测模型。研究成果可为建立水稻信息专家库及水稻在线施肥系统提供决策依据。  相似文献   

6.
基于激光诱导荧光光谱分析的黄瓜叶片叶绿素含量检测   总被引:4,自引:2,他引:2  
利用反射式激光诱导叶绿素荧光光谱分析技术对黄瓜活体叶片叶绿素含量进行检测实验研究。通过对中心波长为473nm和660nm 2种激发光的4种激发强度(2.5、5.0、7.5、10.0mW)条件下荧光光谱的分析,结果显示:在强度7.5 mW、波长473 nm的光源下激发产生的荧光光谱具有很好的准确性和稳定性;在此条件下,荧光参数F_(732)/F_(685)与植物活体叶片内叶绿素含量成极显著线性关系,并以此为基础建立了数学回归模型(R~2>0.93,p<0.001),模型回归系数显著,模型可靠性极好,准确地反映了荧光参数与叶绿素含量的关系。  相似文献   

7.
为了研究SPAD-502PLUS便携式叶绿素测定仪测量作物中氮含量和作物在缺氮的情况下,如何精准施肥,通过使用浙江托普云农科技股份有限公司生产的型号为TYS-4N型植物营养测定仪测定作物中叶绿素SPAD的值以及氮含量,推导出叶绿素SPAD的值与氮含量的关系式为N=0.3SPAD+0.525。使用SPAD-502PLUS便携式叶绿素测定仪测量作物中叶绿素SPAD的值,代入N=0.3SPAD+0.525关系式,经计算得偏差率最大为9.5%,最小为0.4%。绝大多数偏差率在5%以下,说明利用此方法可以大致估算出作物中的氮含量。使用托普云农仪器数据管理软件通过查表可以查出作物的100kg产量所吸收氮养分量及肥料氮养分含量与利用率等,可以精准计算出作物所需氮肥的量,对指导农户精准施肥具有重要意义。  相似文献   

8.
叶绿素荧光技术是探知植物生理状态及其与环境关系的理想方法.太阳诱导叶绿素荧光可以利用夫琅和费暗线原理进行提取.阐述了夫琅和费暗线探测自然光条件下光合作用荧光的基本原理和方法,以及波长760nm叶绿素荧光探测仪的光学系统、仪器硬件组成及其各部分功能、仪器的软件设计.通过与ASD地物光谱仪器的对比试验表明,研制的太阳诱导叶绿素荧光测量的数据与地物光谱仪测量的数据相关系数都大于0.9.基于夫琅和费暗线原理的太阳诱导叶绿素荧光探测仪器提供了一种低成本、实时测量作物冠层太阳诱导叶绿素荧光的方法和仪器.  相似文献   

9.
基于反射光谱的苹果叶片叶绿素和含水率预测模型   总被引:4,自引:0,他引:4  
为探索苹果叶片叶绿素含量(质量比)、叶片含水率与反射光谱之间的关系,以华北地区苹果树为研究对象,分别测定了各个关键生长期苹果叶片的光谱反射率、叶绿素含量和叶片含水率。分析光谱反射率与叶绿素含量以及叶片含水率之间相关性发现,在不同生长时期,苹果叶片叶绿素a含量与反射光谱在515~590 nm和688~715 nm两组波段内具有较高的相关性,且果实成熟期数据显示相关度最高(R2=0.6)。在420~500 nm、640~680 nm、740~860 nm 3个波段叶片含水率与反射光谱有较高的相关性,且果实膨大期的叶片含水率在可见光波段的相关系数最大。根据所选敏感波段,分别利用多元线性回归、主成分分析和人工神经元网络建立基于反射光谱的苹果叶片不同生长时期叶绿素和含水率的预测模型。通过对所建立的预测模型进行校验,结果显示,利用主成分分析方法所建立的苹果叶片叶绿素含量预测模型的决定系数最高(R2=0.885 2),校验系数为0.828 9。该模型可以较为准确地预测苹果叶片叶绿素含量。而采用神经元网络所建立苹果叶片含水率预测模型的决定系数R2=0.862,校验系数为0.8375,预测效果最好。  相似文献   

10.
基于近红外光电效应的联合收获机谷物厚度测量方法   总被引:1,自引:0,他引:1  
谷物在刮板升运器中的堆积状态是影响光电式流量测量精度的重要因素。为了提高联合收获机容积式谷物流量传感器的测量精度,开展了基于近红外光电效应的谷物厚度测量方法及其传感器的研究。通过激光发射器生成850~980 nm的近红外光,采用硅光电池接收透射谷物的红外光线,根据光强的变化获取谷物的厚度。设计了以T型反馈网络为核心的I/V转换处理电路,根据试验测量的输出电压与谷物厚度的变化关系,拟合建立了Gaussian函数方程,分析了激光发射器功率、红外线波长对不同品种水稻厚度测量性能的影响。结果表明:当红外线波长为940 nm时,回归方程的拟合精度最高,水稻厚度测量误差小于0. 5 mm;随着激光发射器功率的增加,水稻厚度测量量程随之增大,当功率为500 m W时,谷物厚度的有效测量距离约为50 mm;红外线的穿透能力随着波长的增加而增强,随着籽粒含水率的降低而减弱。提出的谷物厚度测量方法可以提高容积式谷物流量测量精度。  相似文献   

11.
为了快速、无损检测植物叶片叶绿素含量,基于叶绿素a和叶绿素b在光波长约660nm和460nm处有最大吸收峰的现象,设计了一种便携式植物叶片叶绿素含量无损检测仪。该检测仪主要由单片机、光源模块、光传感器、电源模块和输入输出模块等组成;其软件采用Keil C51编写,主要包括主函数、按键子函数、光采集子函数、数据处理子函数、显示子函数等。以菠菜、大青菜和油麦菜为试验对象,研究了460nm和660nm处植物叶片的吸光度与叶绿素含量之间的关系,结果表明,随着叶绿素含量的增加,吸光度增大,其关系可用二元一次方程描述(决定系数为080)。与分光光度法相比,本文设计检测仪的叶绿素含量检测误差为-0.32~0.20mg/g,平均绝对误差为0.14mg/g;与SPAD-502型叶绿素仪相比,本文设计检测仪的SPAD值绝对测量误差为-3.3~1.8,平均绝对误差为1.1,且成本低,响应时间小于2s。  相似文献   

12.
为快速获取作物的生长状态信息及时指导农业生产,基于作物生理生化光谱学响应机理,设计了基于光环境校正的便携作物叶绿素检测装置。装置测量以610、680、730、760、810、860nm为中心,20nm带宽的反射光谱以及环境光照光谱数据,计算植被指数并预测植物叶绿素含量,在环境光照强度较差时使用主动补光灯进行补光,并对补光条件下环境光照强度进行校正。实验表明GPS定位在纬度最大漂移为6.2m、经度最大漂移为4.9m;光谱传感器6个波段的光强响应与照度计测量值之间的决定系数均超过0.99;标定的2块光谱传感器的匹配系数在610nm和860nm波段分别为0.743、1.035。建立了610nm和860nm波段补光强度与测量距离间的拟合模型用于光环境校正;使用无纺布进行了叶绿素梯度实验,建立了植被指数NDVI与植物叶绿素含量的数学模型,在较差光环境条件下不进行补光的模型决定系数为0.685,补光并进行校正情况下模型决定系数为0.965。  相似文献   

13.
在水质测量评价中,通常将水体中叶绿素a的含量大小作为一个非常关键的指标。为获取石佛寺水库水体叶绿素a浓度反演模型,对石佛寺水库的水体进行光谱测量,获取水体光谱特征,并对采集的水样进行检测,得出叶绿素a浓度。在此基础上分析叶绿素a浓度与水体反射率的相关性,得到如下结论:石佛寺水库水体叶绿素a的浓度与反射比R_(702)/R_(674)和595 nm波长处反射率的一阶微分值都有较为明显的相关性(r~2分别为0.724 4和0.745 0)。  相似文献   

14.
采集我国15个省份的耕作土壤进行盆栽试验,通过外源添加不同浓度梯度的Pb并种植小白菜,比较梯度薄膜扩散技术(Diffusive gradients in thin-films,DGT)与传统化学方法(土壤溶液法、EDTA法、HAc法、CaCl_2法和全量法)评价土壤中Pb生物有效性。简单回归分析表明,各评价方法测定的土壤Pb含量与小白菜Pb含量都呈显著相关关系,但DGT技术相关性(R~2=0.97)最高。通过逐步多元线性回归分析,融合土壤pH值、有机碳(OC)含量、阳离子交换量(CEC)、粘粒含量等土壤基本理化性质,建立多元回归模型,结果表明:各传统评价方法融合了pH值、OC含量等土壤性质,R~2较对应的简单回归分析有所提高,都能用于评价土壤Pb的生物有效性,但通过DGT技术所构建的模型方程(R~2=0.97,p0.01)几乎不受土壤性质的影响,且较传统化学方法相关性更高,因此,DGT技术是一种可以用于评价土壤中Pb生物性的较优方法。  相似文献   

15.
近红外传感器测量不同种类土壤含水率的适应性研究   总被引:2,自引:0,他引:2  
采用我国不同土壤类型地区的5种土壤样品,利用自行设计的近红外传感器测量不同土壤含水率对应的反射光强。选取中心波长1 940 nm的近红外光为测量光,1 800 nm为参考光,将两波长的反射光强值换算为相对吸收深度。实测结果表明,随着土壤含水率的增加,相对吸收深度增加,两者间呈线性相关关系。选取独立样品对线性标定模型进行验证,除红土外,其他4种样品的均方根误差均小于6%。通过标定,所设计的传感器能够较好地测定不同土壤的含水率。  相似文献   

16.
基于无人机遥感的冬小麦叶绿素含量多光谱反演   总被引:1,自引:0,他引:1  
以杨凌地区冬小麦为研究对象,使用六旋翼无人机搭载RedEdge多光谱相机进行叶绿素监测试验。共选取65个样本,每个样本为1 m×1 m的样地,在样地内选取小麦冠层的7片叶片,测量相对叶绿素含量SPAD值,取平均值作为实测值,GPS记录位置信息。地面数据测量与无人机飞行测量同步进行。用Pix4D mapper软件对无人机多光谱影像进行拼接处理,得到4个波段下小麦冠层叶片反射率光谱图像,并利用ENVI 5.1软件提取光谱反射率数据。选取8种常用光谱参数,其中与小麦SPAD相关性较高的有SAVI、EVI2、DVI、RVI、NDVI、EVI和ARVI共7种,相关系数均在0.67以上。用7种光谱参数和小麦SPAD实测值,使用一元线性回归法和多元线性回归法构建反演模型并进行精度分析,结果表明:一元线性回归法构建的SPAD-SAVI模型精度最佳,决定系数(R~2)为0.866,均方根误差RMSE为0.245,可作为无人机遥感快速、无损监测冬小麦叶绿素的技术手段。  相似文献   

17.
文章采用种子生长法,以还原剂盐酸羟胺还原氯金酸,使25nm的球形金种子继续生长制备得到蓝紫色的金纳米花(AuNFs)。通过不断调节盐酸羟胺的浓度,探讨不同还原剂浓度下,金纳米花的最佳形态,并同时采用共振瑞利散射光谱法检测盐酸羟胺的含量。利用金纳米花溶液对菲林试剂-葡萄糖催化体系具有较强的催化作用,进一步提高体系的灵敏度。盐酸羟胺浓度在6.24~624nmol/L范围内与其吸光度降低值△I_(391nm),ΔI_(391nm)=0.06138C+1.5961,相关系数R~2为0.992,呈良好的线性关系,检测限为0.03744nmol/L。据此建立了测定盐酸羟胺的纳米金催化瑞利共振散射光度分析新方法。与已报道的方法相比较,该法操作简便,仪器廉价,灵敏度较高。  相似文献   

18.
杨树叶片叶绿素含量高光谱估算模型研究   总被引:3,自引:0,他引:3  
以盆栽107号杨树为研究对象,在验证杨树叶片的SPAD值可作为衡量其叶绿素含量指标的基础上,基于最佳指数-相关系数法(OIFC),提取了杨树叶绿素特征波段(中心波长350、715、1 150 nm),建立了以该组合波段原始光谱数据为自变量的杨树叶片叶绿素含量估算模型;利用相关系数法,提取了杨树叶绿素归一化植被指数的计算波段(中心波长705、953 nm)与一阶光谱导数的叶绿素特征波段(中心波长647、691、721 nm),且分别建立了基于归一化植被指数、叶面叶绿素指数、一阶光谱导数为自变量的杨树叶片叶绿素含量估算模型;比较分析所建立的模型精度,筛选出杨树叶片的叶绿素含量最优估算模型。结果表明:化学法测得杨树叶片叶绿素含量与其对应的SPAD值之间具有显著的幂函数关系,R2可达0.902 3。利用OIFC法提取的叶绿素最佳三波段组合的高光谱数据为自变量,与叶片叶绿素含量构建的模型预测值与实测值具有显著的线性关系,决定系数为0.944 5;相比其他模型,该模型的精度最高且均方根误差最小。可见,基于OIFC法构建的杨树叶绿素高光谱模型具有较高的精度,是估算杨树叶片叶绿素含量的最优模型。  相似文献   

19.
基于随机森林模型的林地叶面积指数遥感估算   总被引:5,自引:0,他引:5  
林地叶面积指数(Leaf area index,LAI)的准确估测是精准林业的重要体现。为了快速、准确、无损监测林地LAI,利用LAI-2200型植物冠层分析仪获取福建省西部森林样地的LAI数据,结合同期Pleiades卫星影像计算12种遥感植被指数,分析了各样地实测LAI数据和相应植被指数的相关性,进而使用随机森林(RF)算法构建了林地LAI估算模型,以支持向量回归(SVR)模型和反向传播神经网络(BP)模型作为参比模型,以决定系数(R~2)、均方根误差(RMSE)、平均相对误差(MAE)和相对分析误差(RPD)为指标评价并比较了模型预测精度。结果表明:全样本数据中,各植被指数与对应LAI值均呈极显著相关(P0.01),且相关系数都大于0.4;RF模型在3次不同样本组中的预测精度均高于同期的SVR模型和BP模型;3个样本组中RF模型的LAI估测值与实测值的R~2分别为0.688、0.796和0.707,RPD分别为1.653、1.984和1.731,均高于同期SVR模型和BP模型,对应的RMSE分别为0.509、0.658和0.696,MAE分别为0.417、0.414和0.466,均低于同期其他2种模型。  相似文献   

20.
研究烤烟叶片叶绿素含量与高光谱参数的相关性,建立叶绿素含量估算模型,为构建或筛选系统的烟叶烘烤特性评价指标奠定基础.以云烟87为研究对象,测定不同成熟度水平和不同烘烤温度下,叶片叶绿素含量及400~1000 nm光谱反射率,以烤烟叶片高光谱反射率与烤烟叶片叶绿素含量为数据源,用SPA(连续投影算法)对高光谱数据进行特征...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号