首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
3.

BACKGROUND

Although co-formulants constitute a substantial portion of the total plant protection product (PPP) mass applied to crops, data on residue formation and the behaviour of these substances on plants are scarce. In an earlier study we demonstrated that co-formulants commonly used in PPPs can form considerable residues, i.e., in the low to medium mg/kg range, but normally decline rapidly within few days. In the field trial reported here, we aimed to identify the major decline processes of co-formulants. Residues of co-formulants were therefore monitored in parsley and lettuce grown in an open field as well as under foil tunnels equipped with either an overhead or a drip irrigation system.

RESULTS

Dissipation of three anionic surfactants was markedly faster when crops (parsley and lettuce) were exposed to natural rainfall or irrigation from above compared to drip irrigation. In contrast, the decline of three volatile organic solvents was not affected by rain or irrigation, but was dependent on the crop, with much shorter half-lives in lettuce than in parsley. Furthermore, dilution through plant growth contributed significantly to the reduction of residues over time.

CONCLUSION

In this work we substantiate earlier findings on the magnitude and dissipation of residues of anionic surfactants and solvents representing the most important co-formulant classes. The chosen experimental setup allowed differentiation between decline processes and we confirm that foliar wash-off is a major dissipation process for anionic surfactants. For volatile organic solvents, dissipation appears to depend on the properties not only of the substance but also of the plant (surface). © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

4.
The effects of sub-lethal residues of azinphos-methyl on pheromone production, calling, female attractiveness and the ability of males to locate sources of natural and synthetic pheromone were compared in azinphos-methyl-susceptible (susceptible) and azinphos-methyl-resistant (resistant) obliquebanded leafrollers, Choristoneura rosaceana (Harris). The amount of pheromone in susceptible females was reduced by 29-33% after exposure to azinphos-methyl; this treatment did not affect the pheromone content of resistant females. Azinphos-methyl-treated resistant females contained 39-43% less pheromone than azinphos-methyl-treated susceptible females. Resistant females that were not treated with azinphos-methyl contained 35-56% less pheromone than susceptible females that were not treated with insecticide. The incidence of calling was reduced by 67-100% in azinphos-methyl-treated susceptible females; the incidence of calling by resistant females was not affected by exposure to azinphos-methyl. The incidence of calling by azinphos-methyl-treated susceptible females was 58-100% lower than that of azinphos-methyl-treated resistant females. There was no difference in the incidence of calling between susceptible and resistant females that had not been treated with insecticide. In a flight tunnel, treatment with insecticide reduced the attractiveness of susceptible females by 38%; treatment with insecticide did not affect the attractiveness of resistant females. There was no difference in the proportion of males attracted to susceptible and resistant females that had, or had not been treated with insecticide. In an apple orchard, the attractiveness of susceptible and resistant females treated with azinphos-methyl was reduced by 84 and 12%, respectively. The proportion of males attracted to azinphos-methyl-treated susceptible females was 58% lower than the proportion attracted to azinphos-methyl-treated resistant females, whereas, if females were not treated with insecticide, the proportion attracted to resistant females was 57% lower than the proportion attracted to susceptible females. In a flight tunnel, azinphos-methyl did not affect the ability of susceptible or resistant males to locate a source of pheromone gland extract. Likewise, in an apple orchard, the insecticide treatment had no effect on the ability of susceptible or resistant males to locate a source of synthetic pheromone. In a flight tunnel, there was no difference in the proportion of azinphos-methyl-treated susceptible and resistant males locating a source of pheromone gland extract; however, in the orchard, 39% fewer azinphos-methyl-treated resistant males located a source of synthetic pheromone than azinphos-methyl-treated susceptible males. A similar proportion of susceptible and resistant males that had not been treated with insecticide located a source of pheromone gland extract in the flight tunnel, but in the orchard, the proportion of resistant males not treated with azinphos-methyl that located the source of synthetic pheromone was 32% lower than the proportion of susceptible males not treated with this insecticide. The implications of the differences in the effect of sub-lethal residues of azinphos-methyl on the pheromone communication system of susceptible and resistant moths are discussed in relation to the theory of the development of insecticide resistance, the detection of resistance in feral populations of moths using sex pheromone-baited traps, and the control of moths using sex pheromone-mediated mating disruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号