首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
AIM: To study the protective effect of anti-aging Klotho protein on human umbilical vein endothelial cells (HUVECs) treated with high glucose (HG).METHODS: HUVECs were cultured in vitro, and divided into PBS control group, 5.5 mmol/L glucose group, 33.3 mmol/L glucose group, 0.1 μmol/L Klotho+33.3 mmol/L glucose group, 1 μmol/L Klotho+33.3 mmol/L glucose group, and 10 μmol/L Klotho+33.3 mmol/L glucose group. The viability of the HUVECs was measured by MTT assay. The content of malondialdehyde (MDA), and the activities of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione (GSH) in cell culture supernatants were observed. The production of reactive oxygen species (ROS) in HUVECs was analyzed by flow cytometry. The levels of nitric oxide (NO), endothelin (ET-1), intercellular adhesion molecule-1 (ICAM-1) in HUVEC culture medium were detected by ELISA. The protein expression of nuclear factor-kappa B (NF-κB) in the HUVECs was determined by Western blot. RESULTS: Compared with PBS control group, 33.3 mmol/L glucose significantly decreased the HUVEC viability, increased ROS, LDH and MDA levels, reduced the activities of SOD and GSH, decreased the NO secretion, and induced the ET-1 and ICAM-1 secretion and the protein expression of NF-κB in HUVECs. When HUVECs were treated with Klotho protein at different concentrations combined with 33.3 mmol/L glucose, the cell viability was increased significantly, the ROS, LDH and MDA levels were decreased significantly, the antioxidant SOD and GSH activities were significantly increased, the secretion of NO was increased, but ET-1 and ICAM-1 releases and protein expression of NF-κB were significantly reduced.CONCLUSION: Anti-aging Klotho protein promotes the viability of HUVECs treated with HG, reduces the oxidative damage and ROS production, and restores the normal secretory function of HUVECs, thus playing a protective role in vascular endothelial cells through reducing the protein expression of NF-κB.  相似文献   

3.
AIM: To investigate the effect of folic acid and vitamin B12 on homocysteine (Hcy)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) through mammalian sterile 20-like kinase 1 (MST1). ME-THODS: HUVECs were cultured in the absence (control group), or presence of 100 μmol/L Hcy alone (Hcy group) or 100 μmol/L Hcy plus 30 μmol/L folic acid and vitamin B12 (intervention group) for 72 h. The effect of Hcy on the apoptosis of HUVECs was analyzed by flow cytometry. The transfection efficiency of DNA methyltransferase 1 (DNMT1)-overexpressing adenovirus was observed under fluorescence inverted microscope. The mRNA and the protein levels of DNMT1 and MST1 were determined by RT-qPCR and Western blot. The DNA methylation level of MST1 promoter was detected by methylation-specific PCR. RESULTS: Compared with control group, the apoptotic rate (P<0.01) and the expression of MST1 at mRNA (P<0.01) and protein (P<0.05) levels in the HUVECs were significantly increased, while the mRNA levels of DNMT1 was decreased in Hcy group (P<0.01). In addition, folic acid and vitamin B12 treatment significantly inhibited Hcy-mediated apoptosis of HUVECs (P<0.01), increase in MST1 mRNA level (P<0.01) and decrease in DNMT1 mRNA level (P<0.01). Meantime, the mRNA level of MST1 was positively correlated with the apoptotic rate of the HUVECs (r=0.943 9, P<0.001). The expression of DNMT1 at mRNA and protein levels was significantly increased after the transfection of DNMT1-overexpressing adenovirus into HUVECs (P<0.01), and a large amount of green fluorescent protein expression was observed. Meanwhile, the DNA methylation level of MST1 promoter was increased (P<0.01), while the protein level of MST1 was decreased (P<0.01).CONCLUSION: Up-regulation of MST1 promotes Hcy-induced apoptosis of HUVECs, while folic acid and vitamin B12 exert an anti-apoptosis effect, which might be regulated by hypermethylation of MST1 promoter region.  相似文献   

4.
AIM: To investigate the effect of advanced oxidation protein product-human serum albumin (AOPP-HSA) at different concentrations on the permeability of human umbilical vein endothelial cell (HUVEC) monolayer and the protective effect of NADPH oxidase inhibitor diphenyleneiodonium (DPI) against AOPP-HSA exposure. METHODS: Cultured HUVECs were exposed to 200 mg/L HSA (control) or AOPP-HSA (50, 100 and 200 mg/L). The permeability of the endothelial monolayer was assessed by measuring CMFDA-labeled THP-1 cells across the endothelial cells. The cultured HUVECs were treated with HSA (200 mg/L), AOPP-HSA (200 mg/L), or AOPP-HSA (200 mg/L) + DPI (100 μmol/L), and the activation of NADPH oxidase, endothelial monolayer permeability and cytoskeleton rearrangement were evaluated. RESULTS: AOPP-HSA increased the permeability of the endothelial cell monolayer, and AOPP-HSA at 200 mg/L significantly increased the phosphorylation level of NADPH oxidase in the cells. Treatment with 100 μmol/L DPI obviously attenuated AOPP-HSA-induced NADPH oxidase activation, the increase in the permeability of the cell monolayer and the cytoskeleton rearrangement. CONCLUSION: AOPP-HSA increases the hyperpermeability of HUVEC monolayer via the phosphorylation of NADPH oxidase, and the NADPH oxidase inhibitor DPI reverses such effects.  相似文献   

5.
AIM: To investigate the effect of oxidized LDL (ox-LDL) on the expression of gap junction protein connexin43 in cultured human umbilical vein endothelial cells (HUVECs) in vitro. METHODS: Human umbilical vein endothelial cells cultured in normal condition were divided into blank control group, 50 mg/L,100 mg/L and 200 mg/L ox-LDL intervention groups. The mRNA expression of connexin43 in cultured HUVECs was detected with RT-PCR method; while the protein level of connexin43 was determined by the method of immunocytochemistry in the control and 100 mg/L ox-LDL intervention groups 24 h after ox-LDL was given. RESULTS: Different concentrations (50 mg/L, 100 mg/L, 200 mg/L) of ox-LDL up-regulated mRNA expression of connexin43 in cultured HUVECs after 24 h intervention (P<0.01). The protein level of connexin43 in cultured HUVECs intervened with 100 mg/L Ox-LDL for 24 h was up-regulated as compared to the control cells (P<0.01).CONCLUSION: Ox-LDL may up-regulate the expression of connexin43 at mRNA and protein levels in cultured human umbilical vein endothelial cells within short time, indicating that connexin43 plays an important role in the pro-atherosclerotic effect of Ox-LDL.  相似文献   

6.
AIM:To explore the effects of tetrahydroxystilbene-2-O-β-D-glucoside (TSG) from Polygonum multiflorum on the apoptosis and the mRNA expression of bcl-2, bax and caspase-3 in human umbilical vein endothelial cells (HUVECs) treated with homocysteine (Hcy). METHODS:Cultured HUVECs were treated with Hcy (3 mmol/L) to establish a Hcy-damaged model. HUVECs in TSG treated groups were pre-incubated with TSG at concentrations of 1 μmol/L and 10 μmol/L for 2 h before treated with Hcy. Cell nuclear damage was detected by Hoechst 33342 staining. Cell apoptosis was determined by flow cytometry. The mRNA expression of bcl-2, bax and caspase-3 was measured by real-time fluorescence quantitative RT-PCR. RESULTS: After treatment with Hcy at concentration of 3 mmol/L, the nuclear damage and apoptotic rate of HUVECs were higher than that in normal group. The expression of bcl-2 was lower, and the expression of Bax and caspase-3 was higher than that in normal group. On the other hand, pre-incubation with TSG at concentrations of 1 μmol/L and 10 μmol/L decreased the nuclear damage and cell apoptosis, increased the expression of bcl-2, and decreased the expression of bax and caspase-3 as compared with the cells only treated with Hcy. CONCLUSION:TSG reduces the apoptosis of HUVECs induced by Hcy, and the mechanism might be associated with regulating the expression of bcl-2, bax and caspase-3.  相似文献   

7.
AIMTo investigate the roles of protein phosphatase 4 (PP4) in down-regulation of endothelial nitric oxide synthase (eNOS) Ser633 phosphorylation induced by palmitic acid (PA). METHODSHuman umbilical vein endothelial cells (HUVECs) were treated with PA at 25 μmol/L, 50 μmol/L, 100 μmol/L and 200μmol/L for 36 h, or treated with PA at 100 μmol/L for 12 h, 24 h, 36 h and 48 h. Protein phosphatase 2A (PP2A) family inhibitor fostriecin (FST, 20 nmol/L) or okadaic acid (OA, 5 nmol/L) was selected to pretreat the HUVECs for 30 min. Protein phosphatase 4 catalytic subunit (PP4c) siRNA or protein phosphatase 2A catalytic subunit (PP2Ac) siRNA was transfected into the HUVECs. The protein expression levels of of eNOS, PP4c and PP2Ac, as well as the level of eNOS Ser633 phosphorylation, were detected by Western blot. The intracellular nitric oxide (NO) content was measured by DAF-FM DA. RESULTS(1) Compared with control group, the levels of eNOS Ser633 phosphorylation were decreased in PA groups in which the HUVECs were treated with 25 μmol/L, 50 μmol/L, 100 μmol/L and 200 μmol/L PA for 36 h (P<0.05) and 100 μmol/L PA for 24 h, 36 h and 48 h (P<0.05). No significant difference in the level of total eNOS protein expression among all the groups was observed. (2) Compared with control group, both FST and OA pretreatment reversed the reduction of eNOS Ser633 phosphorylation (P<0.05) and the decrease in intracellular NO content (P<0.05) induced by PA. No significant difference in the level of total eNOS protein expression among all the groups was observed. (3) Compared with si-Control group, the PP4c protein expression was significantly reduced (P<0.05), while the level of eNOS Ser633 phosphorylation was significantly increased in si-PP4c group (P<0.05). Although the levels of PP2Ac protein expression declined significantly (P<0.05), the level of eNOS Ser633 phosphorylation remained unchanged in si-PP2Ac group. No significant differencein the level of total eNOS protein expression among all the groups was found. CONCLUSION PA significantly reduces the level of eNOS Ser633 phosphorylation and the content of NO in the HUVECs, which may be due to PA inducing the activation of the PP2A family member PP4 rather than PP2A.  相似文献   

8.
AIM: To investigate the effects of DL-3-n-butylphthalidle (NBP) on angiogenesis of human umbilical vein endothelial cells (HUVECs) and the role of vascular endothelial growth factor (VEGF)/VEGF receptor 2(VEGFR2)-Notch1/Delta-like ligand 4 (Dll4) signaling pathway in this process. METHODS: The serum-free medium and anoxic tank were used to simulate the conditions of hypoxia and ischemia (H/I). HUVECs were divided into control group, H/I group, H/I+NBPhigh group and H/I+NBPlow group. The HUVECs in control group were conventionally cultured, and those in H/I group were cultured under H/I intervention. The HUVECs in H/I+NBPhigh group were treated with NBP at 20 μmol/L under H/I intervention. The HUVECs in H/I+NBPlow group were treated with NBP at 5 μmol/L under H/I intervention. The cell viability of each group was measured by CCK-8 assay. The migration ability of the HUVECs in each group was detected by cell scratch test. The vessel formation ability of the HUVECs was examined by in vitro angiogenesis assay. The expression of VEGFR2, Notch1 and Dll4 at mRNA and protein levels was determined by qPCR and Western blot, and the expression of VEGF was determined by qPCR and ELISA. RESULTS: NBP increased the viability of HUVECs, and promoted the migration ability and the formation of blood vessels in vitro under H/I intervention. These effects of NBP at high dose were more significant than those at low dose. NBP increased the expression of VEGF, VEGFR2, Notch1 and Dll4 at mRNA and protein levels (P<0.05). CONCLUSION: NBP promotes HUVECs to form blood vessels under H/I intervention. The mechanism may be related to the activation of VEGF/VEGFR2-Notch1/Dll4 signaling pathway.  相似文献   

9.
AIM: To investigate the regulatory effect of berberine on the endoplasmic reticulum stress-auto-phagy pathway in human ovarian cancer SKOV3 cells. METHODS: Human ovarian cancer SKOV3 cells were cultured in vitro, and berberine at doses of 12.5, 25, 50, 100, 200 and 400 μmol/L were added. After exposure for 12 h, 24 h and 48 h, the viability of the SKOV3 cells was measured by MTT assay. The cells were divided into control group, berberine (50 μmol/L) group, berberine (100 μmol/L) group, and berberine (200 μmol/L) group. After treatment with berberine for 24 h, the effects of berberine on the morphological changes of SKOV3 cells were observed under inverted phase-contrast microscope. The protein expression of microtubule-associated protein 1 light chain 3 (LC3) and ubiquitin-binding protein p62 was observed by indirect immunofluorescence method under laser confocal microscope. The protein expression of beclin-1,LC3,p62, CCAAT/lenhancer binding protein homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) was determined by Western blot. RESULTS: Berberine at 12.5, 25, 50, 100, 200 and 400 μmol/L significantly decreased the viability of SKOV3 cells at 12 h, 24 h and 48 h, and the IC50 values of 12 h, 24 h and 48 h were (764.7±0.3) μmol/L, (231.6±0.1) μmol/L and (96.2±0.1) μmol/L, respectively. Laser confocal microscopy showed that the LC3 and p62 proteins were scattered and the fluorescence intensity was increased, while the point-like aggregation was also observed. Berberine at 200 μmol/L obviously enhanced the co-localization of LC3 and p62 proteins. Compared with control group, the expression of endoplasmic reticulum stress-related proteins GRP78 and CHOP, and autophagy-related proteins beclin-1, LC3 and p62 in berberine (200 μmol/L) group was increased significantly (P<0.05). CONCLUSION: Berberine may promote endoplasmic reticulum stress in SKOV3 cells by regulating autophagy.  相似文献   

10.
AIM:To investigate the protective effect of Astragalus polysaccharides (APS) on human umbilical vein endothelial cells (HUVECs) injured by homocysteine (Hcy) and its mechanism. METHODS:HUVECs cultured in vitro were divided into 4 groups:control group, APS group[APS (200 mg/L) treatment for 24 h], Hcy group[Hcy (1 mmol/L) treatment for 24 h], and Hcy+APS group[Hcy (1 mmol/L) and APS (200 mg/L) co-treatment for 24 h]. The cell viability were measured by MTT assay. The activity of lactate dehydrogenase (LDH) and superoxidase dismutase (SOD), and the content of malondialdehyde (MDA) in HUVECs were detected by the commercial kits. The mRNA expression of SOD1, catalase (CAT) and NADPH oxidase 2 (NOX2) was detected by RT-qPCR. The protein levels of AMP-activated protein kinase α (AMPKα) and phosphorylated AMPKα (p-AMPKα) were determined by Western blot. RESULTS:Compared with control group, the cell viability, the activity of SOD, and the mRNA expression of SOD1 and CAT in the HUVECs were decreased, but the activity of LDH, the content of MDA, and the mRNA expression of NOX2 were increased significantly in Hcy group(P<0.05). APS inhibited the decrease in cell viability, and the increases in LDH acti-vity and MDA content induced by Hcy. APS increased SOD activity and the mRNA expression of SOD1 and CAT, but reduced the mRNA expression of NOX2. Compound C, an AMPK inhibitor, reduced the protective effect of APS on HUVECs injured by Hcy. CONCLUSION:APS protects HUVECs from Hcy-induced injury via AMPK signaling pathway to regulate intracellular oxidative stress.  相似文献   

11.
MENG Xin  ZHANG Jin  WU Wei  BAI Song 《园艺学报》2004,20(4):598-602
AIM: To investigate the effects of advanced glycation end products (AGEs) on protein and mRNA expression of macrophage inflammatory protein-1α (MIP-1α) in cultured human umbilical vein endothelial cells(HUVECs). METHODS: HUVECs were cultured with AGEs at different concentrations for 24 h and at a concentration of 400 mg/L for different time.The levels of mRNA and protein expression of MIP-1α in cultured HUVEC were detected by in situ hybridization and Western blot, respectively. RESULTS: In situ hybridization showed that after exposure of HUVECs to AGEs at different concentrations (100 mg/L, 200 mg/L, 400 mg/L) for 24 h, the average integrated optical density values (18.76±3.17, 26.58±1.61, 34.23±2.25) of MIP-1α mRNA expression in HUVECs were higher than that in control group (13.83±1.24, P0.05). After exposure of HUVECs to AGEs at a concentration of 400 mg/L for 12 h, 24 h and 36 h, the average integrated optical density values of MIP-1α mRNA expression in HUVECs were 22.67±1.46, 34.23±2.25 and 42.28±3.14, higher than that in 0 h group (12.56±1.24, P0.05). Western Blot showed that exposure of HUVECs to AGEs at different concentrations(100 mg/L, 200 mg/L, 400 mg/L) for 24 h resulted in a 1.34-fold, 1.87-fold and 2.46-fold increase in the expression of MIP-1α protein in HUVECs compared with BSA control group (P<0.05). Meanwhile, exposure of HUVECs to AGEs at a concentration of 400 mg/L for 12 h, 24 h and 36 h resulted in a 1.82-fold, 2.71-fold and 3.34-fold increase in MIP-1α protein expression in HUVECs compared with 0 h group (P<0.05). CONCLUSION:These data suggest that AGEs could induce a high expression of MIP-1αmRNA and protein in cultured HUVECs in a dose-dependent and time-dependent manner.  相似文献   

12.
AIM: To observe the influence of simvastatin on insulin secretion function of mouse pancreatic beta cell line MIN6 and to explore its possible mechanisms.
METHODS: MIN6 cells were randomly divided into normal control group and low-, middle-and high-concentration simvastatin treatment groups, which were cultured for 48 h with high-glucose DMEM containing 15% fetal bovine serum plus 0, 2, 5 and 10 μmol/L simvastatin, respectively. The insulin secretion of MIN6 cells was measured by radioimmunoassay. The content of ATP in MIN6 cells was measured by biochemiluminescence method. The mRNA and protein expression levels of inwardly rectifying potassium channel 6.2 (Kir6.2), voltage-dependent calcium channel 1.2 (CaV1.2) and glucose transporter 2 (GLUT2) were detected by real-time fluorescence quantitative PCR and Western blotting, respectively.
RESULTS: Compared with normal control group, middle-and high-concentration simvastatin treatment markedly decreased the synthesis and secretion of insulin in MIN6 cells (P<005). The content of ATP in MIN6 cells was markedly decreased in simvastatin treatment groups (P<005). The mRNA expression level of Kir6.2 in MIN6 cells was significantly up-regulated in simvastatin treatment groups (P<001), while the mRNA expression levels of CaV1.2 and GLUT2 were significantly down-regulated in middle-and high-concentration simvastatin treatment groups (P<001). The protein expression of Kir6.2 was significantly increased but that of CaV1.2 was significantly decreased in middle-and high-concentration simvastatin treatment groups (P<001), and the protein expression level of GLUT2 was markedly decreased in high-concentration simvastatin treatment group (P<001).
CONCLUSION: Simvastatin inhibits insulin synthesis and secretion in mouse pancreatic beta cell line MIN6 via suppressing ATP production, up-regulating the expression of Kir6.2 and down-regulating the expression of CaV1.2 and GLUT2.  相似文献   

13.
AIM: To explore the effects of chloroquine (CQ) on collagen Ⅰand collagen Ⅲ expression in activated rat hepatic stellate cell line HSC-T6 and the possible mechanism.METHODS: Transforming growth factor-β1 (TGF-β1) was used to activate HSC-T6 cells and 3 doses of CQ was administered for 24 h. The cells were divided into 5 groups as follows:control group, TGF-β1 group, TGF-β1+CQ (15 μmol/L) group, TGF-β1+CQ (30 μmol/L) group and TGF-β1 + CQ (60 μmol/L) group. Western blot was used to determine the expression of LC3-Ⅱ/LC3-I, P62 and α-SMA in activated HSC-T6 cells. The expression of collagen I and collagen Ⅲ was detected by immunocytochemical staining, Western blot and RT-qPCR. Western blot and RT-qPCR were also used to detect the expression of matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 at mRNA and protein levels.RESULTS: The ratio of LC3-Ⅱ/LC3-Ⅰ and P62 expression were increased after CQ intervention. Moreover, they were significantly higher in the TGF-β1+CQ groups than those in TGF-β1 group (P<0.01). The expression of collagen I and collagen Ⅲ at mRNA and protein levels was significantly increased in all TGF-β1+CQ groups as compared with TGF-β1 group (P<0.01), and it was markedly increased among TGF-β1+CQ groups in a dose-dependent manner. The expression of MMP-13 at mRNA and protein levels was significantly lowered and that of TIMP-1 and TIMP-2 was significantly increased in TGF-β1+CQ groups as compared with TGF-β1 group (P<0.05).CONCLUSION: Inhibition of autophagy by CQ in activated HSC-T6 cells up-regulates the expression of collagen I and collagen Ⅲ in a dose-dependent way, probably due to reduction of MMP-13 and enhancement of TIMP-1 and TIMP-2 expression.  相似文献   

14.
AIM: To investigate the effects of atorvastatin on the expression of pregnancy-associated plasma protein A(PAPP-A)induced by TNF-α and IL-1β in endothelial cells. METHODS: The rat aortic endothelial cells were isolated from thoracic aortas and cultured by the tissue explant method. The cells in passage 3-4 were used in the experiment and were randomly divided into 4 groups: blank control group: the cells were treated without any intervention; atorvastatin concentration groups: the cells were incubated with atorvastatin at the concentrations of 0.1, 1 and 10 μmol/L for 24 h; atorvastatin time groups: the cells were incubated with atorvastatin at the concentration of 10 μmol/L for 6 h,12 h and 24 h; atorvastatin+inflammatory factors groups: the cells were pre-incubated with 60 μg/L TNF-α or 20 μg/L IL-1β for 1 h, then different concentrations of atorvastatin (0.1, 1.0, 10 μmol/L) were added for 6 h,12 h and 24 h. MTT reduction assay was used to observe the cell proliferation. The mRNA expression of PAPP-A was detected by RT-PCR. The protein level of PAPP-A in the supernatants of cultured cells was measured by ELISA. RESULTS: Compared with blank control group, no significant change of cell proliferation was observed after the intervention of atorvastatin and TNF-α/IL-1β for 3 h, 6 h, 12 h, 24 h and 48 h, indicating that the drugs had no toxic effects on the cells. No significant difference of PAPP-A expression between atorvastatin groups and blank control groups was found. Compared with TNF-α groups and IL-1β groups, PAPP-A expressions in atorvastatin intervention groups significantly decreased. The protein level of PAPP-A was gradually decreased with the raised concentration of atorvastatin and the prolonged time in a concentration- and time-dependent manner. CONCLUSION: Atorvastatin doesn't influence the PAPP-A expression, but inhibits the expression of PAPP-A activated by inflammatory factors in a concentration- and time-dependent manner in primary cultured rat aortic endothelial cells.  相似文献   

15.
AIM: We hypothesize that peroxisome proliferator-activated receptor α(PPARα) agonists act directly on nitric oxide (NO) production in vascular endothelium. Thus, the purpose of this study is to investigate the effects of fenofibrate on endothelial NO synthase(eNOS) activity and its expression in cultured vascular endothelial cells. METHODS: Bovine aortic endothelial cells (BAECs) were treated with the PPARα activator fenofibrate. The eNOS activity and the expression of eNOS protein and its mRNA were determined. RESULTS: Our data show that fenofibrate increased eNOS activity in a dose-and time-dependent manner. At the concentration of 10 μmol/L or more, fenofibrate treatment caused a significant increase in eNOS activity. The maximal increase in eNOS activity(2.32±0.47 fold of the control) was observed with 50 μmol/L fenofibrate treatment for 48 h. Fenofibrate failed to increase eNOS activity at 1 and 12 h. RT-PCR analysis demonstrated that eNOS mRNA relative to β-actin mRNA significantly increased at concentrations of 5 μmol/L or more. It reached 2.08±0.33 fold of the control with 50 μmol/L fenofibrate. Significant increase in eNOS mRNA levels was observed after 6 h, and lasted for 48 h. The peak increase in eNOS mRNA levels(2.13±0.30 fold of the control,P<0.01) was observed with 50 μmol/L fenofibrate treatment for 12 h. Longer incubation of cells with 50 μmol/L fenofibrate caused no further increase. The treatment of BAECs with fenofibrate for 48 h demonstrated a concentration-dependent increase in eNOS protein levels as measured by Western blot analysis. Densitometric analysis indicated that there was a significant increase in eNOS to β-actin ratios after fenofibrate treatment at concentrations of 10,50 and 100 μmol/L(1.80±0.45, 2.70±0.42 and 2.20±0.32 fold of the control, respectively, P<0.01). The significant increase in eNOS protein levels was observed 12 h after treatment and lasted for 48 h. CONCLUSION: PPARα activator fenofibrate, enhances endothelial NO production by directly upregulating eNOS expression and activity.  相似文献   

16.
CHEN Long-yun  LIU Ye 《园艺学报》2018,34(11):1976-1980
AIM: To investigate whether quercitrin induces apoptosis of gastric cancer cell line SGC7901 by inhibition of PI3K/AKT signaling pathway. METHODS: The human gastric cancer SGC7901 cells were selected as the research object. The cytotoxicity of quercitrin was detected by MTT assay, and IC50 value of quercitrin was calculated. The SGC7901 cells were divided into control group, quercitrin group (incubated with 200 μmol/L quercitrin), insulin-like growth factor-1 (IGF-1) group (incubated with 100 μg/L IGF-1) and quercitrin+IGF-1 group (incubated with 200 μmol/L quercitrin and 100 μg/L IGF-1). After 48 h, the apoptosis of SGC7901 cells was analyzed by flow cytometry, and the protein levels of cleaved caspase-3, p-AKT (Ser473), AKT, p-PI3K (Tyr508) and PI3K were determined by Western blot. RESULTS: The viability of SGC7901 cells was significantly decreased as the concentration of quercitrin increased, starting at 100 μmol/L (P<0.05). The IC50 value of quercitrin for 48 h was 275.40 μmol/L. After treatment with 200 μmol/L quercitrin for 48 h, the apoptosis rate and the protein level of cleaved caspase-3 in quercitrin group were significantly increased (P<0.05), and the phosphorylated levels of AKT and PI3K were significantly decreased compared with control group (P<0.05). Treatment with quercitrin and IGF-1 inhibited the effect of quercitrin on SGC7901 cells compared with quercitrin group. CONCLUSION: Quercitrin may induce apoptosis of gastric cancer cell line SGC7901 by inhibiting the activation of PI3K/AKT signaling pathway.  相似文献   

17.
AIM: To explore the mechanism of propolis on the inhibition of atherosclerosis and thrombosis in injured human umbilical vascular endothelial cells (HUVECs) induced by tumor necrosis factor alpha (TNF-α)in vitro.METHODS: TNF-α at the concentration of 50 μg/L was used to induce the injury of HUVECs. The injured HUVECs were treated with water extract propolis (WEP) at the concentrations of 50, 100 and 200 mg/L for 6 h, 12 h and 24 h. The expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was examined by flow cytometry.RESULTS: The expression of ICAM-1 and VCAM-1 was significantly higher in injured HUVECs (P<0.01) than that in the control cells. The expression of ICAM-1 and VCAM-1 was downregulated by WEP treatment in a dose-dependent manner. Between the groups of 100 and 200 mg/L WEP, the difference was significant. In the injured HUVECs treated with 50 mg/L WEP, the inhibitory effect on the expression of ICAM-1 and VCAM-1 was presented in a time-dependent manner. Compared to the single administration, the use of WEP combined with fluvastatin showed better inhibitory effect on the expression of ICAM-1 and VCAM-1 in the injured HUVECs induced by TNF-α (P<0.01).CONCLUSION: WEP may be helpful for the protection of vascular endothelial cells by inhibiting the expression of ICAM-1 and VCAM-1 in a time-and dose-dependent manner. The protective effect of WEP on endothelial cells may be synergic with the inhibitor of HMG-CoA reductase such as fluvastatin sodium.  相似文献   

18.
AIM: To study the effects of metoprolol (Meto) on the apoptosis of neonatal rat cardiomyocytes and the phosphorylation of connexin 43 (Cx43) induced by norepinephrine (NE). METHODS: Neonatal SD rat cardiomyocytes were divided into the following five groups (n=6 in each group): (1) control (Con) group: no treatment; (2) NE group: treatment with NE at 0.1 μmol/L for 24 h; (3) NE+Meto group: simultaneous treatment with NE and Meto both at 01 μmol/L for 24 h; (4) NE+Meto+PD98059 group: pretreatment with extracellular signal-regulated kinase (ERK) phosphorylation inhibitor PD98059 at 10 μmol/L for 30 min and then treatment with NE and Meto both at 01 μmol/L for 24 h; (5) NE+PD98059 group: pretreatment with PD98059 at 10 μmol/L for 30 min and then treatment with NE at 01 μmol/L for 24 h. The beating rates of cardiomyocytes in various groups were calculated, and the viability of cardiomyocytes was assayed by MTT method. The Cx43 mRNA expression was detected by RT-PCR, and the protein expression of phosphorylated Cx43 (p-Cx43), phosphorylated ERK1/2 (p-ERK1/2) and cleaved caspase-3 was detected by Western blotting. RESULTS: (1) Separate NE treatment could significantly increased the beating rate of cardiomyocytes and reduced cell viability, while Meto showed the opposite effects. PD98059 treatment had no significant effect on cardiomyocyte beating rate, but suppressed Meto to improve cell viability to some extent. (2) Compared with Con group, separate NE treatment significantly increased the Cx43 mRNA expression (P<001). Compared with NE group, Meto or PD98059 intervention could significantly inhibited Cx43 mRNA expression (both P<001), and simultaneous treatment with Meto and PD98059 could further suppress Cx43 mRNA expression up-regulated by NE (P<001). (3) Compared with NE group, Meto significantly inhibited the increased p-Cx43, p-ERK1/2 and cleaved caspase-3 expression induced by NE (P<001), and simultaneous treatment with Meto and PD98059 could further enhance the inhibition of p-Cx43, p-ERK1/2 and cleaved caspase-3 expression by Meto (P<001). PD98059 treatment had no significant effect on the increased p-Cx43 and cleaved caspase-3 expression induced by NE (P>005). CONCLUSION: The inhibitory effect of Meto on NE-induced cardiomyocyte apoptosis is related to the inhibition of Cx43 phosphorylation, which may be partly mediated via ERK1/2 pathway.  相似文献   

19.
AIM: To evaluate the effect of exogenous hydrogen sulfide (H2S) on the expression of NLRP3 inflammasome in hepatocytes.METHODS: The hepatocytes L02 and SMMC-7721 were used to establish the model of inflammation by stimulating with lipopolysaccharide (LPS) at different concentrations in vitro. The expression of NLRP3 inflammasome in the hepatocytes was detected by Western blot and the cell viability was measured by MTT assay for determining appropriate concentration of LPS. The hepatocytes were divided into 4 groups:the cells in control group were incubated with normal medium for 18.5 h; the cells in LPS group were incubated with normal medium for 0.5 h followed by 100 μg/L LPS for 18 h; the cells in LPS+H2S group and H2S group were incubated with 200 μmol/L sodium hydrosulfide hydrate (NaHS) for 0.5 h followed by 100 μg/L LPS or normal medium for 18 h, respectively. The protein expression of NLRP3 and caspase-1 in the cells of every group was determined by Western blot. RESULTS: Compared with control group, the protein expression of NLRP3 and caspase-1 increased significantly in LPS group (P<0.05) and had no significant change in H2S group. Compared with LPS group, the protein expression of NLRP3 and caspase-1 in LPS+H2S group decreased significantly (P<0.05). CONCLUSION: In hepatocytes, exogenous H2S suppresses the expression of NLRP3 inflammasome.  相似文献   

20.
AIM:To explore the effect of hydrogen sulfide on the senescence of human umbilical vein endothelial cells (HUVECs) induced by high glucose. METHODS:Senescence model was established by treating HUVECs with 33 mmol/L glucose for 48 h. The parameters were detected to demonstrate the effect of hydrogen sulfide on senescence and the mechanism involved was also investigated. RESULTS:In the cells treated with high glucose, the proliferation was attenuated with a higher number of senescence-associated β-galactosidase (SA-β-Gal) positive cells, and plasminogen activator inhibitor 1 (PAI-1) protein expression, malondialdehyde (MDA) production and NF-κB p65 activity were increased significantly, but the expression of superoxide dismutase 1 (SOD1) was decreased. However, the cell number and SOD1 expression were increased, and the number of SA-β-Gal positive cells, PAI-1 protein expression, MDA production and the activity of NF-κB p65 were decreased after sodium hydrosulfide (100 and 200 μmol/L) treatment.CONCLUSION:Exo-genous hydrogen sulfide prevents HUVECs against high glucose-induced senescence by suppressing oxidative stress and NF-κB p65 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号