首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[目的]为呼和浩特市农田土壤污染预警和农业规划用地提供科学理论依据.[方法]对呼和浩特市农田土壤60个采样点位中15种多环芳烃进行污染特征、 来源解析和生态风险评价.[结果]ΣPAHs含量范围为114~948μg/kg,平均含量为338μg/kg,参照相关研究评价标准判定,呼和浩特市农田土壤中70%以上属于轻微污染,不存在严重污染点位;研究区农田土壤中高分子量多环芳烃污染占总含量的74%,以近郊农田土壤污染最为严重;定量解析来源主要是煤、焦炭和木材的燃烧以及汽车尾气的排放.[结论]采用生态效应区间法评价和苯并(a)芘毒性等效当量法评价均证明呼和浩特市农田土壤存在一定的潜在生态风险,其中苯并[a]芘、二苯并[a,h]蒽等高分子量多环芳烃是主要潜在的污染物.  相似文献   

2.
以长沙市望城区集中式饮用水源地一级和二级保护区周边0~20 cm土壤为研究对象,于2018年采用网格布点法在一级和二级保护区分别布设3个(1#~3#)和12个(4#~15#)采样点,其中11#~15#采样点于2014年布设,探究土壤中苊(Ace)、苊烯(Acy)、蒽(Ant)、菲(Phe)、芴(Flu)、苯并[a]蒽(BaA)、芘(Pyr)、屈(Chr)、荧蒽(Fla)、苯并[a]芘(BaP)、苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、二苯并[a,h]蒽(DBA)、苯并[g,h,i]苝(BghiP)、茚并[1,2,3–c,d]芘(IcdP)共15种多环芳烃(PAHs)的污染水平及来源,运用毒性当量浓度值及终生癌症风险增量模型对土壤中PAHs进行风险评价。结果表明:水源地保护区土壤中15种PAHs总含量为75.22~5 617.86 ng/g,均值为670.96 ng/g,其中7种致癌PAHs(BaA、Chr、BbF、BkF、BaP、DBA、IcdP)的含量为12.13~2 989.26 ng/g,均值为319.80 ng/g;2#和4#土壤样品中多环芳烃均为中度污染,12#土壤样品中多环芳烃为重度污染,其他点位土壤均处于轻度污染或未受污染;荧蒽、芘、菲是水源地保护区土壤中的主要污染因子;除一级保护区土壤中芴含量稍高于二级保护区外,水源地一级保护区土壤中其余14种PAHs单体含量均低于二级保护区;除12#点位样品外,其他点位样品土壤中3环和4环PAHs占比均大于60%;采用特征比值法分析污染物来源,显示水源地一级保护区土壤中PAHs主要来源于石油源和燃烧源的混合污染,主要受区域内交通因素与上游工业、生活废弃物中PAHs迁移与沉降影响,二级保护区土壤中PAHs主要来源于石油源和生物质、煤燃烧的混合污染,可能与区域内人为活动和交通因素有关;健康风险评价结果表明,水源地一级和二级保护区土壤中PAHs的总致癌风险值均在10~(–6)~10~(–4),存在潜在健康风险。  相似文献   

3.
优化了小麦粉中多环芳烃(PAHs)的提取方法,利用高效液相色谱法对30份小麦粉样本进行18种PAHs含量测定,以苯并[a]芘毒性为当量因子,分析小麦粉中PAHs污染特征。结果表明,采用正己烷直接提取小麦粉中PAHs,方法简单,提取效果较好。小麦粉中4种PAHs总量范围为0.93~8.64μg/kg;18种PAHs的总量范围为6.29~80μg/kg;苯并[a]芘的含量范围为0~1.08μg/kg。本研究中30份样本均能达到我国国家标准对小麦粉中苯并[a]芘限量要求,均能达到德国安全技术认证(GS认证)对18种PAHs限量要求,但有1份小麦粉超出欧盟[Regulation(EC)No.835/2011]对苯并[a]芘限量要求,10份小麦粉超出4种PAHs限量要求,对人体存在一定健康风险。污染特征分析表明,虽然小麦粉中PAHs主要由2~3环PAHs构成,但小麦粉的毒性主要是由5~6环PAHs贡献。  相似文献   

4.
选取位于珠江三角洲的佛山市顺德区作为研究对象,分析了该市26个代表性土壤样品中的多环芳烃的含量和组成,并对多环芳烃的来源进行探讨.结果显示,16种优控多环芳烃中有8种100%检出,其余8种也有不同程度的检出,检出率最低的化合物为蒽(7.9%).在顺德区土壤中多环芳烃含量介于34.0~341.0 μg·kg-1,平均值为169.4 μg·kg-1.总体上顺德区土壤PAHs污染程度较轻,仅34.62%的样品受到了轻度污染.通过主成分分析,可以提取出2个主因子,进而推断,PAHs的主要来源是燃烧源,而萘的主要来源是石油源.R型聚类分析可以将除蒽和苊之外的14种PAHs化合物明显分为3类:(1)芴、二苯并[a,h]蒽、二氢苊、萘聚为一类;(2)苯并[k]荧蒽、苯并[a]芘、苯并[a]葸聚为一类;(3)茚并[1,2,3-cd]芘、二苯并[a,h]蒽、苯并[b]荧蒽聚为一类,分类结果与PAHs化合物组分按照环数多少以及分子量大小基本一致,反映了多环芳烃在环境行为以及其本身化学性质的差异.  相似文献   

5.
苜蓿修复重金属Cu和有机物苯并[a]芘复合污染土壤的研究   总被引:13,自引:0,他引:13  
采用室内盆栽试验方法,研究了苜蓿(MedicagoSativalam)在Cu污染土壤中对多环芳烃苯并[a]芘污染的修复作用。通过60d的温室盆栽试验表明,土壤中苯并[a]芘的可提取浓度随着时间延长逐渐减少,苜蓿加快了土壤中可提取态苯并[a]芘浓度的下降。在1、10、100mg·kg-1苯并[a]芘处理浓度下,苜蓿生长的土壤中苯并[a]芘的减少率分别达86.0%、84.3%和39.8%。苜蓿通过增强根圈土壤中微生物的活性和数量而提高植物对苯并[a]芘的降解率,同时,植物的根、茎也可积累少量苯并[a]芘,并且能够在Cu和苯并[a]芘混合污染中正常生长,苜蓿对土壤中Cu无明显修复作用。由于土壤自身具有修复多环芳烃苯并[a]芘污染的自然本能,在Cu污染下种植苜蓿具有强化苯并[a]芘污染土壤的修复作用,可促进苜蓿生长,增强土壤微生物的活性,从而提高苜蓿修复Cu和苯并[a]芘混合污染土壤的能力。  相似文献   

6.
沙颍河流域水环境中多环芳烃污染及风险评价   总被引:1,自引:0,他引:1  
为了研究沙颍河流域上覆水与表层沉积物中多环芳烃(PAHs)的空间分布、来源与生态风险,2018年7月对沙颍河流域30个采样点的上覆水与表层沉积物中16种PAHs使用气相色谱/质谱技术(GC/MS)进行调查研究。结果表明,在上覆水与表层沉积物中ΣPAHs的浓度范围分别为:356.60~2 275.04 ng·L~(-1)、64.27~11 433.63 ng·g~(-1),平均浓度分别为1 051.23 ng·L~(-1)、965.77 ng·g~(-1);各支流上覆水中PAHs含量呈现贾鲁河颍河沙河澧河趋势,表层沉积物中PAHs含量呈现沙河澧河颍河贾鲁河趋势,上覆水与表层沉积物中均以4~6环高环多环芳烃为主,与国内外其他河流相比沙颍河流域上覆水中PAHs处于较高污染水平,表层沉积物中PAHs污染水平相对较低;来源分析表明沙颍河流域上覆水与沉积物中多环芳烃主要来自高温燃烧源;生态风险评估表明上覆水中荧蒽(Fla)、芘(Pyr)、苯并[a]蒽(BaA)、苯并[b]荧蒽(BbF)、苯并[a]芘(BaP)、茚并[1,2,3-cd]芘(IcdP)和苯并[g,h,i]苝(BghiP)等PAHs单体为高风险多环芳烃单体,高分子量多环芳烃(4~6环)对生态风险贡献最大,沙颍河流域上覆水中PAHs属于高风险水平;沉积物中各PAHs单体的浓度除点位S27外均未超过效应区间中值(ERM)与频繁效应浓度值(FEL),表明沙颍河流域沉积物中PAHs潜在生态风险发生概率并不高。  相似文献   

7.
浙江省农田土壤多环芳烃污染及风险评价   总被引:1,自引:1,他引:0  
为探究浙江省农田土壤中16种优控多环芳烃(Polycyclic aromatic hydrocarbons, PAHs)含量、来源及生态和健康风险,用网格布点法采集了62个农田土壤样品并进行实验分析。结果表明,∑PAHs浓度范围为34.04~1 990.38 ng·g~(-1),污染物以高环类PAHs为主,研究区域内所有土样苯并[a]芘(BaP)浓度均未超过我国新颁布的《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)中的风险筛选值。采用比值法及主成分分析研究其环境来源,结果显示主要来自于交通污染、煤炭和薪柴燃烧。内梅罗综合污染指数法评价结果表明,研究区有87.10%的样点存在生态风险。毒性当量因子风险评价法分析结果显示,PAHs的毒性当量浓度范围为1.53~268.27 ng·g~(-1),7种致癌PAHs为污染主体,平均占比高达99.18%。暴露量估算结果显示,经口摄入是PAHs致癌风险最高的暴露途径。健康风险评价显示,土壤中PAHs暴露暂时不会对人群产生明显的非致癌风险,但儿童的综合致癌风险已超过可接受范围,需引起重视。  相似文献   

8.
不同栽培环境下豇豆体内多环芳烃源解析及风险评估   总被引:2,自引:1,他引:1  
为了探讨不同污染特征环境下栽培的蔬菜体内多环芳烃(PAHs)来源及风险,以豇豆[Vigna unguiculata(Linn.)Walp]为材料,检测大棚(试验基地PAHs污染残留区)和大田(距离机动车通道100 m内)栽培的豇豆体内PAHs含量,采用同分异构体比值法分析了其体内PAHs来源,并用生态效应低中值法和苯并(a)芘毒性等效当量法评估了豇豆体内PAHs污染的生态风险,以人群日均暴露量估算了其潜在人体健康风险。结果表明:在16种优控的PAHs中,大棚豇豆体内含有13种,大田豇豆体内含有6种;大棚豇豆体内的PAHs总含量为253.94μg·kg-1,以2~4环为主,其中3环占总含量的64.47%。大田豇豆体内PAHs总含量为80.60μg·kg-1,芴和菲占总含量的69.69%。大棚和大田豇豆体内的二苯并(a,h)蒽毒性当量分别为43.32μg·kg-1和10.85μg·kg-1,其对总的毒性当量贡献率分别为89.38%和88.57%;大棚和大田豇豆的人群健康风险系数分别为2.07×10-6和6.5×10-7。研究表明:大棚豇豆体内PAHs主要源于人为处理残留的PAHs;大田豇豆体内PAHs主要来源于汽油和生物质燃烧污染。大棚豇豆存在一定的生态风险和健康风险,大田豇豆尚不存在PAHs的生态风险和健康风险,但需重视苯并(k)荧蒽、二苯并(a,h)蒽和茚并(1,2,3-c,d)芘等物质的富集作用。  相似文献   

9.
采用气相色谱质谱(GC-MS)法测定了苏南地区13个农田表层土壤样品中的多环芳烃(PAHs)和酞酸酯(PAEs)污染物,分析比较了不同区域农田表层土壤,尤其是来自钢铁企业周边的表层土壤中PAHs和PAEs的污染特征及其来源。结果表明,苏南地区农田土壤中总PAHs和总PAEs的浓度分别在147~40300μg·kg-1和0.575~762μg·kg-1之间,其中钢铁厂周边的平均浓度分别为6130μg·kg-1和47.4μg·kg-1。土壤样品中苯并(a)芘的浓度与总PAHs的浓度显著相关,高分子量PAHs在钢铁厂周边表土中含量较高,钢铁冶炼焦化和烧结等工序是其污染来源。酞酸正丁酯(DBP)和酞酸乙基己基酯是苏南地区农田土壤中含量最高的两种PAEs类物质,钢铁厂周边有较高的DBP检出可能与炼钢、冷轧和炼铁等工序有关。本研究将为经济高速发展地区农田土壤环境质量评价、农产品安全生产及土壤污染防治对策的制定提供科学依据。  相似文献   

10.
为了解黔南地区表层土壤中多环芳烃的污染状况,采用高效液相色谱法,对黔南地区表层土壤中16种多环芳烃(PAHs)进行定量分析,并研究其污染水平与来源。结果表明:土壤中ΣPAHs检出含量为3.7~259.6μg/kg,其中,苯并(a)蒽检出率最高,为61.9%;屈的残留量最高,平均含量为10.58μg/kg。黔南地区表层土壤中低环与高环PAHs含量比值均小于1,多环芳烃主要来源于燃烧源。  相似文献   

11.
桂林市果园表土多环芳烃含量及来源研究   总被引:1,自引:0,他引:1  
[目的]分析桂林市果园土壤多环芳烃(PAHs)含量与来源,为评价果园地安全性提供参考。[方法]在桂林市葡萄园、柑橘园和桃园基地采集表土,分析美国环保署优控的16种多环芳烃(PAH_(16)),运用多环芳烃单体含量、谱系、丰度及诊断比值等构成的指标体系进行源识别。[结果]果园表土PAH_(16)含量平均为34.91 ng/g(报出限~143.8 ng/g),低于我国土壤背景值和荷兰无污染土壤限值(200 ng/g)。果园表土PAH_(16)以4~6环的芘(Pyr)、苯并[a]蒽(BaA)、(?)(Chr)、苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、苯并[a]芘(BaP)、茚并[1,2,3-cd]芘(InP)、苯并[g,h,i]苝(BgP)为主,2~3环的PAH_(16)低于报出限(荧蒽除外),单体含量介于报出限~23.4ng/g之间,检出率12.5%~68.8%,以BbF检出率最高,其次是Chr(56.3%)。葡萄园表土检出的PAHs种类最全、含量最高,其中LX001样地PAH16单体均10.0 ng/g,而柑橘园仅检出单体BbF(报出限~6.64 ng/g)、Chr(报出限~3.34 ng/g),检出率44.4%~66.7%。PAHs指标体系表明,废旧轮胎炼油与汽车尾气、农药杂质降解和木头、草燃烧可能分别是三类果园土壤PAH_(16)的主要来源。[结论]就土壤PAH_(16)而言,炼油厂约7 km以远或交通干道200 m以外的果园是安全的。  相似文献   

12.
黑麦草对苯并[a]芘污染土壤的根际修复及其酶学机理研究   总被引:12,自引:8,他引:4  
采用室内盆栽试验方法,研究了黑麦草(Lolium multiflorum L.)对多环芳烃苯并[a]芘污染土壤的修复作用。结果表明。土壤中苯并[a]芘的可提取态浓度随着时间延长而逐渐减少,黑麦草加快了土壤中可提取态苯并[a]芘浓度的减少,提高了苯并[a]芘在土壤中的降解率,在1、10、50mg·k^-1苯并[a]芘处理浓度下,黑麦草生长土壤中苯并[a]芘的降解率分别达90.3%、87.5%、78.6%;而没有黑麦草生长土壤中苯并[a]芘的降解率则为79.3%、66。4%、55.6%。黑麦草根系增强了土壤中多酚氧化酶和脱氢酶的活性以及增加土壤中微生物碳的含量,从而提高植物对苯并[a]芘的降解率。植物的地上部也可积累少量苯并[a]芘,但植物对苯并[a磁的吸收不是黑麦草对其修复的主要机制。土壤自身具有修复苯并[a]芘的潜能.种植黑麦草具有强化土壤修复苯并[a]芭污染的作用.  相似文献   

13.
热处理对土壤中多环芳烃的影响   总被引:1,自引:0,他引:1  
[目的]为了对多环芳烃在土壤中的行为进行研究。[方法]利用一种温度辅助解吸-气流式液相微萃取装置结合溶剂超声萃取,研究了热处理(温度为50~300℃)对土壤中多环芳烃(苊、菲、芘、苯并[a]芘)存留的影响。[结果]在该温度范围内进行热处理时只有极少部分的多环芳烃从土壤中释放出来,大部分被保留于土壤中;200℃以上的处理温度明显降低了土壤中多环芳烃的溶剂可提取性,对多环芳烃起锁定作用。[结论]该研究可以为受多环芳烃污染的土壤修复和生物有效性提供指导。  相似文献   

14.
针对"北京烤鸭"传统烤制方法在烤制过程中易产生含多环芳烃(PAHs)的烟气而存在的食品安全隐患问题,基于气体射流冲击技术研制了烤鸭设备和晾坯设备。对最佳烤制工艺、烤鸭样品预处理和多环芳烃检测技术进行研究,并对不同温度烤制的烤鸭中3种PAHs含量进行高效液相荧光检测。结果表明:15℃条件下晾坯8h,170~190℃烤制45 min的烤鸭品质最佳。170℃烤制的烤鸭鸭皮中苯并[a]芘含量为0.13μg/kg,低于国家限量标准(5μg/kg)和一些欧洲国家的限量标准(1μg/kg),二苯并[a,h]蒽1.28μg/kg,7,12-二甲基苯并[a]蒽0.48μg/kg,鸭肉中均未检出;烤鸭中3种PAHs的总含量为0.16μg/kg,普通消费人群单餐摄入3种PAHs的总量为0.02~0.03μg。气体射流冲击烤鸭技术能有效减少PAHs的产生,低于200℃下烤制的烤鸭安全性相对高于传统烤鸭。  相似文献   

15.
山西焦化污染区土壤和农产品中PAHs风险特征初步研究   总被引:3,自引:1,他引:2  
为对区域土壤环境质量评价和农产品的安全生产提供数据支持和试验方法参考,分析了山西省焦化污染区孝义、汾阳、柳林等地农田土壤和农产品样品中16种优控多环芳烃(PAHs)含量,并探讨了PAHs的污染特征和潜在的健康风险。结果表明:农田表层土壤和农产品中总PAHs(∑16-PAHs)浓度水平范围分别为171.67~3 176.79μg·kg-1和59.53~1 054.99μg·kg-1,在国内分别处于较高和中等污染水平。土壤和农产品中均是2~4环PAHs含量高而5~6环PAHs含量低。PAHs在农产品中的富集趋势为叶菜类>根茎类>果实类。通过风险评价发现部分土壤和农产品超过相应的标准,存在一定的潜在风险。通过比值法结合采样点位置推断焦化厂产生的焦油和荒煤气是农田表层土壤中PAHs的重要来源,应当引起重视。  相似文献   

16.
新余土壤多环芳烃分布特征研究   总被引:1,自引:0,他引:1  
对新余土壤中采集样品,对8种可能高致癌多环芳烃(PAHs):苯并[a]蒽(4)、屈(ChR)、苯并[b]荧蒽(4)、苯并[k]荧蒽(4)、苯并[a]芘(5)、二苯并[a,h]蒽(5)、苯并[ghi]苝(6)、茚并(1,2,3-cd)芘(5),运用高压液相色普仪方法,进行分析测定。结果显示,样品土壤中8种PAHs总含量范围在32.3~241200ng/g,平均含量80447.4ng/g。城北区总含量110.2ng/g,城南农业蔬菜地总含量32.3ng/g,钢铁厂焦炉区采样点土壤中的PAHs总含量241200ng/g高于其他采样点;新余市癌症发病率与PAHs平均暴露量存在明显的相关性,这一现象应引起重视和进一步研究。  相似文献   

17.
以某多环芳烃污染场地为研究对象,根据场地未来使用功能和场地实际情况,对该场地进行了健康风险评价.根据国家环保部新出台的《污染场地土壤修复技术导则》(HJ25.3-2014),确定了健康风险评价模型中相关参数;计算得出了该场地的修复目标值苯并(a)芘为0.012 mg/kg;茚并(1,2,3-cd)芘为0.12 mg/kg.  相似文献   

18.
对北京市郊农田土壤中多环芳烃(PAHs)的种类、含量进行研究,并对其来源和生态风险进行探讨,以期了解京郊农田土壤中PAHs的污染现状和潜在风险,为农业环境保护提供科学依据和理论支持。结果表明:16种PAHs全部检出的检出率为74.4%,PAHs总含量(∑PAHs)范围为7.19~1 811.99 ng·g-1,平均值为460.75 ng·g-1;土壤中PAHs的组成结构主要以2~4环为主,占总含量的78.2%,主要来源为石油和煤的高温燃烧。风险评价结果显示,京郊农田土壤已受到PAHs污染,并具有潜在生态风险。  相似文献   

19.
选取华北平原某地(全国重要的有色金属产业基地)作为研究区,采集377个表层土壤样品(0~20 cm),分析测定样品中Pb、Cd、Cr、As、Hg 5种重金属的含量。运用单因子指数法、内梅罗综合指数法和潜在生态风险指数法评价研究区农田土壤中重金属的污染及生态风险状况,运用因子分析的方法对研究区农田土壤中重金属元素的来源进行分析。结果表明,研究区农田土壤中Pb、Cd、As含量超过农用地土壤污染风险筛选值(GB 15168—2018)的点位占比分别为6.10%、44.30%和1.33%;基于农用地土壤污染风险筛选值,研究区农田土壤中Cd、Pb的污染等级为重度污染,As的污染等级为中度污染,Cr、Hg为安全级;基于农用地土壤污染风险筛选值,研究区农田土壤中Cd为中等生态风险,Pb、Cr、As、Hg的生态风险较低;综合潜在生态危害指数的均值为56.64,总体看研究区农田土壤处于轻微生态危害水平,其中Cd是研究区农田土壤中最主要的污染因子和生态风险因子,贡献率达80%以上;相关分析和主成分分析结果表明,研究区农田土壤中As主要来源于自然源,受成土母质的控制;Cd、Pb主要来源于人类活动中的工农业源...  相似文献   

20.
在8个点位采集了抚顺地区表层土壤样品,以液相色谱法检测其多环芳烃(PAHs)含量。结果表明:土壤中PAHs单体浓度在0.6~121.0μg/kg,以3环、4环结构为主;2家化工企业附近土壤属燃煤和煤/焦炭污染源造成的轻度污染,具一定潜在致癌性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号