首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To observe the expression of Akt/GSK-3β/Snail signaling pathway-related molecules in cisplatin-resistant cell line A549/DDP mediated by transforming growth factor-β1 (TGF-β1), and to explore the association of Akt/GSK-3β/Snail signaling pathway with epithelial-mesenchymal transition (EMT). METHODS: The A549/DDP cells were divided into TGF-β1 (+) group, TGF-β1 (-) group and LY294002 group. The morphological changes of A549/DDP cells treated with TGF-β1 were observed under microscope. The protein expression of E-cadherin and N-cadherin was determined by the methods of immumofluorescence and Western blot. The protein levels of Akt, p-Akt, GSK-3β, p-GSK-3βSer9 and Snail were also detected by Western blot. RESULTS: The A549/DDP cells in TGF-β1 (+) group were dispersive, showed a spindle-like shape and developed pseudopodia. This transformation was conformed to classic EMT markers. Compared with TGF-β1 (-) group, the protein expression of E-cadherin in TGF-β1 (+) group was significantly decreased (P<0.05), and N-cadherin was significantly increased (P<0.05). The protein levels of p-Akt, p-GSK-3βSer9 and Snail were also significantly increased (P<0.05). Compared with TGF-β1 (+) group, the protein levels of p-Akt, p-GSK-3βSer9 and Snail were significantly decreased in LY294002 group (P<0.05). No difference of Akt and GSK-3β expression between TGF-β1 (-) group and TGF-β1 (+) group was observed. CONCLUSION: The mechanism of EMT in A549/DDP cells might be related to Akt/GSK-3β/Snail signaling pathway activated by TGF-β1.  相似文献   

2.
AIM:To investigate the effects of siRNA targeting integrin-linked kinase (ILK) on the expression of glycogen synthase kinase 3β (GSK-3β) and β-catenin during epithelial-mesenchymal transition (EMT) in human kidney proximal tubular epithelial cell line HKC induced by high glucose. METHODS:HKC cells were divided into 4 groups:normal glucose (NG) group, high glucose (HG) group, HG+HK (a vector containing the non-specific siRNA designed as negative control) group and HG+ILK siRNA group. The inverted fluorescence microscope was used to examine the expression of green fluorescent protein (GFP). The expression of ILK at mRNA and protein levels was detected by RT-PCR and Western blotting. The expression of p-GSK-3β and β-catenin was observed by immunocytochemical staining. The protein expression of total GSK-3β, p-GSK-3β, nuclear β-catenin, total β-catenin, E-cadherin and α-smooth muscle actin (α-SMA) was measured by Western blotting. RESULTS:GFP was observed in HKC cells, indicating that the transfection was successful. Both the protein and mRNA of ILK were down-regulated in HG+ILK siRNA group compared with HG group and HG+HK group, but still higher than those in NG group. Silencing of ILK down-regulated the expression of p-GSK-3β and nuclear β-catenin. No difference of total GSK-3β or total β-catenin was observed among the 4 groups. CONCLUSION:These data support a functional role of ILK, GSK-3β and β-catenin in tubular EMT induced by high glucose. ILK may promote tubular EMT by regulating the activity of GSK-3β and β-catenin, the downstream effectors of the Wnt/β-catenin pathway.  相似文献   

3.
AIM: To investigate whether the PI3K/Akt signaling pathway regulates the expression of ABC transporter through the downstream glycogen synthase kinase-3β (GSK-3β) pathway and participates in the multidurg resistance of colorectal cancer (CRC) HCT-15 cells. METHODS: Colorectal cancer HCT-15 cells were cultured and then treated with GSK-3β inhibitor (HY-19807) and PI3K/Akt pathway inhibitor (HY-13898), respectively. The median inhibitory concentration (IC50) of oxaliplatin for HCT-15 cells in each group was detected by CCK-8 assay, the inhibition rate and resistance index were also calculated. The protein levels of Akt, p-Akt, GSK-3β, p-GSK3β-Ser9 and ABC transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (MRP-2) in the HCT-15 cells were determined by Western blot. The mRNA expression of ABC transporter in the HCT-15 cells was detected by RT-qPCR. The cell cycle distributions were analyzed by flow cytometry assasy. RESULTS: After GSK-3β inhibitor HY-19807 was used in the HCT-15 cells, the median inhibitory concentration of oxaliplatin was significantly increased, the protein levels of p-GSK3β-Ser9, P-gp and MRP-2 were up-regulated compared with control group (P<0.05), the changes of Akt and p-Akt were not obvious compared with control group (P>0.05). The results of RT-qPCR also showed that the mRNA levels of ABCB1 and ABCC2 were increased (P<0.01). Meanwhile, analysis of the cell cycle distribution showed that GSK-3β inhibitor HY-19807 promoted HCT-15 cell transition from G1 phase to S phase, and cell proliferation was vigorous. After the PI3K/Akt pathway inhibitor HY-13898 was applied to HCT-15 cells, the IC50 of oxaliplatin was decreased compared with control group (P<0.05). Moreover, the protein levels of p-Akt, p-GSK3β-Ser9, P-gp and MRP-2 were down-regulated (P<0.01). RT-qPCR results also showed that the mRNA expression of ABCB1 and ABCC2 was decreased (P<0.01). At the same time, G1 phase was prolonged, which inhibited cell transition from G1 phase to S phase, and inhibited cell proliferation. The protein expression of total GSK-3β was consistent in each group. CONCLUSION: The PI3K/Akt signaling pathway is involved in the proliferation and multidrug resistance of colorectal cancer HCT-15 cells by regulating the phosphorylation of GSK-3β and changing the expression of ABC transporter.  相似文献   

4.
AIM:To investigate the role of caveolae in high glucose (HG)-induced extracellular matrix (ECM) production in rat mesangial cells (MCs). METHODS:Synchronized rat MCs were divided into normal glucose group, HG group, HG+methyl-β-cyclodextrin (β-MCD) group and HG+β-MCD+cholesterol (Chol) group. Western blotting was used to detect the protein expression of caveolin-1 (Cav-1), phosphorylated caveolin-1 (p-Cav-1-Y14) and collagen type 1 (Col I). The mRNA expression of Cav-1 was determined by real-time PCR. ELISA was used to measure the level of fibronectin (FN) in the supernatant. RESULTS:High glucose significantly increased the expression of FN and Col I. In HG 12, 24 and 48 h groups, the mRNA and protein levels of Cav-1 were not significantly different from those in HG 0 h group, whereas the level of p-Cav-1-Y14 was significantly increased. β-MCD significantly attenuated HG-induced elevation of p-Cav-1-Y14 and FN production, but had no effect on HG-induced Col I expression. All these responses to β-MCD were abolished by Chol. CONCLUSION:High glucose significantly increases the production of Col I and FN in rat MCs. FN production induced by high glucose is mediated by p-Cav-1-Y14.  相似文献   

5.
6.
AIM: To investigate the role of ATP-sensitive potassium (KATP) channels in the inhibitory effect of hydrogen sulfide (H2S) on high glucose(HG)-induced inflammation mediated by necroptosis in H9c2 cardiac cells.METHODS: The expression levels of receptor-interacting protein 3 (RIP3; an indicator of necroptosis) and cyclooxyge-nase-2 (COX-2) were determined by Western blot. The levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were detected by ELISA.RESULTS: After H9c2 cardiac cells were treated with 35 mmol/L glucose (HG) for 24 h, the expression of RIP3 was significantly increased. Pre-treatment of the cells with 100 μmol/L diazoxide (DZ; a KATP channel opener) or 400 μmol/L NaHS (a donor of H2S) for 30 min considerably blocked the up-regulation of RIP3 induced by HG. Moreover, pre-treatment of the cells with 100 μmol/L 5-hydroxydecanoic acid (5-HD; a KATP channel blocker) attenuated the inhibitory effect of NaHS on HG-induced up-regulation of RIP3. On the other hand, co-treatment of the cells with 100 μmol/L necrostatin-1 (a specific inhibitor of necroptosis) or pre-treatment of the cells with 100 μmol/L DZ or 400 μmol/L NaHS attenuated HG-induced inflammatory responses, evidenced by decreases in the expression of COX-2 and secretion levels of IL-1β and TNF-α. However, pre-treatment of the cells with 100 μmol/L 5-HD significantly attenuated the above anti-inflammatory effects of NaHS.CONCLUSION: KATP channels play an important role in the inhibitory effect of H2S on HG-induced inflammation mediated by necroptosis in H9c2 cardiac cells.  相似文献   

7.
AIM: To investigate whether the opening of ATP-sensitive K+(KATP) channels protects H9c2 cardiac cells against high glucose(HG)-induced injury and inflammation by inhibiting the Toll-like receptor 4(TLR4)/nuclear factor-κB(NF-κB) pathway. METHODS: The protein levels of TLR4 and NF-κB p65 were determined by Western blot. The levels of interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α) were detected by ELISA. The cell viability was measured by CCK-8 assay. Mitochondrial membrane potential(MMP) was examined by rhodamine 123(Rh 123) staining followed by photofluorography. The intracellular levels of reactive oxygen species(ROS) were detected by 2', 7'-dichlorfluorescein- diacetate(DCFH-DA) staining followed by photofluorography. The number of apoptotic cells was observed by Hoechst 33258 nuclear staining followed by photofluorography. RESULTS: After the H9c2 cardiac cells were treated with HG(35 mmol/L glucose) for 24 h, the protein levels of TLR4 and phosphorylated NF-κB p65(p-NF-κB p65) were significantly increased. Pretreatment of the cells with 100 μmol/L diazoxide(DZ, a KATP channel opener) for 30 min before exposure to HG considerably blocked the up-regulation of the TLR4 and p-NF-κB protein levels induced by HG. Moreover, co-treatment of the cells with 30 μmol/L TAK-242(an inhibitor of TLR4) obviously inhibited the HG-induced up-regulation of the p-NF-κB p65 protein level. On the other hand, pretreatment of the cells with 100 μmol/L DZ had a clear myocardial protection effect, which attenuated the HG-induced cytotoxicity, inflammatory response, mitochondrial damage, oxidative stress and apoptosis, evidenced by an increase in the cell viability, and decreases in the levels of IL-1β and TNF-α, MMP loss, ROS generation and the number of apoptotic cells. Similarly, co-treatment of H9c2 cardiac cells with 30 μmol/L TAK-242 or 100 μmol/L PDTC(an inhibitor of NF-κB) and HG for 24 h also obviously reduced the above injuries and inflammation induced by HG.CONCLUSION: The opening of KATP channels protects H9c2 cardiac cells against HG-induced injury and inflammation by inhibiting the TLR4/NF-κB pathway.  相似文献   

8.
Ying-Hua ZHANG 《园艺学报》2014,30(12):2161-2165
AIM: To investigate the effects of sulindac on oxidative stress in autism. METHODS: With an autistic model induced by prenatal exposure to valproic acid (VPA), we detected the expression of the signaling molecules of canonical Wnt pathway in the prefrontal cortex (PFC) and hippocampus (HC) of autistic rats treated with sulindac. The protein expression levels of glycogen synthase kinase 3β (GSK-3β), β-catenin and 4-hydroxynonenal (4-HNE) were observed by Western blotting. The mRNA expression of thioredoxin(Trx)1 and Trx2 was assessed by semi-quantitative RT-PCR.RESULTS: The protein level of GSK-3β and mRNA levels of Trx1 and Trx2 were lower, whereas the protein expression levels of β-catenin and 4-HNE were higher in VPA group than those in control group. In contrast, the protein levels of GSK-3β were significantly higher in the animals treated with both VPA and sulindac than those in VPA group, while the levels of β-catenin and 4-HNE were decreased.CONCLUSION: Sulindac attenuates oxidative stress in the pathogenesis of autism, suggesting the up-regulation of the Wnt/β-catenin signaling pathway disrupts oxidative homeostasis and further facilitates susceptibility to autism.  相似文献   

9.
AIM: To investigate whether angiotensin-(1-7)[Ang-(1-7)] protects H9c2 cardiac cells against high glucose (HG)-induced injury and inflammation by inhibiting the interaction between Toll-like receptor 4 (TLR4) activation and necroptosis. METHODS: The expression levels of receptor-interacting protein 3 (RIP3; an indicator of necroptosis) and TLR4 were determined by Western blot. Cell viability was measured by CCK-8 assay. The activity of lactate dehydrogenase (LDH) in the culture medium was measured with a commercial kit. The releases of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were measured by ELISA. The intracellular level of reactive oxygen species (ROS) was analyzed by 2', 7'-dichlorfluorescein-diacetate (DCFH-DA) stating followed by photofluorography. Mitochondrial membrane potential (MMP) was examined by rhodamine 123 staining followed by photofluorography. RESULTS: After the H9c2 cardiac cells were treated with HG (35 mmol/L glucose) for 24 h, the expression of RIP3 was obviously increased. Co-treatment of the cells with 30 μmol/L TAK-242 (an inhibitor of TLR4) attenuated the up-regulation of RIP3 induced by HG. Furthermore, the expression of TLR4 was significantly increased after the cells were exposed to HG for 24 h, and co-treatment of the cells with 100 μmol/L necrostatin-1 (Nec-1; a specific inhibitor of necroptosis) and HG for 24 h attenuated the up-regulation of TLR4 expression induced by HG. Moreover, 1 μmol/L Ang-(1-7) simultaneously blocked the up-regulation of the RIP3 and TLR4 induced by HG. On the other hand, co-treatment of the cells with 1 μmol/L Ang-(1-7), 30 μmol/L TAK-242 or 100 μmol/L Nec-1 and HG for 24 h attenuated HG-induced injuries and inflammatory response, leading to the increase in the cell viability, and the decreases in the activity of LDH, ROS generation, MMP loss as well as the releases of IL-1β and TNF-α. CONCLUSION: Ang-(1-7) protects H9c2 cardiac cells against HG-induced injury and inflammation by inhibiting the interaction between TLR4 activation and necroptosis.  相似文献   

10.
AIM: To investigate the effect of PI3K/Akt pathway on endoplasmic reticulum (ER) stress-mediated glucose-regulated protein 78 (GRP78) induction in human embryonic kidney 293 cells (HEK293) cells.METHODS: PI3K inhibitor LY294002, dominant negative kinase-dead mutant vector for HA-Akt (K179M) and Akt1 siRNAs were used to block the PI3K/Akt pathway under ER stress. Constitutively active expression vectors for Akt (myr-HA-Akt) were used to up-regulate Akt activity under ER stress. The effects of PI3K/Akt on ER stress-mediated GRP78 induction in HEK293 cells were determined by Western blotting and RT-PCR. RESULTS: GRP78 induction was inhibited by LY294002, Akt1 (K179M) and Akt1 siRNA, but was increased by myr-Akt1 in dithiothreitol-and thapsigargin-treated HEK293 cells. However, both myr-Akt2/3 and Akt2/3 siRNA had no effect on GRP78 induction in HEK293 cells under ER stress. Furthermore, the PI3K/Akt pathway didnt regulated GRP78mRNA induction but increased GRP78 protein stability.CONCLUSION: PI3K/Akt promotes GRP78 accumulation through increasing the stability of GRP78 protein in HEK293 cells under ER stress.  相似文献   

11.
AIM: To study the suppressive effect of glycogen synthase kinase-3β (GSK-3β) knockdown by RNA interference on the formation of keloid. METHODS: Human keloid fibroblasts (KFB) in vitro were transfected with 3 pairs of specific GSK-3β small interfering RNA (siRNA). The best siRNA to inhibit the GSK-3β expression in human KFB was screen by RT-PCR and Western blot. The expression of GSK-3β and related proteins at mRNA and protein levels in the KFB was determined by RT-PCR and Western blot.RESULTS: The GSK-3β siRNA1434 remarkably inhibited the expression of GSK-3β at mRNA and proteins levels in the human KFB. After transfection with GSK-3β siRNA, the protein levels of β-catenin, p-GSK-3β, Wnt2 and cyclin D1 were all decreased. KFB growth became slow. With the extension of time, the inhibition of cell growth increased, and the cell doubling time was significantly delayed. CONCLUSION: siRNA targeting GSK-3β efficiently knocks down the expression of GSK-3β in the human KFB, and inhibits the activation of Wnt signaling pathway, thus inhibiting the growth of keloid. GSK-3β may be a potential therapeutic target for keloid.  相似文献   

12.
AIM: To determine the effect of pyrrolidine dithiocarbamate on hepatic glycogen synthesis and its mechanism in diabetic rats. METHODS: Male Wistar rats were randomly divided into normal diet group and high-fat diet group. After 8 weeks of feeding, the rats in high-fat diet group were injected intraperitoneally with a single dose of streptozotocin (27 mg/kg) to induce type 2 diabetes. The diabetes rats were randomly divided into 3 groups: diabetes mellitus group (DM), PDTC-treated group (DM+PDTC) and insulin-treated group (DM+INS). The rats in PDTC-treated group were injected with PDTC (50 mg/kg) intraperitoneally daily. At the same time, the rats in normal diet group, DM group and insulin-treated group were injected with equivalent volume of saline in the same way. The rats in insulin-treated group were injected with insulin (1 U/kg) 1 h before killed. After the treatment was taken for 1 week, the levels of blood glucose were measured, then the animals in all groups were killed. The liver glycogen content was detected, and the levels of GSK-3β and Akt phosphorylation in the liver tissues were analyzed by Western blotting. RESULTS: The blood glucose level and liver glycogen content were significantly higher, and the levels of GSK-3β and Akt phosphorylation were lower in DM group than those in normal-diet group (P<0.01). Compared with DM group, the glycogen content, the phosphorylation of Akt and GSK-3β in the liver tissues in DM+PDTC group and DM+INS group increased significantly (P<0.01), and the blood glucose levels decreased (P<0.01). CONCLUSION: PDTC increases the synthesis of liver glycogen and decreases the level of blood glucose by regulating the activity of Akt and GSK-3β in the liver.  相似文献   

13.
AIM: To investigate the function of microRNA-125a-5p (miR-125a-5p) on epithelial-mesenchymal transition (EMT) of breast cancer cells via GSK-3β/Snail signaling pathway.METHODS: The expression of miR-125a-5p in normal breast epithelial cells and breast cancer cells, as well as the transfection efficiency of miR-125a-5p plasmid in MDA-MB-231 cells was detected by RT-qPCR. The chemotaxis ability and invasion ability were detected by chemotaxis assay and Transwell invasion assay. The changes of EMT-related markers, the protein level of phosphorylated glycogen synthase kinase-3β (p-GSK-3β) and the nuclear translocation of Snail were determined by Western blot. RESULTS: The expression of miR-125a-5p in the breast cancer cells was significantly lower than that in the normal breast epithelial cells. The expression of miR-125a-5p was significantly higher in MDA-MB-231/miR-125a-5p cells than that in MDA-MB-231/NC cells. The ability of epithelial growth factor (EGF) at 10 μg/L to induce chemotaxis of MDA-MB-231 cells was the strongest. Compared with MDA-MB-231/NC group, stimulation of EGF decreased the invasion ability of MDA-MB-231/miR-125a-5p cells, and resulted in the increase in E-cadherin expression, while significantly decreased the protein levels of vimentin and p-GSK-3β. Meanwhile, the nuclear localization of Snail was significantly inhibited. The invasion capacity of MDA-MB-231/miR-125a-5p+GAB2 cells was significantly enhanced compared with MDA-MB-231/miR-125a-5p+Con cells, the expression of E-cadherin was decreased, and the protein levels of vimentin and p-GSK-3β were significantly increased, while the nuclear localization of Snail was promoted. CONCLUSION: miR-125a-5p suppresses EMT via GSK-3β/Snail signaling pathway, thus inhibiting the invasion ability of breast cancer cells.  相似文献   

14.
AIM: To investigate the protective effects and the mechanisms of 17β-estradiol on the propofol-induced neuroapoptosis in primary cultured cortical neurons. METHODS: The neurons were cultured for 7 d and treated with different concentrations of propofol and/or 17β-estradiol, respectively. The neuron viability, neuroapoptosis and the protein level of p-Akt was determined by MTT assay, Hoechst 33258 staining and Western blot 12 h after different treatments, respectively. RESULTS: Compared with vehicle-control group, propfol inhibited neuron viability in a dose-dependent manner (P<0.05). Compared with propofol treatment group, 17β-estradiol increased the neuron viability in a dose-dependent manner (P<0.05), and IGF increased the neuron viability greatly (P<0.01). Compared with vehicle-control group, the number of apoptotic neurons which was significantly decreased by treatment of 17β-estradiol was markedly increased by propofol (P<0.01). Compared with the 17β-estradiol+propofol group, LY294002 increased the number of apoptotic neurons (P<0.01). Compared with vehicle-control group, propfol decreased the protein level of p-Akt in a dose-dependent manner (P<0.05). Compared with propofol treatment group, 17β-estradiol increased the protein level of p-Akt in a dose-dependent manner (P<0.05). Compared with 17β-estradiol+propofol group, LY294002 significantly decreased the protein level of p-Akt (P<0.01). CONCLUSION: 17β-estradiol exerts the neuroprotective effects against propofol-induced neuroapoptosis by activating the PI3K-Akt signaling pathway.  相似文献   

15.
AIM:To observe the possible mechanism through which adipophilin promotes the accumulation of intracellular lipids, and to provide a reference for controlling atherosclerosis.METHODS:RAW264.7 cells were incubated with oxidized low-density lipoprotein (oxLDL) for different time. qPCR, Western blot and Oil red O staining were used to observe the mRNA and protein levels of Akt, p-Akt and adipophilin and lipid accumulation. The above indexes were measured after the cells were treated with PI3K/Akt signaling pathway inhibitor LY294002. The activation of Akt was analyzed in the HEK293 cells over-expressing adipophilin. Co-immunoprecipitation was applied for analysis of protein-protein interaction between adipophilin and Akt. RESULTS:After incubation with oxLDL, the amount of lipid droplets, Akt activity and adipophilin expression increased in the cells with the extension of time (P<0.05). Moreover, LY294002 inhibited the above changes. The p-Akt levels increased after adipophilin over-expression. No direct interaction between adipophilin and Akt proteins was observed. CONCLUSION:Adipophilin promotes the accumulation of intracellular lipids through PI3K/Akt signaling pathway, but possibly not by direct interaction between adipophilin and Akt proteins.  相似文献   

16.
17.
AIM: To investigate the effect of hydrogen sulfide (H2S) on high glucose (HG)-induced injury of the mouse podocyte cell line MPC5. METHODS: The cultured MPC5 cells were randomly divided into 4 groups: HG group, normal glucose (NG) group, NG+DL-propargylglycine (PPG) group, and HG+NaHS group. After treated for a certain time, the cells were collected for further detection. The expression of zonula occludens-2 (ZO-2), nephrin, β-catenin and cystathionine γ-lyase (CSE) was determined by Western blotting. RESULTS: High glucose significantly reduced the expression of nephrin, ZO-2 and CSE (P<0.05), while the level of β-catenin was elevated obviously (P<0.05), all in a time-dependent manner. NG+PPG inhibited the levels of ZO-2 and nephrin significantly (P<0.05), and increased the level of β-catenin (P<0.05), all in a PPG concentration-dependent manner. HG+NaHS induced a more significant increase in the levels of ZO-2 and nephrin as compared with HG group (P<0.01), whereas a severe reduction of β-catenin in HG+NaHS group was observed as compared with HG group. Compared with NG group, the expression of ZO-2 and nephrin was decreased obviously, and the level of β-catenin was increased in HG+NaHS group. CONCLUSION: Down-regulation of CSE contributes to hyperglycemia-induced podocyte injury. Exogenous H2S protects against hyperglycemia-induced podocyte injury, possibly through up-regulation of ZO-2 and subsequent suppression of Wnt/β-catenin pathway.  相似文献   

18.
AIM: To explore the effects of p38 mitogen-activated protein kinases (MAPK) and phosphoinositide 3-kinases (PI3K)/Akt on interleukin (IL)-6, the endothelin (ET)-1-mediated process of airway fibroblast activation induced by injured human bronchial epithelial cells (HBE). METHODS: Human primary cultured airway fibroblasts were co-cultured with HBE pre-treated with or without poly-L-arginine (PLA). The procedure was also performed in the presence or absence of p38 MAPK selective inhibitor SB203580, PI3K selective inhibitor LY294002 or ETA receptor blocker BQ123, respectively. Immunostaining, Western blotting or ELISA were used for detecting α-smooth muscle actin (α-SMA) expression, the activities of p38 MAPK and Akt in fibroblasts or IL-6 levels in supernatants of fibroblasts. In addition, fibroblasts were mixed with soluble collagen and cultured with HBE treated as the same mentioned above, the gel contraction was measured by serial area measurements. RESULTS: ET-1 and IL-6 levels [(13.69±1.36) ng/L, (56.7±10.7) ng/L] in the supernatants of fibroblasts cultured with injured HBE were significantly higher than those in the supernatants of fibroblasts cultured with HBE [(3.79±0.64) ng/L, (15.5±3.2) ng/L]. BQ123, SB203580 or LY294002 decreased IL-6 levels [(27.2±3.1) ng/L, (31.5±3.6) ng/L, (41.3±3.2) ng/L] differently in the supernatants of fibroblasts induced by injured HBE. Activation of p38 MAPK preceded Akt in fibroblasts cultured with injured HBE. BQ123 reduced the phosphorylation levels of p38 MAPK and Akt. SB203580 concentration-dependently attenuated Akt phosphorylation, while LY294002 had little effect on p38 MAPK phosphorylation. Fibroblasts expressed more α-SMA after cultured with injured HBE and showed significant increase in the gel contraction compared to fibroblasts cultured with HBE [percentage of gel contraction: (61.2±2.7)% vs (15.4±7.3)%], all these effects were diminished or inhibited by BQ123, SB203580 or LY294002. Furthermore, the effects of BQ123 and SB203580 on decreased gel contraction were stronger than the effect of LY294002. CONCLUSION: ET-1 exerts a key role in the airway fibroblasts activation induced by injured HBE through activating p38 MAPK, PI3K/Akt signaling and promoting IL-6 expression.  相似文献   

19.
AIM: To investigate the mechanism and the effect of glycogen synthase kinase 3β (GSK-3β) inhibitor (2’Z,3'E)-6-bromoindirubin-3'-oxime (BIO) on the protein expression of β-catenin and Bcl-2, and proliferation and apoptosis in colon carcinoma SW480 cells.METHODS: The immunohistochemical staining and Western blotting were performed to detect the protein expression of β-catenin, cyclin D1 and Bcl-2. The cell cycle distribution and apoptotic rate were detected by flow cytometry. The morphologic features of SW480 cells before and 24 h after BIO exposure at different concentrations were observed under microscope with HE staining.RESULTS: Compared with the untreated SW480 cells, the protein expression of β-catenin significantly increased and some β-catenin positive nuclear staining positive cells appeared in BIO treated cells. and The cells exposed to BIO showed that the cyclin D1 protein and the cells in S stage and G2/M stage moderately increased, the protein level of Bcl-2 moderately decreased, and the cell apoptosis rate was significantly lower than those in control cells. Furthermore, the morphological changes of the SW480 cells were observed 24 h after BIO treatment. CONCLUSION: Our results indicate that GSK-3β inhibitor BIO participates in the cellular processes of promoting proliferation and inhibiting apoptosis in colon carcinoma cells. The mechanisms are mainly associated with activating the β-catenin pathway and regulating the balance of Bcl-2 pathway, and the up-regulation of β-catenin is most likely the possible factor for SW480 cell regression.  相似文献   

20.
AIM: To investigate the effect of short-term high-fructose feeding on liver triglyceride content and hepatic insulin sensitivity in mice. METHODS: Male C57BL/J6 mice were divided into control group and high (HFru) fructose group. After 3-day feeding, intraperitoneal glucose tolerance test (ipGTT) was performed to evaluate whole-body insulin sensitivity. The mice were sacrificed,and the liver samples were collected for measuring the liver triglyceride content and observing the pathological changes of the liver under light microscope with HE staining. The protein levels of lipogenic enzymes in the liver tissues were measured. To evaluate the hepatic insulin sensitivity, the protein levels (expressed as the ratio) of phosphorylated Akt/total Akt (p-Akt/t- Akt) and phosphorylated GSK-3α/β/total GSK-3α/β(p- GSK-3α/β/t- GSK-3α/β) were compared between 2 groups of the mice with or without insulin injection. RESULTS: After 3-day feeding of high-fructose diet, compared with control group, the area under the curve of ipGTT and triglyceride contents in the liver tissues were significantly increased in HFru group. HE staining of the liver in the mice in HFru group showed obvious lipid droplet formation. Compared with control group, the protein expression of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD-1) was significantly increased in HFru group. After insulin injection, the ratio of p-Akt/t-Akt and p-GSK-3α/β/t-GSK-3α/β was significantly decreased in HFru group as compared with control group. CONCLUSION: A 3-day short-term high-fructose feeding induces liver steatosis, which is related to the increased protein expression of FAS, ACC and SCD-1. Liver steatosis occurs simultaneously with the development of hepatic insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号