首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
无机氮和氨基酸态氮对甜瓜幼苗生长和氮素吸收的影响   总被引:4,自引:1,他引:3  
水培条件下,研究相同浓度(3.0mmol·L^-1)的无机氮(NO3^--N、NH4^+-N)和氨基酸态氮(Gly-N)对甜瓜幼苗生长和氮素吸收的影响。结果表明,NO3^--N、NH4^+-N和Gly-N显著影响甜瓜幼苗的生长、根系形态和氮素吸收。与NO3^-N处理相比,NH4^+-N和Gly-N处理都显著抑制了甜瓜幼苗根系和地上部的生长。不同氮素形态处理的甜瓜植株根长、根体积和根表面积均表现为NO3^-N〉Gly—N〉NH4+-N(p〈0.05)。甜瓜的叶绿素含量、植株平均氮素含量和氮素吸收量均表现为NO3-N〉Gly—N〉NH4^+-N(p〈0.05)。与NO3^-N处理相比,NH4^+-N和Gly-N处理提高了甜瓜根系的氮素分配比例。NH4^+-N处理显著降低了营养液的pH值,而Gly-N处理提高了营养液的pH值。不同氮素形态处理营养液pH值的变化是影响甜瓜幼苗生长和氮素吸收的重要因素。虽然甜瓜是喜硝作物.氨基酸态氮也可以成为其良好的氮源。  相似文献   

2.
模拟水分胁迫条件下水稻的氮素营养特征   总被引:25,自引:2,他引:25  
在正常及PEG模拟水分胁迫条件下研究水稻对不同质量比例(100/0,75/25,50/50,25/75和0/100)铵态氮/硝态氮处理的响应特征。结果表明,两种培养条件下,水稻均在NH4^ -N和NO3^--N混合营养时生长更好,氮素养分吸收更多;正常培养的水稻幼苗在NH4% -N/NO3^--N为75/25时生长最好,而模拟水分胁迫培养则以25/75处理生长最好;模拟水分胁迫处理显著促进水稻对NO3^--N的吸收并抑制NH4^ -N的吸收;正常培养条件下,NH4^ -N/NO3^-N为75/25时水稻幼苗可获得最高的水分生产效率,而模拟水分胁迫培养的幼苗水分生产效率随NO3^-N施用比例增加而提高。  相似文献   

3.
用厌氧水解-二段生物接触氧化(ABBCO)工艺处理生活污水过程中发现NO2^--N积累现象.通过改变水力条件,研究了溶解氧(DO)和水力停留时间(HRT)对NO2^--N积累的影响。试验结果表明,CODCr(化学需氧量)在250mg/L左右,水温为14.8~22.6℃,pH值为6.5~7.5的相对稳定条件下,控制DO在1.0~6.0mg/L的过程中ABBCO反应器均能实现NO2^-—N的积累,NH4^+-N去除率达到80%以上;当DO为4~5mg/L时,NH4^+-N平均去除率达87.03%,取得较好的NH4^+-N去除效果,而该条件下NO2^--N的积累率最大为95.64%;当控制HRT为6h以上,NO2^--N积累率达到50%以上的情况下NO2^--N去除率达到85.88%。  相似文献   

4.
以水培川梨Pyrus.pashia Buch-Ham幼苗为试材,研究了氮素形态对培养介质pH及根系活力的影响。结果表明,NO3^--N与NH4^ -N比值为1:1时pH变化不大,NH4^ -N区pH下降,NO3^--N区pH升高,而NH4^ -N引起pH值下降的程度大于NO3^--N引起pH增加的程度;NO3^--N与NH4^ N比值为7:3时,根活力和根系生长最好;以NH4^ N为唯一氮源时,根活力最低,且表现为NH4^ -N毒害症状。  相似文献   

5.
为研究二色补血草的氮素需求,尤其是营养液中氮素形态(NO3^-和NH4^+)和适宜其生长的营养液浓度,进行了2个室内水培试验。1)氮素形态试验:在总氮素浓度为7.14 mmol/L的情况下,设置硝态氮与铵态氮的5种配比即c(NO3^--N)∶c(NH4^+-N)为100∶07、5∶25、50∶50、25∶75和0∶100;2)营养液浓度和氮素形态试验:设置营养液浓度3组倍数处理(1倍、1/2倍和1/8倍,其中总氮素浓度为7.14、3.57和0.90 mmol/L),每组之下再设3种硝铵配比即c(NO3^--N)∶c(NH4^+-N)为100∶0、50∶50和0∶100,共9个处理。处理时间26 d。结果表明:2种形态氮等比例供给时,二色补血草的总干重、地上部干重、总根重、根长密度均显著高于纯硝态氮和纯铵态氮处理;供应纯铵态氮时,生长最差,叶片脯氨酸(植物逆境响应指标)含量显著增加(纯铵态氮比纯硝态氮在1倍、1/2倍和1/8倍营养液浓度下分别增加62.4%、46.6%和111.4%),并出现严重的铵毒症状(幼叶叶缘焦边,根系黑褐坏死);1/2倍标准浓度(其中总氮浓度为3.57 mmol/L)营养液且等比例混合态氮条件下,二色补血草生长最好。根据二色补血草野生土壤条件推测,二色补血草是喜硝态氮植物,本研究证实了这一推论,但最适合其生长的硝铵配比为50∶50。  相似文献   

6.
通过水培试验研究了不同形态和比例的氮素对水稻苗期水分利用效率及其生物效应的影响。结果表明:随着NH4^ -N/NO3^--N比例的减小,根系鲜重、根日生长率、根系含水量、全氮和全磷含量增加,但在全硝态氮条件下减少;当NH4^ -N/NO3^--N比例为50/50时,水分利用率最高;叶片光合作用对不同形态比例的氮素反应差异明显,NH4^ -N/NO3^--N比例为25/75时,光合速率最大。由此表明,过高的铵态氮和硝态氮比例均会引起水稻有机物合成和生物量积累的减少,其中铵态氮的影响尤为严重。当NH4^ -N/NO3^--N比例为50/50和25/75时,水稻表现出最佳的生物效应。  相似文献   

7.
采用PEG模拟水分胁迫、根系烫伤处理和0.5 mmol.L-1HgCl2处理等方法,研究不同质量比(9∶1、5∶5、1∶9)NH4+-N/NO3--N营养对水稻幼苗生长和水分吸收的影响。结果表明:正常水分条件下,NH4+-N/NO3--N比为5∶5处理的水稻生物量最大,水分胁迫条件下,1∶9处理的水稻生物量最大;根系烫伤处理后,正常水分条件下,NH4+-N/NO3--N比为9∶1、5∶5、1∶9处理的水稻吸水量分别降低26.5%、24.1%、36.3%,而水分胁迫条件下,各处理分别降低30.6%、23.9%、21.0%;加HgCl2处理后,正常水分条件下,NH4+-N/NO3--N比为9∶1、5∶5、1∶9处理的水稻吸水量分别降低47.1%、46.3%、31.8%,而在水分胁迫条件下,各处理分别降低46.6%、42.4%、23.5%。正常水分条件下,NH4+-N/NO3--N比为9∶1处理的水稻光合速率最高,5∶5处理的水稻气孔导度、细胞间CO2浓度及蒸腾速率最低;水分胁迫后,9∶1、1∶9处理的水稻气孔导度、细胞间CO2浓度及蒸腾速率比正常水分处理降低,而5∶5处理的水稻气孔导度、细胞间CO2浓度及蒸腾速率较正常水分处理高。  相似文献   

8.
以2年生高羊茅(Festuca arundinacea Shreb.)为供试材料,采用移植盆栽方法,不同浓度硝酸盐(NO3^- -N)和氨盐(NH4^+-N)溶液供给为处理,研究不同形态氮素对高羊茅叶片活性铁含量,叶绿素合成及叶片氮、磷、钾含量的影响,为进一步优化草坪施肥方案和改善观赏品质提供理论依据。研究表明:(1)NH4^+-N有利于植物叶片对Fe的吸收,叶片内活性铁含量高;NO3^--N不利于叶片对Fe的吸收.活性铁含量偏低。(2)不同形态氮浓度从1-8mmol/L范围内,随着氮浓度的增加叶绿素含量提高,在12mmol/L浓度时叶绿素含量均下降。(3)随两种形态氮素浓度增加,叶片氮、磷的含量随之增加,施用NH4^+-N叶片内钾的吸收和分配受到抑制。NH4^-N有利于植株对活性铁的吸收和叶绿体的合成;NO3-N有利于植株对营养元素的吸收。  相似文献   

9.
采用现场采样和室内测试的方法,研究了瓦埠湖沉积物各层的TN、NH4^+-N、NO3^--N的赋存特征。结果发现,TN上层比底层低,随着沉积深度的增加,硝化作用相对减弱,NO3^-N随着沉积深度的增加而减少,NH4^+-N的含量随着沉积深度的增加而增加。pH〈9时,pH对NH4^+-N释放的影响规律不是很明显,pH〉9时,NH4^+-N释放随着pH的增加而增加。随着温度的升高,NH4^+-N的释放量增大。好氧、厌氧条件下,NH4^+-N都有释放,且在好氧条件下NH4^+-N呈低释放状态,厌氧状态下NH4^+-N呈高释放状态。  相似文献   

10.
采用室外微区模拟试验,在3、6和9cm3个不同蓄水深度处理条件下,对稻田土壤氮磷的变化动态及固定作用进行了研究。结果表明,土壤铵氮(NH4^+-N)、硝氮(NO3^--N)和总磷(TP)含量与蓄水深度显著负相关;蓄水处理对土壤中总氮(TN)含量变化影响不大。施肥后随蓄水时间延长,土壤NH4^+-N和NO3^-N呈下降趋势,而TN和TP呈上升趋势。土壤对NH4^+-N、TN和TP的固定作用较强,而NO3^--N不易被土壤胶粒所吸附。  相似文献   

11.
[Objective] The aim was to research the effect of concentration of NO-3-N on root vigor and rhizosphere pH of winter wheat seedlings under water culture.[Method]By selecting Hoagland’s nutritional solution as cultural medium and winter wheat as material of experiment,on the basis,testing root vigor,nutrient solution NO-3 and change of pH values under the different level of disposal,such as high(containing NO-3-N 15 mmol/L),medium(containing NO-3-N 7.5 mmol/L)and lower(containing NO-3-N 2.5 mmol/L).[Result]The results of this research showed that the effect of different nitrogen level on the wastage of nutrient solution NO-3,the changes of pH values and root vigor is obvious under the hydroponics condition.[Conclusion]Though NO-3 is a safe nitrogen sources when it was supplied to plants too more,it would restrain assimilation on nitrate nitrogen farther,but when it was supplied to plants too little,it would lead to deficiency of NO-3 that plants uptake and decrease of root activity,so it isn’t useful to wheat young seedling to absorb nitrogen nutrition.  相似文献   

12.
太湖地区直播稻田氮素的渗漏损失研究   总被引:1,自引:0,他引:1  
程文  李勇  朱亮  顾佳  杨林章 《安徽农业科学》2009,37(6):2620-2621
[目的]研究直播稻田氮素的渗漏损失特点。[方法]在丹阳市典型的直播水稻田进行田间试验研究。[结果]整个稻季,土壤渗漏液中NO3^--N的浓度在0.07-14.77 mg/L变化,是氮素渗漏流失的主要形态,渗漏液中NH4^+-N的含量普遍较低,基本低于1.0 mg/L,最高浓度2.41 mg/L,100 cm深处仍有一定浓度的NH4^+-N存在。水稻生长前期渗漏液中TN和NO3--N的含量较高。整个稻季TN的流失负荷为11.77-35.63 kg/hm^2。硝态氮的流失负荷为5.85-25.78 kg/hm^2,占总流失量的50.12%-75.53%,占稻季总施氮量的7.96%-9.75%。[结论]稻田氮素的渗漏损失以NO3^--N为主,NO3^--N的浓度变化曲线随着水稻生长呈逐渐下降的趋势;控制氮肥的施用量能减少氮素的渗漏流失量,但是不会按施肥量减少的比例而减少。  相似文献   

13.
不同施氮处理对平邑甜茶根系构型的影响   总被引:1,自引:0,他引:1  
以平邑甜茶(Malus hupehensisRehd.)实生苗为试材,在沙培条件下研究供氮变化对平邑甜茶幼苗根系生长的影响。结果表明:1 mmol/L NO3-处理的植株茎叶生物量及根系生物量均达到最高水平,分别比对照增加116.7%和38.5%;对侧根生长而言,侧根长度与侧根数量也在1 mmol/L NO3-处理时最高,分别比对照增加168.9%和100.9%;但超过1 mmol/L后随浓度升高持续下降;NH4+处理的以上各指标表现相同的趋势,但相同供氮浓度时,NH4+处理的低于NO3-处理。对主根而言,氮素供应能明显促进主根生长,但各浓度处理间差异不显著。采用肥料袋控缓释方法研究氮素对平邑甜茶根系生长的影响,结果显示局部供应NO3-与NH4+均能显著增加侧根密度。  相似文献   

14.
磷、钾和不同氮源对小白菜产量和品质的影响与分析   总被引:6,自引:0,他引:6  
探讨磷、钾和不同氮源(NO3--N、NH4 -N)对小白菜产量的形成对其主要品质的影响,为小白菜生产和进一步的研究提供基础数据。试验利用416-B混合最优设计和SAS分析,建立不同氮源、磷、钾与小白菜产量、Vc含量和硝酸盐的数学模型,并对数学模型进行分析。结果表明,不同氮源、磷、钾的浓度及相互之间的比例是影响小白菜产量和品质的主要原因,氮素是形成产量的重要因素;硝态含量与小白菜产量和硝酸盐的积累呈正相关关系;铵态氮则能增加小白菜产量,降低其硝酸盐积累。磷、钾能明显地改善小白菜的品质。适宜的不同氮源、磷和钾浓度及相互比例,有利于小白菜产量的提高和品质的改善。本试验推荐的理论配方,硝态氮、磷、钾和铵态氮的浓度分别是:7.94 mmo/L、1.12 mmol/L、5.51 mmol/L和2.08 mmol/L。  相似文献   

15.
不同氮素形态及配比对水培生菜铁营养的影响   总被引:9,自引:0,他引:9  
研究了硝态氮与 态氮及其不同配比对水培生菜铁素营养的影响。结果表明,不同形态氮素显著影响植物的铁素营养状况,NO^-3-N:NH^+R-N为9:3和6:6me/L的处理,较单一NO^-3-N处理,能促进水增生菜生长,提高叶绿素含量,增加植物体内铁的活性,降低叶片中硝酸盐的积累,降低营养液成本。  相似文献   

16.
pH、氮素形态和Ca2+对玉米幼苗根系发育的影响   总被引:3,自引:0,他引:3  
通过设定不同pH、氮素形态、外源Ca2 浓度,观察玉米植株根系在水培营养液中的发育情况。结果表明:硝态氮(NO3--N)可促进玉米植株侧根的生长和生物量的积累,而铵态氮(NH4 -N)处理的植株根平均直径大于NO-3-N处理。NH4 -N的毒害可能是较高浓度的NH4 取代细胞膜上的Ca2 ,从而破坏细胞膜结构。增加外源Ca2 浓度,可在一定程度上缓解H 和NH4 对玉米根发育的抑制作用。  相似文献   

17.
为探索氮素形态对盐碱地棉苗生长及养分吸收的影响,以鲁棉研28号为试验材料,利用嫁接建立的分根试验系统模拟盐分差异分布,研究了根区盐分差异分布和不同形态氮素(NH4+和NO3-)对棉苗生长和主要营养元素吸收的影响。结果表明:根区盐分差异分布和氮素形态对棉花营养元素吸收及幼苗生长存在互作效应;根区盐分差异分布较均匀分布增强了棉株对主要营养元素(N、P、K、Ca、Mg、Fe、Mn、Cu和Zn)的吸收、降低了Na+含量、提高了叶片净光合速率(17.1%)并增加了棉株生物积累量(18.5%);NO3--N较NH4+-N处理显著促进了棉苗主要营养元素(N、P、K、Mg、Fe、Mn)的吸收及生物量积累;根区盐分差异分布下,施用NO3--N较NH4+-N提高了棉苗主要营养元素的吸收及叶片光合速率(13.5%)、降低了各器官的Na+含量并促进了棉苗的生物量积累(7.2%)。研究结论是盐分差异分布下,施NO3--N较NH4+-N更有利于棉花主要营养元素的吸收及幼苗生长。  相似文献   

18.
田琳  孔强  张建  苗明升 《安徽农业科学》2012,40(33):16325-16327
[目的]研究氨氮浓度对部分亚硝化过程中温室气体N2O释放的影响。[方法]利用序批式生物膜反应器(SBBR),采用间歇曝气的方式,分析进水不同氨氮浓度对部分亚硝化过程中N2O产生的影响。[结果]当进水氨氮浓度不同时,部分亚硝化过程中DO、ORP变化趋势大体一致,出水中亚硝氮与氨氮的浓度比都能达到1∶1,而且硝氮始终都维持在较低水平。进水氨氮浓度对部分亚硝化过程中N2O的释放有显著影响,氨氮浓度越高,N2O的释放量越大。其中,当氨氮浓度为400 mg/L时,N2O的释放量高达37 mg左右。[结论]部分亚硝化过程中N2O的释放可能与NH4+、NO2-的浓度有关。  相似文献   

19.
为了明确不同氮素形态(铵硝配比)对芝麻苗期光合荧光特性的影响,探究适合芝麻生长的铵硝配比,采用营养液栽培方法研究了不同铵硝配比(10∶0、9∶1、3∶1、1∶1、1∶3、1∶9、0∶10)对芝麻品种中芝13(ZZ13)和漯12(L12)苗期光合特性、光合色素、叶绿素荧光参数的影响。结果表明,铵态氮比例过高显著抑制芝麻生长,铵硝配比为10∶0和9∶1时植株死亡,高比例铵态氮(铵硝配比3∶1)处理的芝麻幼苗地上部干质量显著低于其他处理;随着铵态氮比例降低,抑制作用减弱,并且适当配施硝态氮(铵硝配比1∶9)时2个芝麻品种地上部干质量达最大值,ZZ13和L12的叶绿素a、b含量及叶绿素总量分别在铵硝配比1∶9和0∶10时达到最高,而铵硝配比3∶1时上述光合色素含量大幅降低。铵硝配比1∶9时,ZZ13和L12的净光合速率(Pn)和蒸腾速率(Tr)均最大,而高比例铵态氮处理时Pn和Tr均显著降低,两者对铵态氮的响应较为明显。此外,与纯硝态氮处理相比,铵硝配比1∶9显著提高了ZZ13的光系统活性,表现为光系统Ⅱ最大量子效率(Fv/Fm)和实际光化学效率(ΦPSⅡ)显著增加,非光化学猝灭系数(q N)显著降低,但对L12光系统Ⅱ活性的提高不明显;而铵硝配比3∶1显著抑制了ZZ13和L12的光系统Ⅱ活性,表现为Fv/Fm、ΦPSⅡ和q P(光化学猝灭系数)值显著降低,Fo(基础荧光)和q N值显著增加。可见,铵硝配比1∶9最适合芝麻生长,尤其是对于ZZ13,其促进光合作用的主导因素是显著提高了光系统Ⅱ活性,而对芝麻叶片光合色素含量及组成比例的影响不显著;高比例铵态氮对芝麻叶片光合色素含量及组成比例、光系统Ⅱ活性、Pn和Tr都产生了不良影响,进而严重抑制芝麻的光合作用和生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号