首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄淮大豆主产区大豆胞囊线虫生理小种分布调查   总被引:1,自引:0,他引:1  
大豆胞囊线虫(SCN)在黄淮地区普遍发生,调查小种分布情况,确定优势小种对抗病育种有重要意义。2012-2015年,取样调查黄淮地区6个省份土样,利用Riggs模式鉴定生理小种,绘制黄淮地区SCN生理小种分布图,并与文献报道结果对比,探讨黄淮地区SCN生理小种类型及其分布规律。结果表明,该病害在黄淮大豆主产区均有分布,在采集受SCN感染的322份土样中,112份被鉴定出生理小种类型,包括1号、2号、3号、4号、5号、6号和11号小种。其中,57份为2号小种,占样本总体的50.9%;26份土样为5号小种,占23.2%;11份土样为4号小种,占9.8%,1号、3号、6号和11号小种分别占总体的4.5%、5.4%、4.5%和1.8%。依据不同生理小种在各省发生频率由高到低的顺序,河南分布5号、2号、3号、11号小种;河北分布2号、5号、6号、3号、4号小种;安徽分布2号、5号、6号、3号小种;山西分布2号、4号、5号、1号、3号、11号小种;山东分布2号、3号、5号、1号、6号小种;江苏分布2号、5号、1号小种。以上结果表明,2号小种是目前黄淮海地区的优势小种,其次是5号小种,致病力最强的4号小种主要分布在山西省。在黄淮海地区,抗线虫育种目标应以抗2号生理小种为主,兼抗5号小种,部分地区应以兼抗2号和4号小种为主。在黄淮地区3号、6号和11号小种是新发现的小种。与2001-2003年调查结果比较,黄淮海地区大豆胞囊线虫生理小种组成及分布有一定的改变。  相似文献   

2.
大豆是主要的油料作物,起源于中国,在我国种质资源十分丰富。大豆孢囊线虫(SCN)(HeteroderoglycinesIchinohe)是一种土传的定居性内寄生线虫,不易防治,常引起大豆黄萎病等病害,是大豆生产上危害最大的病害之一。大豆孢囊线虫病生理小种多达十几种,在我国,大豆孢囊线虫病病原主要为3、4号生理小种。大豆抗孢囊线虫的研究一直是世界上大豆抗病育种研究的热点之一。在本课题的前期研究中,根据已克隆的植物抗孢囊线虫病基因的保守序列设计引物,对经常规鉴定为抗(感)孢囊线虫3号生理小种的15个大豆品种基因组DNA进行PCR扩增,在大豆抗病品种中获得一条大豆抗孢囊线虫的特异条带。本研究在此基础上利用该对引物,对高抗孢囊线虫3号小种的北京小黑豆基因组DNA进行扩增,并克隆了特异扩增片段,命名为RSCN3,经测序及BLAST分析,发现其DNA序列与GenBank、EMBL、DDBJ、PDB中的大豆似受体激酶RHG4、水稻TMK(leucinerichprotein,receptor-likekinase)基因等均有80%以上的同源性。根据该DNA序列推测其氨基酸序列,在其序列中共找到21个亮氨酸,将该序列与蛋白质序列同源性进行比较,结果发现与植物中的受体激酶、富含亮氨酸重复的蛋白激酶有较高的同源性。因此推测RSCN3克隆片断为一个与受体激酶有类似作用的抗病相关基因的RGA,并将该序列登录到GenBank中,登录号为:AY580161。  相似文献   

3.
中国大豆孢囊线虫抗性研究进展   总被引:6,自引:0,他引:6  
中国是大豆的故乡,曾经是世界上最主要的大豆生产国和出口国。如今,中国的大豆生产量已从世界首位降到美国、巴西之后,由大豆出口国变为大豆进口国,其主要的原因之一是中国大豆生产未能有效的控制大豆孢囊线虫的危害,以致中国大豆平均单产处于较低水平。大豆孢囊线虫(Soybean Cyst Nematode,简称SCN)是一种土传的定居性内寄生线虫,大豆孢囊线虫的二龄幼虫从根尖处侵入根部,造成根组织的代谢失调与组织损伤,受害的大豆根系短粗,植株矮小,叶片变黄,产量严重降低。SCN的特点是分布广、危害重、寄主范围宽、传播途径多,存活时间长,防治极难。SCN危害已遍及中国大豆主要生产区,主要分布在我国的东北大豆主产区的黑龙江、吉林、辽宁、内蒙古及黄淮海大豆主产区的山东、河北、山西、安徽、河南、北京等省市,每年SCN发生面积达150万hm^2以上。本文综述了近年来我国在大豆孢囊线虫研究方面取得的进展,主要包括以下几个方面:SCN生理小种的研究、SCN抗性资源发掘、SCN经典遗传及分子遗传学研究及SCN抗性育种等研究进展。  相似文献   

4.
灰皮支黑豆抗大豆胞囊线虫3号生理小种的生化机制研究   总被引:12,自引:1,他引:12  
以抗感大豆胞囊线虫3号生理小种品种灰皮支黑豆和辽豆15为研究对象,三叶期后室内人工接种大豆胞囊线虫,接种后5,10,15,20,25,30 d取样,测定抗感品种接种与未接种根内多酚氧化酶(PPO)、过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)活性的动态变化,以及根内次生代谢物质总酚和类黄酮含量的动态变化,进而揭示灰皮支黑豆抗大豆胞囊线虫3号生理小种的生化机制.试验结果表明,大豆受大豆胞囊线虫侵染后,抗感品种根内PPO、POD、PAL酶活性均表现升高,并且在抗病品种灰皮支黑豆中酶活性高峰出现的早,根内总酚和类黄酮含量都表现增加.  相似文献   

5.
摘要:对抗病品种应县小黑豆与大豆胞囊线虫3号生理小种(SCN3)互作及田间动态关系进行了研究。结果表明:应县小黑豆为抗扩展品种,对SCN3明显抑制J2向J3,J3向J4的发育,并且对SCN3的雌雄分化有一定影响。在抗病植株上观察到的J4大部分是雄虫,雌虫极少,而感病品种辽豆15上,SCN3各龄期之间发育正常,根内J4大部分为雌虫。应用冰冻切片技术对线虫侵染后抗感品种根系组织进行切片观察。观察结果表明:抗感品种的组织病理学反应有明显差异,抗病品种产生明显的组织病理学反应,表现为根内线虫虫体附近根组织细胞有坏死现象发生,而感病品种辽豆15则无坏死现象。并且观察到抗病品种根内产生的合胞体。  相似文献   

6.
为探究大豆孢囊线虫(SCN)即墨群体和莒县群体的生理小种类型及其对烟草的寄生性,采用杯栽试验和孢囊定量接种方法,测定2个SCN群体在5个大豆品种(4个生理小种鉴别寄主和1个感病对照品种Lee)和6个烟草品种上的繁殖和侵染情况。结果发现,SCN即墨群体在5个大豆品种上的繁殖系数(Rf=Pf/Pi)为1.88(0.05~9.03),在感病对照品种Lee上Rf高达9.03;在6个烟草品种上的Rf为0.01(0.00~0.04)。SCN莒县群体在5个大豆品种上的Rf为1.23(0.05~5.28),在感病对照品种Lee上Rf高达5.28;在6个烟草品种上的Rf为0.16(0.00~0.65)。研究表明,SCN即墨和莒县群体分别属于3号和6号生理小种,系这2个小种在山东省的首次发现。SCN即墨群体对6个烟草品种几乎均无寄生性,而莒县群体则对部分烟草品种(云烟85和NC95)有一定寄生性。  相似文献   

7.
田宇  杨蕾  李英慧  邱丽娟 《作物学报》2018,44(11):1600-1611
大豆胞囊线虫(Heterodera glycines Ichinohe)是严重危害世界范围大豆生产的害虫, 采用合理轮作和种植抗病品种可有效控制损失。为了开展分子标记辅助选择以加速抗病品种培育, 本研究针对前期发现的与大豆胞囊线虫3号小种(SCN3)抗性显著关联的非同义变异SNP位点Map-5149, 开发高通量、低成本的新型分子标记—竞争性等位基因特异PCR标记(kompetitive allele specific PCR, KASP), GmSNAP11-5149。利用GmSNAP11-5149鉴定了来自8个国家的202份代表性大豆抗感资源, 发现141份材料携带抗病基因型GmSNAP11-5149-AA, 平均雌虫指数为6.2%, 极显著低于58份携带感病基因型GmSNAP11-5149-GG材料的雌虫指数(61.1%), 方差分析表明, GmSNAP11-5149与胞囊线虫的抗性显著相关(F=44.18, P<0.0001), 对抗病材料的选择效率达到92%, GmSNAP11-5149可作为一个实用的分子标记应用于辅助抗大豆胞囊线虫品种选育和抗病种质资源鉴定。  相似文献   

8.
大豆根内胞囊线虫的时空动态研究   总被引:1,自引:0,他引:1  
于2006-2007年田间自然生长条件下,研究大豆苗期(7~37 d)胞囊线虫(4号生理小种)在根系的时空分布动态。结果表明,大豆胞囊线虫分布与根系生长状况有密切关系。出苗后7 d已有线虫侵入根内,随着根系生长发育,单位根长线虫数以及线虫总数增多,单位根长内线虫数量呈S型曲线变化。随着出苗后天数的增加,主根和侧根内线虫数量变化呈相反趋势,其中主根内线虫密度减少,侧根内线虫密度增加至相对稳定值。随着土层的加深,主根和侧根内线虫密度差异减小;5~15 cm土层根系内线虫数量及其所占比例均最大。说明苗期大豆胞囊线虫主要分布在5~15 cm土层。  相似文献   

9.
Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, has caused severe damage to soybean [Glycine max (L.) Merr.] worldwide since its discovery in 1954. ‘Peking’ is one of the most important sources in breeding SCN resistant soybean cultivars because it is resistant to Races 1, 3, and 5. Genetic information on SCN Races 1, 3, and 5 from Peking is essential to efficiently develop resistant soybean cultivars. Resistance to Race 3 in Peking was found to be controlled by three genes, but little is known on the inheritance of resistance to Races 1 and 5, and whether alleles conditioning resistance to Races 1 and 5 belong to the same linkage group and are allelic to genes giving resistance to Race 3. To determine the genetic bases of resistance to SCN Races 1, 3, and 5, Peking was crossed to the susceptible line ‘Essex’ to generate F1 hybrids. The F2 population and F 2:3 families were advanced from the F1 and evaluated for resistance to SCN Race isolates 1, 3, and 5. Resistance to H. glycines Race isolates 1, 3, and 5 in Peking was found to be conditioned by three genes, one dominant and two recessive (Rhg, rhg, rhg). Peking may share similar sets of resistance loci between Races 1 and 3, but not between Races 3 and 5, or between Races 1 and 5. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Worldwide, soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most destructive pathogen of soybean [Glycine max (L.) Merr.]. Crop losses are primarily mitigated by the use of resistant cultivars. Nematode populations are variable and have adapted to reproduce on resistant cultivars over time because resistance primarily traces to two soybean accessions, Plant Introduction (PI) 88788 and Peking. Soybean cultivar Hartwig, derived primarily from PI437654, was released for its comprehensive resistance to most SCN populations. A synthetic nematode population (LY1) was recently selected for its reproduction on Hartwig. The LY1 nematode population currently infects known sources of resistance except soybean PI567516C; however, the resistance to LY1 has not been characterized. The objective of this study was to identify quantitative trait loci (QTLs) underlying resistance to the LY1 SCN population in PI567516C, identify diagnostic DNA markers for the LY1 resistance, and confirm their utility for marker-assisted selection (MAS). Resistant soybean line PI567516C was crossed to susceptible cultivar Hartwig to generate 105 recombinant inbred lines (F2-derived F5 families). QTLs were mapped using simple sequence repeats (SSRs) covering 20 Linkage Groups (LGs) and three diagnostic markers, Satt592, Satt331, and Sat_274, were identified on LG O. These markers have a combined efficacy of 90% in identifying resistant lines in a second cross that has been generated by crossing a susceptible cultivar 5601T with resistant PI567516C. F2-derived F4 segregating population was used in MAS to identify resistant lines.  相似文献   

11.
大豆孢囊线虫(Heterodera glycines Ichinohe;Soybean Cyst Nematode,SCN)是一种土传的专性内寄生线虫。SCN的二龄幼虫侵入到大豆幼嫩的根组织中,导致大豆根内的细胞变形并与之形成“合胞体”。合胞体在形态上和生理上的变化是SCN直接诱导大豆基因表达的结果。本研究以高抗SCN的灰布支黑豆为材料,用大豆孢囊线虫二龄幼虫直接接种大豆的根系,应用DDRT—PCR技术及RDB(Reversedot—blotting)杂交鉴定,获得6个阳性cDNA克隆,分别是SCN侵染后5天的A32克隆(GenBank登录号为B1173978);侵染后10天的B12克隆(GenBank登录号为B1173979)、B71克隆(GenBank登录号为B1173980);侵染后15天的Cll克隆(GenBank登录号为B1173981)、CPl2(GenBank登录号为B1173982)克隆和CP32克隆(GenBank登录号为B1173983)。序列的同源比较表明,6个cDNA均与Shoemaker构建的大豆基因表达库中的cDNA序列有非常高的同源性,证明这些cDNA是大豆基因表达的产物。其中A32克隆的序列与控制拟南芥下胚轴生长的MYB转录因子、营养元素缺失诱导的番茄根的表达文库中的一个cDNA及番茄抗假单胞杆菌表达文库中的一个cDNA有较高的同源性。  相似文献   

12.
X12 was a new race of soybean cyst nematode (SCN) with super strong pathogenicity and it was first detected in Xingjiashe county, Gujiao city, Shanxi province, China in 2012, which was a huge threat to soybean production. The research of race X12 distribution is meaningful for developing management strategies to prevent race X12 population from spreading. Therefore, a survey for the distribution of soybean cyst nematode race X12 in Gujiao city was conducted in 2019 and 2020. A distribution of races was constructed based on Riggs model. The race distribution was discussed in this study. A total of 33 soil samples infected soybean cyst nematode were collected. Twenty-six were identified as physiological subtypes, accounting for 78.8% of the samples, in which race 2 and race 4 accounted for 57.7% (15 samples) and 42.3% (11 samples), respectively. In general, race X12 was determined if race 4 population virulent on ZDD2315 accession with female index (FI) > 10. In 11 samples determined as race 4, including two samples were further determined as race X12 including the sample collected from Xingjiashe location, which was the original location detected as race X12 in 2012. There were three other SCN populations which determined as race 4 could virulent on ZDD2315 but with FI < 10. There were 73.1% and 57.7% of populations with FI > 50 among 26 evaluated populations on Peking and PI88788, respectively. The results showed that race X12 population were also detected in Hekouzhen except Xingjiashe. Only race 2 and race 4 were detected around Xingjiashe, covered 810 km2. SCN populations with 3 samples were likely to preferentially evolve from subspecies 4 to subspecies X12. The results showed that strong and effective measures should be taken in Gujiao city to slow down the virulence escalation of SCN and the spread of X12 species.  相似文献   

13.
X12是具有超强致病力的大豆胞囊线虫(SCN)新小种,于2012年在山西省古交市邢家社首次发现,该小种对大豆生产有巨大威胁。定期调查X12生理小种分布,对有目的地采取防治措施阻止X12小种扩散有重要意义。本研究于2019—2020年调查古交市土样,利用Riggs模式鉴定生理小种,绘制古交市X12生理小种分布图,探讨其周围生理小种类型及分布规律。结果表明,在采集的受SCN感染的33份样本中,26份鉴定出生理小种类型,占采集样本的78.8%;2号和4号生理小种在该地区分布广泛,2号小种检出频率为57.7%;4号小种检出频率为42.3%。4号小种群体能够侵染优异抗源兴县灰皮支(ZDD2315)且胞囊指数(female index,FI)大于10,即被认定为X12小种,在此次鉴定为4号小种的11份样本中,有2份进一步鉴定为X12小种,含重复采集2012年在邢家社发现的X12样本;另有3份鉴定为4号小种的样本,其SCN群体能在兴县灰皮支上寄生,但FI未达到10。这26份样本的SCN群体能在Peking和PI88788上寄生,且FI>50的分别占73.1%和57.7%。表明,除邢家社发现有X12小种,在河口镇也发现了X12小种;在邢家社周围810 km2仅检测到2号和4号小种;有3份样本的SCN群体有可能会优先由4号小种进化为X12小种。建议在古交市采取有力、有效措施减缓SCN的致病力升级及X12小种扩散。  相似文献   

14.
The effect of soybean cyst nematode (SCN) race 3 and strains of Bradyrhizobium japonkum interactions on nodulation and other agronomic characters of several soybean genotypes was investigated. Nodule weight was reduced in soybean cultivar Ogden treated with SCN plus Bradyrhizobia strains USDA 110 and 6 and on soybean cultivar Essex treated with SCN plus strain USDA 6. The result was reversed on soybean cultivar Essex treated with SCN plus strain USDA 110. The nodule number also decreased on soybean cultivars Ogden and Essex treated with SCN plus strains USDA 110 and 6. The fresh root weights of soybean cultivars Ogden and Essex treated with SCN plus strain USDA 110 were heavier than the fresh root weight of Essex treated with SCN plus strain USDA 6. Lower nitrogen content of stems and leaves was noted only in cultivar Essex treated with SCN plus strains USDA 110 and 6. Bradyrhizobia strain USDA 110 was more efficient in the initiation of nodules in cultivars Ogden and Essex than strain USDA 6. The nitrogen-fixing capacity of strain USDA 6 in Ogden was better than strain USDA 110. The differences in the agronomic performances of the various soybean genotypes were due to their degree of susceptibility to SCN and Bradyrhizobia strains and also to their genetic make-up.  相似文献   

15.
The effects of induced epidemics of Heterodera glycines (Hg), Diaporthe phaseolorum var. caulivora (Dpc), and Pseudomonas syringae pv. glycinea (Psg) in single inoculations or in combinations on soybean yield and other agronomic characters were studied in the field for 3 planting dates from 1985–1987. Agronomic characters, such as size of nodules, number of pods, plant heights, yields, and disease ratings and infestations of soybean were noticeably influenced by the induced epidemics of the pathogens affecting soybeans. Similarly, the induced epidemics of these pathogens also produced either a negative or positive correlation coefficient of the various indicated agronomic characters. Synergistic-yield loss interaction between Dpc + Psg was positive. However, the synergistic-yield loss interactions between Dpc + Hg, Hg + Psg, and Dpc + Hg + Psg were negative. Based on the symptomatology of the diseases, there were no synergisms noted on soybean.  相似文献   

16.
大豆新种质对大豆孢囊线虫4号生理小种的抗性鉴定   总被引:6,自引:0,他引:6  
1996~2000年,采用病圃自然感病鉴定法,对我国7省518份大豆新种质资源进行了抗大豆孢囊线虫4号生理小种的鉴定研究,筛选出3个新的抗病品种。这些抗病品种均来自山西,种皮为黑色,每株平均孢囊数在0.2~0.6之间,孢囊指数为0.4~0.6,抗性强而稳定,可供抗病育种利用。  相似文献   

17.
The soybean cyst nematode (SCN) is one of the most economically important pathogens of soybean. Molecular mapping of quantitative trait loci (QTL) for resistance to SCN is a proven useful strategy in order to assist in the development of resistant soybean cultivars. In the present study, a Bayesian modeling approach was performed to map QTL controlling genetic resistance to SCN races 3 and 14. For this purpose, a population of recombinant inbred lines derived from the cross between line Y23 (susceptible) and cv. Hartwig (resistant) was used. A total of 144 microsatellites markers (Simple Sequence Repeats) were selected and synthesized for mapping purpose. Posterior marginal parameter distributions were computed using the Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) algorithm. It was determined the existence of four QTLs on three linkage groups (LG); that is LG A2 for race 3, LG C2 for race 14, and LG G for both races. The estimates of posterior modes of the heritability were 0.038 and 0.53 for the LGs A2 and G respectively (race 3). For the race 14 the posterior modes of the heritability were 0.044 and 0.05 for the LGs C2 and G. The identified QTLs explained about 57 and 9 % of the total phenotypic variance, for the races 3 and 14, respectively. These results confirm the effectiveness of the Bayesian method to map QTL controlling resistance to SCN in soybean. Accordingly, integrating QTL mapping with Bayesian methods will enable response to selection for quantitative traits of interest in soybean to be improved.  相似文献   

18.
Genetic analysis of resistance to soybean cyst nematode in PI 438489B   总被引:2,自引:0,他引:2  
Soybean (Glycine max L. Merr.) plant introduction PI 438489B is a unique source that has resistance to all known populations of soybean cyst nematode (Heterodera glycines Ichinohe, SCN). This PI line also has many desirable agronomic characteristics, which makes it an attractive source of SCN resistance for use in a soybean breeding program. However, characterization of SCN resistance genes in this PI line have not been fully researched. In this study, we investigated the inheritance of resistance to populations of SCN races 1, 2, 3, 5, and 14 in PI 438489B. PI 438489B was crossed to the susceptible cultivar ‘Hamilton’ to generate F1 hybrids. The random F2 plants and F3 lines were evaluated in the greenhouse for reaction to these five populations of SCN races. Resistance to SCN races 1, 3, and 5 were mostly conditioned by three genes (Rhg Rhg rhg). Resistance to race 2 was controlled by four genes (Rhg rhg rgh rgh). Three recessive genes were most likely involved in giving resistance to race 14. We further concluded that resistance to different populations of SCN races may share some common genes or pleiotropic effects may be involved. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
大豆胞囊线虫病(Soybean cyst nematode)严重危害我国大豆生产。我国大豆胞囊线虫有8个生理小种,其中,4号生理小种致病力最强,主要分布在黄淮海大豆产区。了解抗源的遗传模式有助于抗病基因的定位和分子标记的开发。以对大豆胞囊线虫4号生理小种高抗抗源CBL黑豆为父本、高感材料品75-14为母本,构建了F1、F2和F2∶3 3个世代群体,利用植物数量性状主基因+多基因混合遗传模型的联合分离分析方法,分析CBL黑豆抗大豆胞囊线虫4号生理小种的遗传效应。结果表明:CBL黑豆对胞囊线虫4号生理小种的抗性受2对加性-显性-上位性主基因和加性-显性-上位性多基因控制,F2世代主基因遗传率为64.47%,F2∶3世代主基因遗传率为75.99%。主基因遗传率较高,育种可以在早代选择。  相似文献   

20.
Treatment of herbicides (Treflan and Lorox) and nematicides (Nemacur and Temik) and various combinations of these pesticides on Essex and Ransom in the field to control weeds and soybean cyst nematode (SCN) have produced significantly more abnormal seedling establishment, more number of pods and nodules per plant, and lesser field population of SCN. The differences in performance of Essex and Ransom with respect to SCN control with corresponding yield increases or decreases from pesticide treatments may have been due to the cultivar's different degree of susceptibility to SCN infestations and to their specific genetic make-up. The recommended nematicides for the control of SCN with corresponding yield increases in Essex were Temik and Nemacur and the recommended nematicide-herbicide combinations were Temik-Treflan and Temik-Lorox. The recommended nematicide for the control of SCN in cultivar Ransom was Temik. Bean yields were not affected by the application of pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号