首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为优化菟丝子总黄酮提取工艺条件,本试验对69批不同地区来源的菟丝子类药材进行含量测定并比较差异。运用NaNO2-Al(NO3)3-NaOH比色法测定总黄酮含量|利用单因素试验考察乙醇浓度、料液比、提取温度对菟丝子总黄酮含量的影响|采用Box-Behnken Design试验(以下简称BBD试验)设计原理进行三因素三水平试验设计及响应面分析来优化菟丝子总黄酮提取工艺。结果表明:菟丝子总黄酮最佳提取工艺为乙醇浓度65%,料液比1:41(g/mL),提取温度92 ℃|不同地区来源的小菟丝子总黄酮含量为0.92% ~ 2.18%,大菟丝子总黄酮含量为2.57% ~ 3.34%。Box-Behnken Design响应面优化菟丝子总黄酮的提取工艺可靠,具有实用价值|大菟丝子与小菟丝子能否同用值得进一步研究|建议《中国药典》增加菟丝子药材以芦丁(C27H30016)计,含总黄酮不得低于0.73%。 [关键词] 菟丝子类药材|总黄酮|响应面法|提取工艺|含量测定  相似文献   

2.
为优化零陵香总黄酮提取工艺,本文在单因素试验基础上,依据Box-Bebnken的方法设计对乙醇体积分数、微波时间、微波功率和液料比四因素进行优化。结果表明:零陵香总黄酮的最佳提取工艺为乙醇体积分数75%,微波时间17 min,微波功率600 W,液料比68 mL/g。本试验得到的工艺条件参数可行性强,重复性好,为提高零陵香的开发利用提供一定的参考依据。 [关键词] 零陵香|总黄酮|微波功率|体积分数|得率  相似文献   

3.
研究采用超声波-微波辅助提取法提取百香果果皮中的总黄酮,响应面法优化百香果果皮中总黄酮的提取工艺参数。在单因素试验的基础上,选取液料比、乙醇浓度、超声时间、微波功率进行Box-Behnken中心组合设计试验,进行体外抗氧化试验,通过傅里叶红外光谱对百香果果皮总黄酮提取物进行初步结构鉴定。结果显示:响应面优化百香果果皮总黄酮的最佳提取条件为液料比49 mL/g、乙醇浓度71%、超声时间25 min、微波功率420 W,平均提取率为2.25%。百香果果皮总黄酮对OH·的清除率为65%,对DPPH·的清除率达57%;百香果果皮总黄酮提取物中含有羟基、羰基、不同位置取代的苯环、碳氧单键(—C—O—)等官能团。研究表明,响应面优化超声波-微波辅助提取法方案合理,可有效提取百香果果皮中的总黄酮。  相似文献   

4.
本文采用超声波辅助乙醇-硫酸铵双水相体系提取绞股蓝总黄酮,并优化其工艺条件。在单因素试验的基础上结合正交试验,以总黄酮提取量为指标,探讨料液比、乙醇浓度、硫酸铵用量、超声功率和超声温度对绞股蓝总黄酮提取量的影响。结果表明:超声辅助乙醇-硫酸铵双水相提取绞股蓝总黄酮的最优工艺为:料液比1:30 (g/mL),乙醇浓度50%,硫酸铵用量0.25 g/mL,超声功率240 W,超声时间40 min,超声温度70 ℃。在此条件下,总黄酮提取量为15.90 mg/g。超声波辅助乙醇-硫酸铵双水相提取绞股蓝总黄酮的效果较好,是提取绞股蓝中总黄酮的有效方法。 [关键词] 绞股蓝|总黄酮|超声波|乙醇-硫酸铵|双水相体系  相似文献   

5.
试验为研究玉米须总黄酮的提取工艺及其抗氧化活性,采用离子液体-微波协同提取玉米须中的总黄酮。在单因素试验的基础上,应用响应面法优化提取工艺。结果显示,最佳工艺为微波功率450 W、离子液体浓度0.65 mol/L、液料比25 mL/g、提取时间30 min。在此条件下,总黄酮提取量为5.21 mg/g。体外抗氧化试验结果表明,玉米须中提取的黄酮类物质的抗氧化能力较好,对羟基自由基和1,1-二苯基-2-三硝基苯肼(DPPH)自由基的半数抑制浓度(IC50)分别为146.714 2、120.420 0 mg/L。研究表明,响应面法优化离子液体-微波协同提取玉米须总黄酮稳定、可行,可为植物活性成分在动物生产领域的应用提供参考。  相似文献   

6.
为优化微波辅助提取山竹壳多糖的工艺条件,并研究其抗氧化活性,本试验考察了微波功率、微波时间、液料比3个因素对山竹壳多糖提取量的影响,在单因素试验的基础上,采用Box-Behnken响应面试验法对山竹壳多糖的微波辅助提取工艺条件进行考察,并通过测定山竹壳多糖对DPPH自由基和羟基自由基(·OH)的清除能力来评价其抗氧化性。结果表明:山竹壳多糖的最佳提取工艺为微波功率550 W、微波时间190 s、液料比35:1(mL/g),在此条件下,山竹壳多糖的提取量为17.83 mg/g(n=3,RSD=0.31%)。山竹壳多糖浓度为1.4 mg/mL时,对DPPH自由基和羟基自由基(·OH)清除率分别为88.31%和86.01%,IC50值分别为0.65 mg/mL和0.79 mg/mL。经Box-Behnken响应面优化得到的微波辅助提取工艺稳定、可靠,可用于山竹壳多糖的提取。山竹壳多糖具有较好的抗氧化活性。 [关键词] 山竹|植物多糖|响应面法|抗氧化  相似文献   

7.
为了给桂花总黄酮的提取提供理论参考,优化微波提取桂花总黄酮的工艺,实验以桂花为原材料,乙醇为提取剂,通过单因素实验研究了颗粒度、乙醇体积分数、微波功率、微波时间、液料比及微波温度对提取效果的影响,通过正交试验对提取工艺进行优化,得最佳提取工艺:颗粒度60目、乙醇体积分数60%、微波功率300W、微波时间150s、液料比40:1(mL/g)、微波温度50℃,在此条件下总黄酮提取率为17.2077%。  相似文献   

8.
苏学军  裘可  范文赟 《中国饲料》2022,1(9):108-112
为研究氧化石墨烯(GO)辅助乙醇提取荞麦壳中总黄酮的最优提取工艺,以荞麦壳为原料,通过单因素试验考察提取时间、提取温度、GO添加量、乙醇质量分数及料液比对黄酮提取量的影响,并以正交试验优化提取工艺。结果表明:最优工艺条件为提取温度90 ℃,GO添加量1.2 mg/g,乙醇质量分数40%,料液比1:20 g/mL,提取时间1.5 h。此条件下黄酮提取量为7.39 mg/g,与乙醇回流提取法相比,提取量提高了1.19 mg/g,表明GO辅助乙醇提取技术高效、工艺稳定可行。 [关键词] 氧化石墨烯|荞麦壳|黄酮|回流提取  相似文献   

9.
王贝  葛娅娅 《中国饲料》2023,(18):28-32
文章以紫苏叶为研究对象,采用响应面分析法优化紫苏叶总黄酮的提取工艺。通过醇提法对紫苏叶总黄酮进行提取,首先对提取时间、提取温度、乙醇浓度和料液比4个单因素条件进行研究,然后进行响应面试验设计,优化分析紫苏叶总黄酮的提取工艺。结果表明,此方法提取紫苏叶中总黄酮的最佳工艺为:提取时间4.5 h,乙醇浓度68%,提取温度65℃,料液比1:55(g/mL),其理论提取率为7.48%,实际提取率为7.43%,提取温度、乙醇浓度、料液比、提取时间4个单因素对提取率的影响程度由大到小。验证试验结果表明,其结果与响应面分析预测的结果一致,该模型可靠,该研究为提高紫苏叶总黄酮提取率提供了参考。  相似文献   

10.
李栋 《中国饲料》2021,1(9):34-41
本文采用一种新型绿色溶剂提取红枣总黄酮,并对其提取工艺进行优化。通过单因素试验探究含水量、超声功率、提取时间、提取温度和料液比对红枣总黄酮得率的影响。在此基础上,采用遗传算法优化超声辅助低共熔溶剂提取红枣总黄酮工艺。结果表明:超声辅助低共熔溶剂提取红枣总黄酮最优的工艺参数为:含水量37%、超声功率167 W、提取时间30 min、提取温度54 ℃和料液比1∶26(g/mL)。在此条件下,所得红枣总黄酮得率为(29.33±0.37)mg/g。试验值和理论值的相对误差为1.24%。表明遗传算法可较好地模拟和预测不同提取条件下红枣总黄酮得率,且优化工艺参数是可行的。研究发现低共熔溶剂可作为一种新型、绿色溶剂用于高效提取红枣总黄酮。[关键词] 遗传算法|红枣|总黄酮|低共熔溶剂|工艺  相似文献   

11.
研究了微波辅助提取花生壳中总黄酮的工艺条件,考察了乙醇浓度、料液比、微波时间、微波温度、微波功率对总黄酮提取率的影响,通过正交试验优化了提取工艺。结果表明最佳工艺条件为:乙醇浓度80%、料液比1:18、微波时间6min、微波温度70℃、微波功率500W,在此条件下,总黄酮提取率可达10.660mg/g。  相似文献   

12.
李睿  刘彩芬  钟姣姣 《广东饲料》2014,23(10):33-36
为了研究葵花仁中绿原酸提取工艺,利用响应面法对葵花仁中绿原酸的提取工艺条件进行优化。在单因素的基础上,以绿原酸的提取率为考查指标,根据Box-Benhnken中心组合实验设计原理采用4因素3水平的响应面分析法优化微波辅助提取葵花仁中绿原酸工艺条件并采用fention反应检测葵花仁中绿原酸的抗氧化活性。结果表明,最佳工艺条件为:微波温度63℃,微波时间14 min,固液比1︰33(g/m L),乙醇浓度70%,在此工艺条件下,葵花仁中绿原酸提取率为3.4924%。抗氧化性实验研究表明:在选定的浓度范围内(100-1000μg/m L),随着浓度的升高,提取液对羟基自由基的清除效果更好,清除能力更强,其最大清除率为64.78%。  相似文献   

13.
为了用响应曲面法优化微波辅助提取苦荞籽总黄酮的工艺,试验选用微波辅助法提取苦荞籽总黄酮,并选取乙醇浓度、料液比、提取时间、微波预处理时间4个因素进行单因素试验,在此基础上以4个主要因素(乙醇浓度、料液比、提取时间、微波时间)为自变量,提取率为响应值,采用Box-Behnken试验设计和响应面分析法,建立数学模型。结果表明:确定苦荞仔黄酮提取的最佳工艺条件为乙醇浓度58.25%,料液比27.97∶1,提取时间2.38 h,微波时间107.48 s;在此条件下,苦荞仔总黄酮的得率5.05%。说明由响应曲面法得到的优化工艺参数比较准确,具有实用意义。  相似文献   

14.
本试验以福建武夷山采集的辣蓼为原料,采用超声波-乙醇/硫酸铵双水相法提取辣蓼中总黄酮。利用单因素试验及Box-Behnken响应面设计对提取工艺进行优化。得到辣蓼中总黄酮的最佳提取工艺条件为:乙醇浓度42%,硫酸铵含量10 g/40 mL,超声时间80 min,料液比1:40,超声温度60℃。在此工艺条件下,辣蓼中总黄酮提取率为2.923%,与预测值接近。该方法对辣蓼中总黄酮具有良好的提取效果,可为辣蓼中黄酮类化合物在食品、医药、兽药等领域的深度利用提供新的参考。  相似文献   

15.
为研究大果木姜子黄酮的最佳提取工艺及其抗氧化效果,本试验以大果木姜子为研究对象,通过单因素试验分析了提取时间、超声功率、液料比、乙醇浓度和超声温度对大果木姜子黄酮含量和抗氧化活性的影响,在此基础上,采用总评归一-响应面法优化出的最佳提取条件进行验证。结果表明:大果木姜子黄酮最佳提取条件为液料比40:1(mL/g),提取时间35 min,超声功率60 W,此条件下黄酮含量为2.48%,对DPPH自由基清除活性为93.18%。经总评归一-响应面优化得到的超声提取工艺稳定、可靠,可用于大果木姜子黄酮的提取,且具有较好的抗氧化活性。 [关键词] 大果木姜子|黄酮|响应面|抗氧化  相似文献   

16.
为了利用响应面法优化酸藤子叶中总黄酮的超声提取工艺,以总黄酮提取率为评价指标,在单因素试验的基础上,根据Box-Behnken响应面分析法确定最佳工艺条件。结果表明:各因素对总黄酮提取率的影响大小依次为乙醇浓度液料比提取时间;提取酸藤子叶总黄酮的最佳工艺条件为乙醇浓度58%,液料比21∶1,提取时间40 min,根据此条件酸藤子叶总黄酮的提取率为1.009%。说明采用响应面法优化酸藤子叶总黄酮提取工艺切实可行。  相似文献   

17.
《中国蜂业》2016,(9):46-49
优化蜂胶总黄酮的提取工艺。方法:以蜂胶总黄酮提取得率为指标,通过响应面分析法优化蜂胶黄酮的提取工艺,并对最佳提取工艺进行验证。结果:蜂胶总黄酮提取的最佳工艺参数为:乙醇浓度72.48%,超声功率82.44%,超声时间25.11min,总黄酮的得率达到13.07%。结论响应面分析法可以很好地对蜂胶总黄酮提取工艺进行优化,对实际生产具有理论指导意义。  相似文献   

18.
本试验旨在优化杂交构树叶黄酮超声提取工艺,并检测其对禽重要致病菌的抑制作用。以杂交构叶为原料,乙醇为溶剂,在单因素(乙醇浓度、料液比、超声温度和超声时间)试验基础上,采用响应面法研究因素之间相互作用及对黄酮提取得率影响,获得最佳提取工艺为乙醇浓度60%,料液比1:49 g/mL,超声温度34 ℃,超声时间24 min,验证试验黄酮平均提取得率1.75%,接近1.77%的理论值|通过二倍稀释法检测杂交构叶黄酮对5种禽重要致病菌的抑制活性,最小抑菌浓度为6.25 ~ 50 mg/mL,表明杂交构叶黄酮抗菌活性显著,作为鸡饲料添加成分防治传染性细菌病研发应用前景广阔。本研究为杂交构叶黄酮开发为天然植物饲料添加成分及加速杂交构叶资源的综合开发利用提供科学依据。 [关键词] 构树|黄酮|响应面|禽病原菌|抑菌作用  相似文献   

19.
为对四时青总黄酮的提取工艺进行优化,采用单因素结合正交试验,考察乙醇浓度、提取时间、溶剂倍量对四时青总黄酮提取率的影响,优选四时青总黄酮的提取条件。结果表明:影响因素大小为:溶剂倍量>乙醇浓度>提取时间,较优提取工艺为:乙醇浓度 60%,提取时间 60 min,溶剂倍量10倍,提取1次,此条件下四时青总黄酮的提取率为23.82%。此提取工艺稳定、可行,为四时青在饲料添加剂中的应用提供一定的试验依据。 [关键词] 四时青|总黄酮|正交试验|提取  相似文献   

20.
本研究以尼泊尔酸模根、茎和叶为原料,通过超声辅助提取的方法提取各部位的总多酚,并测定含量,结果表明根部多酚含量最高。采用响应面法优化根部总多酚的提取工艺,结果表明:当超声时间为42 min,料液比为1:104 (g/mL),乙醇体积分数为55%时,多酚的平均得率最高,为7.24%,与预测值7.21%的标准偏差为0.41%,说明此提取方法可行。多酚提取物对羟自由基和DPPH自由基的清除率IC50值分别为0.36 mg/mL和0.28 mg/mL,表明其具有较好的抗氧化活性。研究结果可为尼泊尔酸模的进一步开发利用提供参考。 [关键词] 尼泊尔酸模根部|多酚|提取工艺|优化|抗氧化活性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号