首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Organic farmers frequently report sufficient yield levels despite low or even very low soil phosphorous (P) contents questioning the applicability of widely used laboratory methods for soil P testing for organic farming.

Aims

The aim of this study was to compare the validity of a broad range of different soil extraction methods on soils under organic management from South West Germany and to test the correlation of the measured soil P concentration with plant offtake.

Methods

Twenty-two soil samples of eight different organic farms were extracted with different solutions: (1) water, (2) CAL, (3) Olsen, (4) Mehlich 3, (5) Bray P1, (6) Bray P2, (7) NaOH+Na2EDTA, and (8) total P. The results were then correlated with above ground plant P.

Results

Spearman's rank correlation coefficient (rs) of correlations between above ground plant P and extractable soil P (Water-P, CAL-P, and Olsen-P [+active charcoal {+AC}]) determined with ICP-OES were strong (0.94, 0.90, and 0.93, respectively). Among the tested methods, above ground plant P showed a strong correlation with CAL-P as detected by ICP-OES (rs = 0.90) and colorimetry (rs = 0.91). The comparison of CAL-P data provided by farmers and CAL-P analyzed during this research showed discrepancies between the results.

Conclusions

The results of this study indicate that the CAL method can be used in organic farming despite a low extraction of organic P (Porg). Furthermore, it is recommended for farmers to take soil samples for analyses regularly and interpret changes in P in the long-term instead of interpreting individual samples.  相似文献   

2.
The role of soil organic phosphorus (P) in plant nutrition was assessed using data from a glasshouse pot experiment carried out on seven soil types using two contrasting plant species (Lolium perenne, Pinus radiata) and 12 different extractants (five salts (0.025 M ethylenediaminetetraacetic acid (EDTA), 0.025 M EDTA pH 7, Olsen, Mehlich-III, and 6% NaOCl pH 7.5) and seven exchange resins (Hampton chelating resin, Bio-Rad Chelex-100, Dow MAC-3, Amberlite IRC76, Diaion WT01S, Lewatit MP500A, Diaion WA30)). The contribution from mineralization of soil organic P was inferred by consistent increases in correlation coefficients between extractable P and plant P uptake when organic P was considered in addition to inorganic P. The best correlated extractants for combined inorganic and organic P were NaOCl (r = 0.84), Hampton chelating resin (r = 0.78), and MP500A resin (r = 0.73), which compared favorably with Olsen P (r = 0.66) and EDTA (r = 0.72). 31P nuclear magnetic resonance analysis of selected extracts from two soils confirmed that the Hampton-chelating-resin-extractable P was mainly monoester and diester forms of organic P, while there was no monoester or diester organic P in the IRC76 resin extract—poorly correlated with plant uptake. The findings of this study suggest that readily extractable forms of organic P in soil contribute to short-term plant P uptake, and this P should be considered for inclusion in routine tests for soil P availability.  相似文献   

3.
通过大田试验研究了不施有机肥(CK)、施用平菇栽培废料(T1)、施用干腐熟牛粪(T2)和烘干鸡粪(T3)在种植黄瓜01~50.d内土壤中活性有机质和4种土壤酶活性的变化。结果表明:施入不同有机肥对土壤总有机质含量的影响为烘干鸡粪平菇栽培废料干腐熟牛粪对照;对活性有机质含量的影响为平菇栽培废料烘干鸡粪干腐熟牛粪对照;施用平菇栽培废料的土壤中脲酶、转化酶和脱氢酶活性最高,施用干腐熟牛粪的土壤中过氧化氢酶活性最高。相关性分析显示,脲酶、转化酶和脱氢酶活性与土壤活性有机质显著相关。用平菇栽培废料做有机肥能有效提高土壤活性有机质含量和土壤酶活性。  相似文献   

4.
Accumulation of inorganic and labile organic phosphorus (P) in intensive agricultural systems leads to P loss from soil which can cause serious environmental problems. Soil microbes are important in mobilizing soil non-available P, however, little is known about the role of soil microbes in immobilizing P to reduce P loss. Here, we test whether stimulating microbial biomass to immobilize P could reduce the amount of labile P available for leaching. The distribution characteristics of Olsen P, organic P and microbial biomass P were determined in three intensive agricultural systems. In addition, we conducted a pot experiment with three P and four carbon (C) levels. CaCl2 extractable P was measured and used to indicate the risk of P leaching. We found that there was a positive relationship between soil organic C and microbial biomass P. Carbon addition drove the process of P immobilization and reduced CaCl2 extractable P. Microbial biomass P increased by 64% (< .05) with the addition of C, and Olsen P and CaCl2 extractable P decreased by 28% and 17%, respectively. Our results show that C addition increased microbial immobilization of P and reduced forms of labile P susceptible to leaching. Stimulating microbes to immobilize P by adding C to soils may have the potential to reduce P loss from intensive agricultural systems, reducing their environmental impact.  相似文献   

5.
Simulating decomposition of labile soil organic carbon: Effects of pH   总被引:1,自引:0,他引:1  
Based on previous studies we suppose common soil carbon turnover modelling approaches to fail to accurately simulate the fate of labile organic carbon in acidic soils possibly because pH effects on decomposition are not accounted for. For mountainous permanent grasslands with higher shares of particulate carbon, turnover times of this fraction were calculated by means of radiocarbon dating and compared with rate constants of the RothC model. The model rate constant for plant litter decomposition was adjusted by pH response functions derived from (i) published data of litter decomposition or soil N dynamics and (ii) a best fit through the radiocarbon-derived turnover rates. After parameterization, the match of radiocarbon-based and model-based values was significantly improved for both rate constants and pool sizes. The results suggest that ignoring soil pH effects in models might produce misleading projections on soil carbon stocks under warming.  相似文献   

6.
Particulate organic matter (POM) and light fraction (LF) organic matter are potentially labile (active) fractions of soil organic matter (SOM) that have been shown to be indicators of short-term changes in soil management practices (e.g. tillage, manure and fertilizer applications, and crop rotation). These two fractions consist mainly of partially decomposed plant residues, microbial residues, seeds, and spores forming organo-mineral complexes with soil mineral particles; however, they cannot be used as synonyms because of their different chemical composition and structure. Particulate-OM is recovered by size-based procedures while LF is generally recovered in two distinct fractions [free-LF (FLF) and occluded-LF (OLF)] using density-based solutions in conjunction with soil-aggregate disruption. Solutions used in these density-based separations have most commonly varied in density from 1.6 to 2.0 g cm−3. Sodium iodide (NaI) and sodium polytungstate (SPT) are the chemicals most often used to prepare the density solutions in LF recovery but comparisons of the effectiveness of two solutions have not been conducted. The objectives of this research were: (1) compare the efficiency of similar density solutions of NaI and SPT in recovering FLF; and (2) compare POM, FLF, and OLF as possible sensitive indices of short-term soil changes due to tillage management. Soil samples were collected at 0-15 cm depth from a cropping system experiment conducted on a silt loam Ultisol. Plots selected for sampling had received either reduced till (RT) or no-till (NT), and cropping was continuous corn silage for a period of 3 years prior to sampling. Solutions of NaI and SPT at densities of 1.6 and 1.8 g cm−3 were used to recover FLF, and OLF was recovered with SPT solution at a density of 2.0 g cm−3 from the soil pellet remaining after FLF recovery with SPT 1.6 g cm−3. The average total soil organic carbon (SOC) content of these samples was of 12.7 g kg−1, and carbon-POM (C-POM), carbon-FLF (C-FLF), and carbon-OLF (C-OLF) represented 22.4, 5.5, and 5.2% of it, respectively. In general, C-FLF and nitrogen-FLF (N-FLF) contents recovered did not differ significantly between chemical solutions (NaI or SPT) adjusted to the same density (1.6 or 1.8 g cm−3). Increasing the density within a specific solution (NaI or SPT) resulted in significantly higher C-FLF and N-FLF recovery. For instance, C-FLF recovery averaged 637 and 954 mg kg−1 at 1.6 and 1.8 g cm−3, respectively. For both chemicals increasing density from 1.6 to 1.8 g cm−3 reduced the variability in recovering C-FLF and N-FLF with coefficient of variation values decreasing from a range of 14.9-19.1% for densities of 1.6 g cm−3 to 6.7-10.4% when densities increased to 1.8 g cm−3. In the present work, POM and OLF were more sensitive than FLF to changes in tillage management, with significantly greater amounts of the sensitive fractions in RT samples. A better sensitivity of FLF would be expected if treatments dealing with residue input (e.g. crop rotation and cover crop) were evaluated.  相似文献   

7.
The global warming has a potential for acceleration of labile soil organic carbon decomposition. Arrhenius equation is one of the useful equation for predicting temperature sensitivity of carbon decomposition, with the activation energy of rate constant being a key factor. The purpose of this study is the evaluation of temperature sensitivity of labile soil organic carbon decomposition under anaerobic condition in wetland soil using the activation energy of rate constant among different vegetation types. The soil samples were incubated at three different temperatures (10, 20, and 30°C) under anaerobic condition and carbon decomposition rates (sum of CO2 and CH4 production) were measured by gas chromatography. The first-order kinetic model with Arrhenius equation was used for approximate of anaerobic carbon decomposition. For determination of activation energy of rate constant, non-linear least-squares method was conducted between observed carbon decomposition rate and predicted carbon decomposition rate which calculated by Arrhenius equation. The activation energy of rate constant of anaerobic labile soil organic carbon decomposition was different among vegetation types. We successfully determined the activation energy of rate constant of CO2 or CH4 production from Phragites, Juncus, and Miscanthus+Cirsium-dominated vegetation soil with Arrhenius equation. Hence, this study suggests that Arrhenius equation was useful for evaluation of temperature sensitivity of labile soil organic carbon decomposition not only aerobic condition, but also anaerobic condition among several vegetation types in the wetland ecosystem. Moreover, gaseous carbon production from soil under Juncus yocoscensis dominated soil appeared higher activation energy and temperature sensitivity than that from soil under other vegetation types.  相似文献   

8.
Ecological stoichiometry provides the possibility for linking microbial dynamics with soil carbon (C), nitrogen (N), and phosphorus (P) metabolisms in response to agricultural nutrient management. To determine the roles of fertilization and residue return with respect to ecological stoichiometry, we collected soil samples from a 30-year field experiment on residue return (maize straw) at rates of 0, 2.5, and 5.0 Mg ha-1 in combination with 8 fertilization treatments:no fertilizer (F0), N fertilizer, P fertilizer, potassium (K) fertilizer, N and P (NP) fertilizers, N and K (NK) fertilizers, P and K (PK) fertilizers, and N, P, and K (NPK) fertilizers. We measured soil organic C (SOC), total N and P, microbial biomass C, N, and P, water-soluble organic C and N, KMnO4-oxidizable C (KMnO4-C), and carbon management index (CMI). Compared with the control (F0 treatment without residue return), fertilization and residue return significantly increased the KMnO4-C content and CMI. Furthermore, compared with the control, residue return significantly increased the SOC content. Moreover, the NPK treatment with residue return at 5.0 Mg ha-1 significantly enhanced the C:N, C:P, and N:P ratios in the soil, whereas it significantly decreased the C:N and C:P ratios in soil microbial biomass. Therefore, NPK fertilizer application combined with residue return at 5.0 Mg ha-1 could enhance the SOC content through the stoichiometric plasticity of microorganisms. Residue return and fertilization increased the soil C pools by directly modifying the microbial stoichiometry of the biomass that was C limited.  相似文献   

9.
ABSTRACT

The objective of this work was to evaluate the variation in labile organic carbon fractions after the application of organic wastes (OWs) in semiarid soil under plastic mulched drip irrigation. The two-year experiment involved six treatments: chicken manure (CM), sheep manure (SM), mushroom residue (MR), maize straw (MS), fodder grass (FG), and tree leaves (TL), with an unamended soil (no OWs) as control. In 2015 and 2016, treatment with OWs led to increased levels of soil organic carbon (SOC), dissolved organic carbon, microbial biomass carbon, easily oxidized organic carbon, as well as higher carbon management indexes and yields and lower oxidation stability coefficients. Higher SOC contents (p <0.01) were achieved in both years for TL and MS compared to the other OWs. In particular, the SOC content in 2016 was higher (p <0.05) for TL than MS. Compared to the other OWs, the easily oxidized organic carbon levels and carbon management indexes in both years were higher (p <0.01) for CM, SM, and MS, whereas the oxidation stability coefficients were lower (p <0.01). In conclusion, among the studied treatments, the application of MS was the most effective for improving soil fertility and enhancing soil carbon sequestration.  相似文献   

10.
Little information is available about the effects of cover crops on soil labile organic carbon (C), especially in Australia. In this study, two cover crop species, i.e., wheat and Saia oat, were broadcast-seeded in May 2009 and then crop biomass was crimp-rolled onto the soil surface at anthesis in October 2009 in southeastern Australia. Soil and crop residue samples were taken in December 2009 to investigate the short-term effects of cover crops on soil pH, moisture, NH4+–N, NO3–N, soluble organic C and nitrogen (N), total organic C and N, and C mineralization in comparison with a nil-crop control (CK). The soil is a Chromic Luvisol according to the FAO classification with 48.4 ± 2.2% sand, 19.5 ± 2.1% silt, and 32.1 ± 2.1% clay. An exponential model fitting was employed to assess soil potentially labile organic C (C 0) and easily decomposable organic C for all treatments based on 46-day incubations. The results showed that crop residue biomass significantly decreased over the course of 2-month decomposition. The cover crop treatments had significantly higher soil pH, soluble organic C and N, cumulative CO2–C, C 0, and easily decomposable organic C, but significantly lower NO3–N than the CK. However, no significant differences were found in soil moisture, NH4+–N, and total organic C and N contents among the treatments. Our results indicated that the short-term cover crops increased soil labile organic C pools, which might have implications for local agricultural ecosystem managements in this region.  相似文献   

11.
(pp. 825–831)
This study was carried out to clarify the effects of soil nitrate before cultivation and amounts of basal-dressed nitrogen on additional N application rate and yields of semi-forced tomato for three years from 1998 to 2000. The amounts and timing of additional N dressing were determined based on diagnosis of petiole sap nitrate. The top-dressing was carried out with a liquid fertilizer when the nitrate concentration of a leaflet's petiole sap of leaf beneath fruit which is 2–4 cm declined below 2000 mg L−1.
For standard yield by the method of fertilizer application based on this condition, no basal-dressed nitrogen was required when soil nitrate before cultivation was 150 mg kg−1 dry soil or higher in the 0–30 cm layer; 38 kg ha−1 of basal-dressed nitrogen, which corresponds to 25% of the standard rate of fertilizer application of Chiba Prefecture, was optimum when soil nitrate before cultivation was 100150 mg kg−1 dry soil; 75 kg ha−1 of basal-dressed nitrogen, which corresponds to 50% of the standard, was optimum when soil nitrate before cultivation was under 100 mg kg−1 dry soil. A standard yield was secured and the rate of nitrogen fertilizer application decreased by 49–76% of the standard by keeping the nitrate concentration of tomato petiole sap between 1000–2000 mg L−1 from early harvest time to topping time under these conditions.  相似文献   

12.
(pp. 833–841)

In order to learn the status of available soil nitrogen (N), two sequential extraction methods (A and B) were tested. Proposed methods are as follows.

(A) Extraction with water, KCl, acetic acid, 1/15 M phosphate buffer, sulfuric acid, and NaOH.

(B) Extraction with water, KCl, 0.01 M sulfuric acid, 0.1 M sulfuric, 0.2 M sulfuric acid and 0.4 M sulfuric acid.

1) NO3-N was only detected in a solution extracted with water. Major N in an extract with KCl was in ammonium form. Extracts with phosphate buffer and sulfuric acid contained organic-N only. When these two fractions were examined by size exclusion chromatography (HPLC-SEC), only one major peak in each extract appeared.

2) Minerals, such as Al and Fe in each extract were determined using ICP (Varian Co., Ltd.). With the increase in concentration of sulfuric acid, the high Fe concentration in each extract increased. On the other hand, much higher Al was found in extracts with lower concentrations of sulfuric acid compared to Fe.

3) Though some crop species such as spinach and carrot show the potential to take up organic-N in a soil applied with organic matter, this sequential soil-nitrogen extraction method may be useful to evaluate availability of soil nitrogen fertility with more accuracy compared to conventional methods in the case of these superior crop species.  相似文献   

13.
Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases   总被引:6,自引:0,他引:6  
 In order to estimate the role of phosphatases in maintaining the potential bioavailable P pool in soils, water and 0.4 M NaOH soil extracts were incubated with immobilized acid phosphatase, alkaline phosphatase, phospholipase and nuclease, separately, and in combinations. Immobilized nuclease at an optimum pH of 7.0 hydrolyzed the most soluble unreactive P (SUP) both in water and 0.4 M NaOH extracts. The combination of immobilized alkaline phosphatase and nuclease increased the hydrolysis of SUP at pH 7.0 by up to 61% in 0.4 M NaOH extracts relative to that due to immobilized nuclease alone. The combination of immobilized acid phosphatase and nuclease, however, did not increase the hydrolysis of SUP in either extract relative to that due to immobilized nuclease alone. Immobilized alkaline phosphatase and phospholipase increased the hydrolysis of SUP at pH 7.0 by up to 62% in 0.4 M NaOH extracts relative to that due to immobilized phospholipase alone. Similarly, immobilized acid phosphatase and phospholipase increased the hydrolysis of SUP at pH 7.0 by up to 49% in 0.4 M NaOH extracts relative to that due to immobilized phospholipase alone. The similarities in the optimum pH of indigenous phosphatases in soils and the immobilized phosphatases used in this study, immobilized on positively charged supports, suggests that indigenous phosphatases could be immobilized on positively charged surfaces in soils. Received: 17 November 1998  相似文献   

14.
低分子量有机酸对土壤磷活化影响的研究   总被引:11,自引:3,他引:11  
研究两种低分子量有机酸(柠檬酸和苹果酸)对土壤磷活化影响,并用修正的Hedley法测定土壤磷活化前后磷组分的变化。结果表明,低分子量有机酸能持续活化土壤磷,活化强度随低分子量有机酸浓度的增大而增强,并且柠檬酸活化土壤磷的能力强于苹果酸。低分子量有机酸能促进作物有效态无机磷组分(H2O-P和NaHCO3-Pi)的释放;同时还促进有机磷组分(NaHCO3-Po和NaOH-Po)的矿化。在低分子量有机酸浓度达到0.5 mmol/L以上时,其对土壤磷组分的活化量的顺序为:NaOH-Pi HCl-P NaHCO3-Pi H2O-P,即铁铝结合态磷 钙结合态磷 作物有效态磷。低分子量有机酸活化土壤磷的过程中伴有大量铁、铝释放,且铁或铝的释放量与磷活化量之间显著正相关(P0.05)。说明铁、铝结合态磷是低分子量有机酸活化土壤磷的主要磷源,并且其活化机制可能与铁、铝结合态磷的螯合溶解有关。  相似文献   

15.
The intensity of decomposition of the organic matter in the particle-size fractions from a agrogray soil sampled in a 5-year-long field experiment on the decomposition of corn residues was determined in the course of incubation for a year. The corn residues were placed into the soil in amounts equivalent to the amounts of plant litter in the agrocenosis and in the meadow ecosystem. A combination of three methods—the particle-size fractionation, the method of 13C natural abundance by C3–C4 transition, and the method of incubation—made it possible to subdivide the soil organic matter into the labile and stable pools. The labile pool reached 32% in the soil of the agrocenosis and 42% in the meadow soil. Owing to the negative priming effect, the addition of C4 (young) carbon favored the stabilization of the C3 (old) carbon in the soil. When the young carbon was absent, destabilization or intense decomposition of the old organic matter was observed. This process was found even in the most stable fine silt and clay fractions.  相似文献   

16.
Identifying ‘functional' pools of soil organic matter and understanding their response to tillage remains elusive. We have studied the effect of tillage on the enriched labile fraction, thought to derive from microbes and having an intermediate turnover time. Four soils, each under three regimes, long‐term arable use without tillage (NT), long‐term arable under conventional tillage (CT), and native vegetation (NV), were separated into four aggregate size classes. Particle size fractions of macro‐ (250–2000 μm) and microaggregates (53–250 μm) were isolated by sonication and sieving. Subsequently, densiometric and chemical analyses were made on fine‐silt‐sized (2–20 μm) particles to isolate and identify the enriched labile fraction. Across soils, the amounts of C and N in the particle size fractions were highly variable and were strongly influenced by mineralogy, specifically by the contents of Fe and Al oxides. This evidence indicates that the fractionation procedure cannot be standardized across soils. In one soil, C associated with fine‐silt‐sized particles derived from macroaggregates was 567 g C m?2 under NV, 541 g C m?2 under NT, and 135 g C m?2 under CT, whereas C associated with fine‐silt‐sized particles derived from microaggregates was 552, 1018, 1302 g C m?2 in NV, NT and CT, respectively. These and other data indicate that carbon associated with fine‐silt‐sized particles is not significantly affected by tillage. Its location is simply shifted from macroaggregates to microaggregates with increasing tillage intensity. Natural abundance 13C analyses indicated that the enriched labile fraction was the oldest fraction isolated from both macro‐ and microaggregates. We conclude that the enriched labile fraction is a ‘passive' pool of soil organic matter in the soil and is not derived from microbes nor sensitive to cultivation.  相似文献   

17.
耕作方式转变和秸秆还田对土壤活性有机碳的影响   总被引:1,自引:3,他引:1  
深松是解决长期旋免耕后耕层浅薄化、亚表层(15~30 cm)容重增加等问题的有效方法之一,长期旋免耕后进行深松显著影响土壤有机碳及其组分的周转。为对比转变耕作方式对土壤活性有机碳(LOC)及碳库管理指数的影响,该研究基于连续6 a的旋耕转变为深松和免耕转变为深松定位试验,对比了2012-2014年长期旋免耕农田进行深松对农田土壤活性有机碳及碳库管理指数的影响。研究结果表明,耕作方式转变和秸秆还田均对土壤LOC含量、活性有机碳与有机碳的比例(LOC/SOC)和碳库管理指数产生显著影响。相对于原旋耕秸秆还田处理(RTS),虽然旋耕-深松秸秆还田处理(RTS-STS)提高了0~30 cm土层的LOC含量,但其土壤中LOC/SOC比例和碳库管理指数显著下降。而免耕-深松秸秆还田(NTS-STS)处理和耕作方式未转变的免耕秸秆还田处理(NTS)在0~10 cm土层其LOC含量无显著性差异,但NTS-STS处理显著提高LOC/SOC比例。耕作方式转变导致RTS-STS处理碳库管理指数随着土层的加深而逐渐降低,而NTS-STS处理则呈逐渐升高趋势。耕作、秸秆、年份、耕作与秸秆、耕作与年份及3者交互作用是导致耕作方式转变后各处理0~30 cm的LOC含量变化的主要作用力(P0.05)。秸秆还田条件下,将长期旋耕处理转变为深松可显著降低土壤SOC中的LOC比例,降低碳库管理指数,促进土壤碳库的稳定性;而长期免耕处理转变为深松能够显著提高土壤下层(10~30 cm)的土壤碳库活性。  相似文献   

18.
本文以中国农业科学院山东禹城长期定位施肥试验为平台,研究了长期施用有机肥和化肥26年后对土壤活性氮库不同组分[颗粒有机氮(POM-N)、 可溶性有机氮(DON)、 微生物量氮(SMBN)及轻组有机氮(LFOM-N)]及土壤酶活性的影响。结果表明,与不施肥相比,长期施肥显著提高了土壤全氮、 颗粒有机氮、 可溶性有机氮、 微生物量氮以及轻组有机氮的含量,长期施有机肥效果好于化肥,施用高量有机肥效果好于施用常量有机肥。常量施用量下,50%有机肥和50%化肥配施处理其土壤全氮和活性有机氮库各组分含量与高量化肥处理的相当。长期施化肥处理土壤全氮及活性有机氮库各组分含量随施肥量的增加而显著增高。POM-N对土壤全氮的贡献率最高,且明显受施肥方式的影响,LFOM-N对土壤全氮的贡献率不随施肥方式的改变而变化。长期施肥处理土壤脲酶、 碱性磷酸酶和蔗糖酶活性显著增加,它们之间及与土壤全氮、 速效磷及有机碳含量间呈现显著或极显著相关性,脲酶活性与土壤各活性氮组分间也存在显著或极显著相关性; 但长期施肥后土壤过氧化氢酶的活性低于不施肥  相似文献   

19.
不同森林植被下土壤活性有机碳含量及其季节变化   总被引:21,自引:1,他引:21  
通过对湖南省会同县地区不同季节地带性常绿阔叶林、杉木纯林、火力楠纯林以及杉木火力楠混交林土壤各活性有机碳的含量测定,分析了森林植被对土壤活性碳库及其季节变化的影响.结果表明,常绿阔叶林转变为人工林后,土壤活性有机碳含量明显降低;与杉木纯林相比,火力楠与杉木混交可提高土壤活性有机碳含量,但只有土壤水溶性有机碳含量显著提高;各林地土壤活性有机碳具有明显的季节变化,一年中土壤水溶性有机碳含量的大小始终为常绿阔叶林>杉木火力楠混交林>火力楠纯林>杉木纯林,土壤微生物量碳、热水浸提有机碳和碳水化合物则表现为常绿阔叶林>火力楠纯林>杉木火力楠混交林>杉木纯林.与杉木纯林相比,杉木火力楠混交林可提高林地质量,但不同林地活性有机碳的季节变化规律表现不尽一致,表明土壤活性有机碳的季节差异不仅与温度、降雨等气候因素有关,还受到植被类型的影响.  相似文献   

20.
西藏色季拉山典型植被类型土壤活性有机碳分布特征   总被引:13,自引:0,他引:13  
周晨霓  马和平 《土壤学报》2013,50(6):1246-1251
研究土壤活性有机碳含量及分配比例是揭示土壤有机碳库周转及调控机理的重要途径。为探讨不同森林植被类型对土壤活性有机碳库的影响,以西藏色季拉山(西坡)的高山灌丛(AS)、杜鹃林(RF)、急尖长苞冷杉林(AGSF)和林芝云杉林(PLLF)为试验对象,研究了林地土壤总有机碳、总氮含量、各活性有机碳组分及其分配比例。结果表明:高海拔植被类型具有较高的土壤活性有机碳含量和分配比例。在不同植被类型的生态系统中,土壤总有机碳含量、土壤颗粒有机碳和土壤易氧化碳含量均呈现出随土层深度增加而递减的变化趋势。土壤颗粒有机碳含量占土壤总有机碳含量和土壤易氧化有机碳含量占土壤总有机碳含量的比率范围不同,且随土层深度增加比率减小,且颗粒有机碳分配比例表现的更为明显。土壤颗粒有机碳含量和土壤易氧化有机碳含量与土壤总有机碳含量和总氮之间的相关性均达到了极显著水平(p<0.05),土壤颗粒有机碳含量和土壤易氧化有机碳含量的相关性在在不同土层表现出显著性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号