首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The effect of pH on the saturated hydraulic conductivity (K) of repacked columns of two non‐sodic soils (Healaugh and Fagaga soils) was examined. The K value was greater for the Fagaga soil than for the Healaugh soil which is attributed to the difference in the amount of free iron oxides between the soils. The K values reached a maximum when the pH was close to the point of zero net charge (PZNC) (3.7 and 4.8 for the Healaugh and the Fagaga soil, respectively) and decreased on either side of these pH values. The effect of pH on K was related to its effect on surface charge. As the pH of variable‐charge soils approaches the PZNC, the net surface charge decreases resulting in flocculation and maintenance of a high K. Conversely, as the pH deviates from the PZNC, the net surface charge increases, resulting in dispersion and a decrease in K. There was a negative relationship between the amount of dispersed clay and the K values, suggesting that clay dispersion and the resulting clogging of pores decreases K in these soils.  相似文献   

2.
Two surface soils (Patua and Tokomaru) of contrasting mineralogy were incubated with several levels of either CaCO3 or HC1. The effects of ionic strength on pH, on surface charge, and on the adsorption of phosphate and sulphate were measured in three concentrations of NaCl. The pH at which the net surface charge was zero (point of net zero charge—PZC) was 1.8 for the Tokomaru soil and 4.6 for the Patua soil: differences that can be related to mineralogical composition. There was an analogous point of zero salt effect (PZSE) that occurred at pH 2.8 for the Tokomaru soil and at 4.6 for the Patua soil. The presence of permanent negative charge in the Tokomaru soil resulted in an increase in PZSE over PZC. The effect of ionic strength on adsorption varied greatly between phosphate and sulphate. For phosphate, there was a characteristic pH above which increasing ionic strength increased adsorption and below which the reverse occurred. This pH (PZSE for adsorption) was higher than the PZC of the soil and was 4.1 for the Tokomaru soil and 5.3 for the Patua soil. In contrast, increasing ionic strength always decreased sulphate adsorption and the adsorption curves obtained in solutions of different ionic strengths converged above pH 7.0. If increasing ionic strength decreases adsorption, the potential in the plane of adsorption must be positive. Also, if increasing ionic strength increases adsorption, the potential must be negative. This suggests that, depending upon pH, phosphate is adsorbed when the potential in the plane of adsorption is either positive or negative, whereas sulphate is absorbed only when the potential is positive.  相似文献   

3.
Abstract

Soil dispersion induces soil erosion and colloidal leaching. Nutrients are lost at the same time and this causes water contamination. Phosphate is an essential element for living organisms. Because phosphate influences soil dispersion and it is an important limited resource, this influence must be evaluated well in order to diminish negative effects on soil structure. In this paper, we firstly evaluated the influence of phosphate sorption on soil dispersion by calculating repulsive potential energy between soil particles. Ferralsol, which is a typical soil in rainy tropical regions, was used as the material. The dispersion-flocculation phenomena were investigated with absorbance of soil suspension under different pH, phosphate adsorption and electrolyte concentration in an Na-NO3-PO4 system. The repulsive potential energy was calculated based on the diffuse double layer theory and the measured zeta potential. We indicated that the measured absorbance increased with the increase of the repulsive potential energy. The repulsive potential energy increased with increasing phosphate sorption up to about 5 to 20 mmol kg?1 at all pH, and it induced the soil dispersion, because phosphate sorption increased the negative charge of the soil. After its peak, it decreased with increasing phosphate sorption because the electrolyte concentration increased and the electrolyte screened the electric field near the soil surface. The repulsive potential energy also increased with increasing pH because of the increase of the negative charge of the soil. Even at low pH, after a certain amount of phosphate sorption, the soil dispersed due to the increase of repulsive potential energy, although the soil flocculated before phosphate application. Because the soil dispersion causes soil and phosphorus loss, the influence of soil pH and phosphate sorption on the soil dispersion should be considered for good soil management.  相似文献   

4.
The influence of soil pH on the leaching potential of the ionizable herbicide imazaquin was assessed on the profile of two highly weathered soils having a net positive charge in the B horizon, in contrast to a soil having a net negative charge in the whole profile, using packed soil column experiments. Imazaquin leached to a large extent and faster at Kd values lower than 1.0 L kg(-1), a much more lenient limit than usually proposed for pesticides in the literature (Kd < 5.0 L kg(-1)). The amount of imazaquin leached increased with soil pH. As the soil pH increased, the percentage of imazaquin in the anionic forms, the negative surface potential of the soils, as well as imazaquin water solubility also increased, thus reducing sorption because of repulsive electrostatic forces (hydrophilic interactions). For all surface samples (0-0.2 m), imazaquin did not leach at soil pH values lower than pKa (3.8) and more than 80% of the applied amount was leached at pH values higher than 5.5. For subsurface samples from the acric soils, imazaquin only began to leach at soil pH values > zero point of salt effects (ZPSE > 5.7). In conclusion, the use of surface K(oc) values to predict the amount of imazaquin leached within soil profiles having a positive balance of charges may greatly overestimate its actual leaching potential.  相似文献   

5.
Borate sorption by a soil was measured with 0.01, 0.1, or 1.0 M sodium chloride as background electrolyte and samples of soil with a range of pH values achieved by incubating with either calcium carbonate or hydrochloric acid for 24 h at 60°C.
Borate sorption generally increased with increasing pH. The more concentrated the electrolyte, the steeper the increase. At low pH, increasing the salt concentration decreased borate sorption; at high pH, it increased sorption. There was an intermediate pH at which salt had no effect on borate sorption. The point of zero salt effect on borate sorption was at a higher pH than the point of zero salt effect on pH. This result was explained by a mechanism in which borate ions react with variable charge surfaces which are heterogeneous and for which part of the heterogeneity is in the electric potential of the surfaces. It cannot be explained by mechanisms which do not take into account the effects of the electric potential of the reacting surfaces on the reaction with borate ions. Although the behaviour of borate was broadly consistent with that of other anions, it differed in that about half of the heterogeneity had to be allocated to the binding constant for borate ions. It was suggested that this was because reaction with organic matter was more important for borate than for other anions.  相似文献   

6.
Limited information is available on the changes of surface chemical properties of tropical soils with time during the pedogenesis. Soil samples of three profiles derived from basalts of 10, 1330 and 2290 kilo annum (ka) in age were collected from adjacent locations in a tropical region of Hainan Province, China. The changes in soil surface chemical properties and the mineralogy of the soil clay fraction with time were investigated using ion adsorption, micro-electrophoresis, and X-ray diffraction analysis. The content of 2:1-type clay minerals decreased, while those of kaolinite and gibbsite increased with increasing basalt age and degree of soil development. The content of pedogenic free iron (Fe) oxides and the ratio of free Fe oxides/total Fe oxides increased with soil development stage, while soil poorly crystalline Fe and aluminum (Al) oxides had an opposite trend. The positive surface charge of the soils increased with increasing basalt age and degree of soil development; this was consistent with the change in their contents of free Fe/Al oxides. However, the value of negative surface charge had an opposite behavior. The soil derived from 10-ka-basalt had much more negative charge than soils derived from 1330- and 2290-ka-basalt. Soil net surface charge and zeta potential of the soil clay-fraction decreased with the increase in basalt age. Both net charge–pH curves and zeta potential–pH curves shifted to positive values with increased basalt age and degree of soil development. Increasing age also elevated the point of zero net charge of the soil and the isoelectric point of soil colloids.  相似文献   

7.
研究了中南地区3种土壤的电荷量,电荷零点和净电荷零点等表面电荷性质及其与土壤矿物组成的关系,结果表明:(1)从赤红壤,红壤到黄棕壤,永久负电荷量趋于增大,主要与土壤的粘土矿物组成和粘粒含量有关,可变负电荷量变异有明显,  相似文献   

8.
Abstract

Highly weathered tropical soils are characterized by having a predominantly variable charge. Many management practices commonly used in the exploitation of these soils (e.g., liming, phosphate application, and manuring) are known to modify their electrical charge and the sorption/desorption behavior of cations and anions. This process is, at least, partially governed by the charges existing in the soil system. Available information on this subject comes mainly from short‐term laboratory and greenhouse experiments. There is a lack of data regarding the cumulative and long‐term effects of those practices used at farm‐scale levels and on the dynamics and availability of nutrients to the plants under field conditions. In the present work, changes in some electrochemical attributes of a variable charge soil (Oxisol) were studied, as influenced by treatments with phosphate + green manure (Cajanus cajan), phosphate + lime, and phosphate + lime + green manure, applied during a six‐year period. In this period, rice, bean, wheat, or corn, were grown in seventeen successive crops. Phosphate (total 334 ppm P) and phosphate + lime (total 5.5 t ha‐1) were shown to increase net electric charge and soil cation exchange capacity (CEC) at the field pH, and not to affect zero point of charge (ZPC), CEC at pH 7.0, or anion exchange capacity (AEC) of the soil at the field pH. The effects of phosphate + lime were more pronounced than those of phosphate alone. Green manure (total 16 t ha‐1 dry matter), associated to crop residues and phosphate or phosphate + lime, did not influence electrochemical properties.  相似文献   

9.
Clay movement was studied in a large number of well-drained soils from Peninsular Malaysia, with a kaolinite mineralogy and an udic or perudic moisture regime. Dispersion in subsoils was found to be related to the net charge on the clay, while in topsoils it was virtually independent of charge or weathering status, and all but one topsoil dispersed well. Accumulation of the dispersed clay is thought to be mainly through flocculation, and as such accounts for the absence of clay coatings in many subsoil horizons. A number of criteria are proposed to distinguish between highly weathered Ultisols and Oxisols, in an effort to improve on the currently used inconclusive properties, such as fine clay to total clay ratio.  相似文献   

10.
Five soil samples collected from China and two soil samples from Pakistan with widely different origin and characteristics were used to study the zero point of charge (ZPC) of soil colloids. The results showed that the value of zero point of charge of H-clay complexes was lower than that of H-clays in all the samples. Natural clay complexes had the highest ZPC as compared to H-clay complex and H-clay in alfisol, closer to H-clays rather than H-clay complexes in oxisol and udult. The delta value of ZPT (zero point of titration) to ZPC was higher in H-clay complexes than in H-clays.  相似文献   

11.
土壤电化学性质的研究Ⅲ.红壤胶体的电荷特征   总被引:1,自引:2,他引:1  
张效年  蒋能慧 《土壤学报》1964,12(2):120-131
土壤胶体的电荷性质,与土壤的一系列物理化学性质有密切关系。红壤的某些与肥力有关的物理化学性质,与其它类型土壤有所不同。例如,它的阳离子交换量较小,而阴离子吸附量则较大,分散性较弱,胀缩性也较小。红壤在物理化学性质方面的这些特点,大多是由其胶体的电荷特点所引起。  相似文献   

12.
Laboratory experiments were carried out to evaluate the effect of pH, ionic strength and electrolyte composition on zinc sorption–desorption by two Andepts from the Canary Islands (Spain). At the natural soil pH, the soils exhibited little net negative surface charge and small Zn sorption capacities. More than 75% of the sorbed Zn was apparently strongly bonded. The pH greatly influenced the sorption–desorption reactions. Sorption increased with increasing pH, and retention increased abruptly at pH > 6.0. Sorption also occurred at pH values below the point of zero charge (PZC) of the soils, when most of the surface sites are positively charged. Desorption decreased continuously with rising pH and became a trace at pH > 6.0. An increase in the ionic strength of the background electrolyte decreased Zn sorption and enhanced the amount of sorbed metal that could be subsequently released. In the two soils, Zn sorption diminished somewhat in the K and Ca electrolytes as compared with the Na electrolyte. However, this did not happen at small Zn loadings. Desorption was not affected by the type of electrolyte and cation used. The results are consistent with chemisorption being responsible for most of the sorption. The results also suggested a strong affinity sorption or even precipitation at high pHs.  相似文献   

13.
Five soil sapmles collected from China and two soil samples from Pakistan with widely different origin and characterstics were used to study the zero point of charge(ZPC) of soil colloids.The results showed that the value of zero point of charge of H-clay complexes was lower than that of H-clays in all the samples.Natural clay complexes had the highest ZPC as compared to -Hclay complex and H-clay in alfisol,closer to H-clays rather than H-clay complexes in oxisol and udult.The Delta Value of ZPT(zero point of titration )to ZPC was higher in H-Clay complexes than in H-Clays.  相似文献   

14.
张效年  赵安珍 《土壤学报》1988,25(2):164-174
根据可变电荷和永久电荷共存的土壤体系的模式,研究了一个砖红壤和一个红壤胶体的表面电荷特性。由于两种土壤胶体的矿物成分和铁铝氧化物的含量不同,砖红壤胶体的pH。值、ZPNC和IEP都高于红壤胶体者。红壤胶体的永久负电荷量多,其pH0与ZPNC的差值也大。土壤加3%的有机质淹水培育4个月后,胶体的腐殖质含量增加不足0.5%,对胶体的pH0的影响不明显。砖红壤胶体用磷酸盐或硅酸盐处理后,表面正电荷减少,负电荷增多,pH0值和IEP都降低。磷酸盐的效应较硅酸盐为甚。不同浓度的KCl溶液中存在少量SO42-时,砖红壤胶体的正电荷减少,负电荷增加,ZPNC和pH0值降低;如存在少量Ca2+,则pH0值升高。以单一的K2SO4、为支持电解质时,pH0值较KCl者为高。  相似文献   

15.
The pH of samples of a soil was altered by mixing them either with acid or lime, and incubating the moistened samples at 60°C for a day. The sorption of selenate and of selenite was then measured using as background electrolytes, 0.01 M, 0.1 M and 1.0 M sodium chloride and also 0.01 M calcium chloride. The results were compared with previous studies with phosphate and fluoride. Selenite was sorbed more strongly than selenate, but not as strongly as phosphate or fluoride. Sorption of both selenite and selenate decreased with increasing pH. This decrease was more marked for selenate than for selenite; more marked in a sodium system than in a calcium one; and more marked with a dilute background electrolyte than a concentrated one. Under certain conditions, the steeper curves for the dilute electrolyte crossed the curves for the concentrated electrolyte giving points of zero salt effect. For selenite, these points of zero salt effect occurred near pH 6 and the greater the sorption the lower the pH for zero salt effect. For phosphate, the analogous value was near pH 5. For selenate, if a point of zero salt effect occurred, it was at such a high pH and such a low amount of sorption that it could not be measured. Thus, the larger the amount of sorption the lower the pH for the point of zero salt effect. This generalization applied both within and between different kinds of sorbates. The results were closely described by a model that had previously been applied to phosphate and fluoride. The model postulates that ions react with charged surfaces. The electric potentials of the reacting surfaces are affected by the identity and concentration of the background electrolyte and this produces the interactions between pH and electrolyte concentration. The model also postulates that there is a distribution of electric potentials. Anions react with surfaces which occur in the more positive tail of this distribution. The smaller the amount of the reaction the more positive the potential of the reacted surface and, therefore, the higher the pH required to decrease this potential to zero.  相似文献   

16.
An experiment was conducted to observe the phosphate sorption potential of some soils of Bangladesh. Three soil series of calcareous origin, namely Sara (Aquic Eutrochrept), Gopalpur (Aquic Eutrochrept) and Ishurdi (Aeric Haplaquept), and two soil series of non-calcareous origin, namely Tejgaon (Rhodic Paleustult) and Ghatail (Aeric Haplaquept), were selected. The soils were equilibrated with dilute solution of calcium chloride containing graded concentrations of phosphate (0, 1, 2, 5, 10, 25 and 50?μg?P?mL?1), and the amount of phosphate sorbed or desorbed was determined. Although all the soils showed potential for sorbing phosphate from applied phosphorus, their ability to sorb phosphorus differed. Increasing rates of phosphate application increased the amount of P sorption but reduced phosphate sorption percentage in all soils except Tejgaon. Phosphate was sorbed by the soils in the order: Tejgaon > Ghatail > Ishurdi > Gopalpur > Sara at 50?μg?P?mL?1 application. Soils possessing higher amounts of free iron oxide and clay sorbed more phosphate from applied phosphorus.  相似文献   

17.
The retention of dissolved organic matter in soils is mainly attributed to interactions with the clay fraction. Yet, it is unclear to which extent certain clay‐sized soil constituents contribute to the sorption of dissolved organic matter. In order to identify the mineral constituents controlling the sorption of dissolved organic matter, we carried out experiments on bulk samples and differently pretreated clay‐size separates (untreated, organic matter oxidation with H2O2, and organic matter oxidation with H2O2 + extraction of Al and Fe oxides) from subsoil horizons of four Inceptisols and one Alfisol. The untreated clay separates of the subsoils sorbed 85 to 95% of the dissolved organic matter the whole soil sorbed. The sorption of the clay fraction increased when indigenous organic matter was oxidized by H2O2. Subsequent extraction of Al and Fe oxides/hydroxides caused a sharp decrease of the sorption of dissolved organic matter. This indicated that these oxides/hydroxides in the clay fraction were the main sorbents of dissolved organic matter of the investigated soils. Moreover, the coverage of these sorbents with organic matter reduced the amount of binding sites available for further sorption. The non‐expandable layer silicates, which dominated the investigated clay fractions, exhibited a weak sorption of dissolved organic matter. Whole soils and untreated clay fractions favored the sorption of ”︁hydrophobic” dissolved organic matter. The removal of oxides/hydroxides reduced the sorption of the lignin‐derived ”︁hydrophobic” dissolved organic matter onto the remaining layer silicates stronger than that of ”︁hydrophilic” dissolved organic matter.  相似文献   

18.
土壤组分对广东省酸性水稻土磷吸附参数的影响   总被引:9,自引:2,他引:7  
Soil components affecting phosphate sorption parameters were studied using acid paddy soils derived from basalt, granite, sand-shale and the Pearl River Delta sediments, respectively, in Guangdong Province.For each soil, seven 2.50 g subsamples were equilibrated with 50 mL 0.02 mol L-1 (pH=7.0) of KCl containing 0, 5, 10, 15, 25, 50 and 100 ng P kg-1, respectively, in order to derive P sorption parameters (P sorption maximum, P sorption intensity factor and maximum buffer capacity) by Langmuir isotherm equation. It was shown that the main soil components influencing phosphate sorption maximum (Xm) included soil clay, pH,amorphous iron oxide (Feo) and amorphous aluminum oxide (Alo), with their effects in the order of Alo >Feo > pH > clay. Among these components, pH had a negative effect, and the others had a positive effect.Organic matter (OM) was the only soil component influencing P sorption intensity factor (K). The main components influencing maximum phosphate buffer capacity (MBC) consisted of soil clay, OM, pH, Feo and Alo, with their effects in the order of Alo > OM > pH > Feo > clay. Path analysis indicated that among the components with positive effects on maximum phosphate buffer capacity (MBC), the effect was in the order of Alo > Feo > Clay, while among the components with negative effects, OM > pH. OM played an important role in mobilizing phosphate in acid paddy soils mainly through decreasing the sorption intensity of phosphate by soil particles.  相似文献   

19.
The sorption of zinc (Zn) by two acid tropical soils, Mazowe clay loam (kaolinitic, coarse, Rhodic Kandiustalf) and Bulawayo clay loam (coarse, kaolinitic, Lithic Rodustalf), was studied over a wide range of Zn solution concentrations. Samples of the two soils used in the experiments were collected at both uncleared, uncultivated (virgin) sites and cultivated sites. The two virgin soils showed similar abilities to bind Zn. Mazowe soil (40 g organic matter kg?1) presented the highest affinity for Zn. Yet, Bulawayo soil (23.5 g organic matter kg?1) sorbed almost the same amount. Bulawayo soil had higher pH and Fe and Mn-oxide content than Mazowe soil. Once cultivated, the two soils behaved quite differently. After 50 years, Mazowe soil had lost 60% of its organic matter and effective cation exchange capacity (ECEC). In this soil, Zn sorption capacity had also been decreased by 60%. Clearing and 10 years under cultivation had affected neither the organic matter content nor the ECEC of Bulawayo soil. For this soil, Zn sorption was even higher in the cultivated soil, presumably due to an increase in the amount of Fe and Mn oxide from subsoiling. Zinc sorption was dependent upon pH, with retention dramatically increasing in the pH range 6–7. Sorption occurred at pH values below the point of zero charge (PZC), indicating that the sorption reaction can proceed even in the presence of electrostatic repulsion between the positively charged soil surface and the cation. In the two soils, the reversibility of the sorption reaction was very low. More than 90% of the sorbed Zn was apparently strongly bonded.  相似文献   

20.
The effect of changing pH and electrolyte concentration on the dispersion and zeta potential of Na-and Ca-forms of kaolinite, illite and smectite was investigated in relation to changes in their net negative charge. The percentage of dispersible Na-clay and the percentage increase in net negative charge was positively correlated with pH, but the slopes varied from clay to clay. In general, the net negative charge was the primary factor in clay dispersion, and the pH affected clay dispersion by changing the net charge on clay particles. Na-smectite had larger net charge at all pHs than Na-illite and Na-kaolinite, and it always had larger flocculation values. The role of electrolyte concentration could be due to its effect both on flocculation and variable charge component of the clay minerals. The zeta potential at different pHs also reflected the same trend of clay dispersion with net particle charge. In Ca-clays the trends were similar to Na-clays up to pH 7.0. In more alkaline solution CaCO3 formation led to charge reduction on clay particles, resulting in flocculation and reduction of zeta potential. At similar pHs the electrophoretic mobilities of all the clays showed constant potential behaviour. However, the zeta potentials of Ca-clays were always smaller than those of sodic clays because the clays were more aggregated. Net particle charge was the most important factor in controlling clay dispersion for the whole range of pH and ionic strength and for all types of cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号