首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
This paper presents aluminium (Al)-solubility data for two acid forest soils (Inceptisol and Spodosol), obtained in connection with lysimeter measurements (tension-cup and zero-tension lysimeters) and batch equilibrium experiments. The solubility of Al obtained in the batch experiments was used as a reference to test whether Al3+in soil solutions collected by the lysimeters was in equilibrium with secondary forms of solid-phase Al (Al(OH)3or organically bound Al). The relation between pH and Al3+activity found for the zero-tension lysimeter solutions collected from the Inceptisol agreed well with that obtained in the batch experiment. This suggests that Al3+in the lysimeter solutions were in, or close to, equilibrium with the solid phase, whether this was organically bound Al (A horizon) or an Al(OH)3phase (B horizon). For the tension-cup lysimeters, solutions obtained from the Inceptisol B and Spodosol Bs1 horizons were generally close to equilibrium with respect to secondary solid-phase Al (apparently Al(OH)3; average ion activity product was 109.3and 108.8, respectively), whereas the Inceptisol A and Spodosol Bh solutions were not. The Al solubility in Inceptisol A and Spodosol Bh horizons was consistently higher than that obtained in the batch equilibrium experiment, indicating that the sampled solution partly originated from the underlying horizons. Thus, tension-cup lysimeters should be used with care in soils (or in parts of soil profiles) having steep solute concentration gradients because the soil volume from which the sample is drawn with this lysimeter type seems to be poorly defined.  相似文献   

2.
Towada Ando soils consisted of five soils—Towada-a (1,000 years old), Towada-b (2,000 years old), Chuseri (4,000 years old), Nanbu (8,600 years old), and Ninokura soils (10,000 years Amorphous clay materials of these soils taken at different localities were studied by the combined use of selective dissolution and differential infrared spectroscopy, X-ray analysis, electron microscopy, etc.

The main clay minerals of Towada-a soils, present-day soils, were montmorillonite-vermic-ulite chloritic intergrades and opaline silica, or these minerals and allophane in the humus horizons, and allophane in the non-humus ones. Towada-b soils overlain by the Towada-a soils showed the clay mineralogical constituents similar to those of Towada-a soils. However, allophane was one of the main clay minerals in all the humus horizons as well as non-humus ones. The main clay minerals of Chuseri soils were allophane and layer silicates consisting chiefly of chloritic intergrades and chlorite in the humus horizons, and allophane in the non-humus ones. Opaline silica was present in minor amounts in the humus horizons of Chuseri soils, but nearly absent in Nanbu and Ninokura soils.

There were remarkable differences in the clay mineralogical composition of Nanbu and Ninokura soils with differences of their environmental conditions. Allophane and imogolite Were dominant in the clay fractions of both humus and non-humus horizons of very shallowly buried Nanbu soil which was subjected to the strong leaching process. Allophane was the main clay mineral of deeply buried Nanbu and Ninokura soils which showed the absence of notable accumulation of bases and silica. On the contrary, halloysite with a small amount of siliceous amorphous material appeared in very deeply buried Nanbu and Ninokura soils where bases and silica were distinctly accumulated. The amounts of halloysite in the clay fractions were larger in the humus horizons than non-humus ones, and in Ninokura soil than Nanbu soil.

Soil age, soil organic matter, and depositional overburden of tephras were observed to be conspicuous among various factors relating to the weathering of amorphous clay materials in Towada Ando soils.  相似文献   

3.
The profile distributions of oxalate- and pyrophosphate-soluble Al compounds and oxalate-soluble Si compounds in the main horizons of pale-podzolic soils of the Central Forest Reserve and the fractions <1. 1–5, and >5 μm have been considered. In the clay-eluvial part of soil profile, the content of these compounds is differentiated by the eluvial–illuvial type with a clear accumulation in the EL horizon compared to the AEL horizon. This distribution is largely ensured by their differentiation in the clay and fine silt fractions, while an accumulative distribution of mobile Al compounds is observed in fractions >5 μm. The high correlation between the Al and Si contents in the Tamm extracts from the clay and fine silt fractions with the (Alox–Alpy)/Siox molar ratios, which are in the range of 1–3 in the EL horizon, confirms that mobile compounds are accumulated in these fractions in the form of amorphous aluminosilicates. In the AEL and EL horizons, an additional amount of Al can pass into the oxalate solution from the fine fractions due to the dissolution of Al hydroxide interlayers of soil chlorites. The eluvial–illuvial distribution of mobile Al and Si compounds typical for Al–Fe–humus podzols within the clay-illuvial part of profiles of the soils under study can be considered as an example of superimposed evolution.  相似文献   

4.
Abstract

A method to determine the contents of imogolite and Al-rich allophane (Sil Al ? 1 : 2) in volcanic ash soils was presented. The method is based on the (1) assessment of the presence of Al-rich allophane in clays by successsive extraction with dithionite-citrate and oxalate-oxalic acid, (2) trimethylsilylation of soil clay with a mixture of hexamethyldisiloxane, HCl, and isopropyl alcohol, and determination of the content of monomeric Si based on the trimethylsilyl derivative of monomeric orthosilicate anion by gas / liquid chromatography, (3) determination of the total content of imogolite and Al-rich allophane based on the content of monomeric Si from imogolite, (4) determination of the imogolite content by Thermogravimetry (TG )-Differential Thermal Analysis (DTA) based on the weight loss due to endothermic dehydroxylation with maximum values at ca. 386°C, (5) calculation of the Al-rich allophane content by subtracting the imogolite content from the total content of these minerals, and (6) evaluation of the imogolite and Al-rich allophane content of soil by multiplying clay content of soil and the two mineral content of clay. The trimethylsilylation analysis was found to be reproducible, and the estimated total amounts of two minerals in clays by this method were adequately approximated to those evaluated from the amount of Si (= Sio) extracted with oxalate-oxalic acid after extraction with dithionite-citrate. The variation in the abmldance of two minerals in the soil horizons of volcanic ash soils from the San'in region indicated that this method is suitable for the profile-study of volcanic ash soils.  相似文献   

5.
A purified allophane clay fraction increased the respiration of Escherichia coli (ATCC 11303B) by buffering the suspension against decreases in pH. Allophane had no significant effect on respiration in the presence of 0.02 M phosphate buffer. When E. coli was exposed to pH values below 5.0 in the presence of allophane, allophane supernatant (which contains soluble Al), or soluble Al. toxicity was evident even after raising the pH to 7.0.  相似文献   

6.
Abstract

The aluminum solubility of acidified soils both from furrows and under tree canopies of a tea garden was studied using equilibrium experiments in 0.01 mol L?1 CaCl2 solution systems. The soils were originally classified as allophanic Andosols. The furrow soils were more severely acidified because of the heavy application of nitrogen fertilizer, especially in the upper soil horizons (pH[H2O] of 3.6–3.8 in the A1 and 2A2 horizons). These acidified soils were characterized by the dissolution of allophanic materials (allophane, imogolite and allophane-like materials) and by an increase in Al–humus complexes. Ion activity product (IAP) values of the strongly acidified soil horizons were largely undersaturated with respect to imogolite (allophanic clay) or gibbsite. Plots of p(Al3+) as a function of pH strongly indicated that Al solubility of the soils was largely controlled by Al–humus complexes, especially in the A1 horizon. In the canopy soils, which were more weakly acidified (pH[H2O] 4.9–5.0), Al solubility was close to that of gibbsite and allophanic materials, indicating that the solubility is partly controlled by these minerals.  相似文献   

7.
Recent studies with Andisols show that the carbon (C) stabilization capacity evolves with soil age relative to the evolution of the mineral phase. However, it is not clear how soil mineralogical changes during pedogenesis are related to the composition of soil organic matter (SOM) and 14C activity as an indicator for the mean residence time of soil organic matter (SOM). In the present study, we analyzed the contribution of allophane and metal–SOM complexes to soil C stabilization. Soil organic matter was analyzed with solid-state 13C nuclear magnetic resonance spectroscopy. Additionally, the soil was extracted with Na-pyrophosphate (Alp, Fep) and oxalate (Alo, Sio, and Feo). Results supported the hypothesis that allophane plays a key role for SOM stabilization in deep and oldest soil, while SOM stabilization by metal (Al and Fe) complexation is more important in the surface horizons and in younger soils. The metal/Cp ratio (Cp extracted in Na-pyrophosphate), soil pH, and radiocarbon age seemed to be important indicators for formation of SOM–metal complexes or allophane in top- and subsoils of Andisols. Changes in main mineral stabilization agents with soil age do not influence SOM composition. We suggest that the combination of several chemical parameters (Alp, Fep and Cp, metal/Cp ratio, and pH) which change through soil age controls SOM stabilization.  相似文献   

8.
The mineralogy of the clay fractions separated from the B horizons of two Hydrandepts (Hilo and Akaka soils), a Torrox (Molokai soil) and a Humitropept (Kolekole soil) was determined by a combination of methods.The Hydrandept B horizons were characterized by predominance of hydrous non-crystalline alumina and iron oxides associated with considerable amounts of humus and with very small amounts of silica. Allophane, allophane-like constituents and imogolite were present but in minor amounts. Gibbsite, goethite, chlorite and illite were also present as accessory minerals.The Torrox and Humitropept B horizons were characterized by predominance of kaolinite, hematite and goethite. The iron oxide minerals were present as fine particles (40–80 A diameter) often clustered to form larger aggregates. Neither imogolite nor allophane and allophane-like constituents were detected. Considerable amounts of dithionite-citrate soluble Al and humus were, however, present in the Humitropept B horizon, which may reflect the effect of an admixture of volcanic ash to the parent material.  相似文献   

9.
The macromorphology, micromorphology and chemical nature of illuvial material in podzol B horizons and subsoils can be explained by contributions from two different migrating species: (a) a positively-charged mixed Al2O3-Fe2O3-SiO2-H2O sol incorporating minor amounts of adsorbed organic matter and silicate clay, and (b) negatively charged organic sols and solutions, carrying minor amounts of Al, Fe and clay. These species can also be generated within B horizons of high root activity. An alternative theory, that requires allophane to be formed in situ in the B horizon by microbial decomposition of precipitated organic complexes, fails to predict the observed distribution of allophane.  相似文献   

10.
A contrasting occurrence of clay minerals was found within a soil profile which was derived from volcanic materials in the suburbs of Fukuoka-city, Northern Kyushu. The soil profile is located on an isolated terrace, and the morphological characteristics of the soil correspond exactly to Andosols, so-called Kuroboku soils or Humic Allophane soils.

The clay fraction of upper horizons of the soil consists largely of alumina-rich gel-like materials, gibbsite, and layer silicates such as chlorite and chloritevermiculite intergrades, while that of lower horizons is composed of allophane and gibbsite or halloysite. There was no positive indication of allophane in the upper horizons. Corresponding with the clay mineralogical composition, quartz is abundant in the fine sand fraction of the upper horizons, while the mineral is very scarce or none in the lower horizons, suggesting a close relation between the petrological nature of parent volcanic materials and the mineralogical composition of weathering products. The dominant clay mineral in the volcanic 1.10il might be dependent on the petrological nature of parent materials, and allophane is mostly formed from andesitic materials, and alumina-rich gel-like materials and layer silicates have come from quartz andesitic materials. Allophane would transform to gibbsite or halloysite according to weathering conditions, and aluminarich gel-like materials change to gibbsite under a well-drained condition.

The soil materials have been so greatly weathered that some horizons contain gibbsite of even more than 40 per cent or halloysite over 70 per cent. The morphology and mineralogy are quite similar to so-cailed “non-volcanic Kuroboku soils.”  相似文献   

11.
Soils that are forming on volcanic parent materials have unique physical and chemical properties and in most cases, on wet and humid climates, are classified as Andisols. The main purpose of this study is to examine if the soils that are forming on volcanic materials under a dry Mediterranean climate, in Nisyros Island (Greece), meet the requirements to be classified as Andisols. Soils from seven sites were sampled and examined for their main physico-chemical properties and selective dissolution analysis. Dithionite–citrate–bicarbonate (DCB) extractable Al and Fe (Áld, Fed), acid ammonium oxalate extractable Al, Fe, and Si (Álo, Feo and Sio), and sodium pyrophosphate extractable Al and Fe (Alp, Fep) were measured. In addition, Al and Si were determined after reaction with hot 0.5 M NaOH, (AlNaOH and SiNaOH) and with Tiron-(C6H4Na2O8S2), (AlT and SiT). P-retention was also measured. The soils are characterised by coarse texture, low organic matter content, low values of cation exchange capacity (CEC), and high pH values. Values of Sio, Alo and Feo are less than 0.022%, 0.09% and 0.35% respectively, highlighting the lack of noncrystalline components. The ratio (Fed–Feo)100/Fed is quite high expressing the degree of crystallisation of free iron oxides. For all samples tested, values of the Alo + 1/2Feo index are extremely low (< 0.24%). High SiNaOH and SiT (arising 2.76% and 2.18% respectively) indicate the presence of silica in amorphous forms. P-retention values are very low (< 12.6%). The results indicated the absence of noncrystalline minerals except for amorphous silica, and do not exhibit andic or vitric soil characteristics to be classified as Andisols.  相似文献   

12.
Andr Eger  Allan Hewitt 《CATENA》2008,75(3):297-307
This study focuses on soils in a mountainous catchment area located in the eastern part of the Southern Alps, South Island, New Zealand. The objective was to check the soils for non- or poorly crystalline constituents (metal organic complexes, short-range-order minerals) and if there is a relationship between pedogenesis and aspect and more recent landscape history. The morphology of the soils indicates brown soils (dystric cambisols, dystrudepts) with only few signs of podsolisation. In contrast, selected chemical properties of the soils reveal very strong weathering and leaching. Feo/Fed ratios are high and exceeding 0.6 in almost every soil horizon. Oxalate-extractable aluminium and silicon show prominent peaks in the lower subsoil horizons with 1.76–2.52% Alo and up to 0.68% for Sio on southern aspects. This is considerably higher than the values measured for soils on northern aspects (0.59% to 1.07% Alo, max. 0.26% Sio). This aspect relationship is also applying to phosphate retention reaching values of more than 90% on southern aspects and not more than 70% for northern aspects. Additionally, significant movement of organic matter in soils on southern aspects is evident by measurements of organic carbon and pyrophosphate-extractable Al and Fe. Thus soil formation can be regarded as more advanced on southern aspects. Allophane in association with organic matter can be considered as an important constituent in southern aspect subsoils being responsible for the typical andic properties. Metal-humus complexes and ferrihydrite are of subordinate significance. Considering the actual soil forming conditions under scrub-grassland (esp. soil acidity), it is unlikely that weathering and leaching is still strong enough today to allow significant podsolisation and the formation of short-range-order minerals. Under consideration of existing soil data from other studies it is proposed that these components and the podsolisation features are relicts caused by more acidic conditions under former forest cover which supported a stronger weathering and leaching.  相似文献   

13.
Potato common scab induced by Streptomyces scabies is a serious constraint for potato-producing farmers and the incidence of potato scab depends on the soil chemical properties. We examined the chemical characteristics of conducive and suppressive soils to potato common scab with reference to the chemical properties of nonallophanic Andosols, recently incorporated into the classification system of cultivated soils in Japan. Allophanic Andosols with a ratio of pyrophosphate-extractable aluminum (Alp) to oxalate-extractable aluminum (Alo) of less than 0.3–0.4 were “conducive” soils with a high allophane content of more than 3%. On the other hand, nonallophanic Andosols with a Alp/Ala ratio higher than this critical value were “suppressive” soils, and their allophane content was less than 2%. The concentration of water-soluble aluminum (AI) was also a useful index for separating conducive from suppressive soils as well as the Alp/Ala value and allophane content. The suppressive soils showed a much higher concentration of water-soluble Al at pH 4.5 to 5.5 than the conducive soils. The high concentration of water-soluble Al may be responsible for the control of the incidence of potato common scab in Andosols.  相似文献   

14.
The stabilization of SOM by Al–humus complexes and non-crystalline minerals is a key issue to explain the soil-C variability and the biogeochemical processes that determine the fate of soil C following land-use/cover change (LUCC) in volcanic landscapes. In an altitudinal gradient of volcanic soils (2550–3500 masl), we quantified the total soil C (CT) concentrations and stocks in soil pits sampled by genetic horizons. We performed analyses at landscape and local scales in order to identify and integrate the underlying environmental controls on CT and the effects of LUCC. We selected four sites, two on the upper piedmont, one on the lower mountain slope and one on the middle mountain slope at Cofre de Perote volcano (eastern central Mexico) where temperate forests are the natural vegetation. At each site we selected three to five units of use/cover as a chronosequence of the LUCC pathways. In each soil horizon chemical characteristics (i.e. N, C/N ratio, pH, exchangeable bases) were determined and mineralogical properties were estimated from selective Al, Fe and Si oxalate and pyrophosphate extractions (i.e. the Alp/Alo ratio, the active Al related to non-crystalline minerals as Alo ? Alp, the allophane concentration, and the non-crystalline Al and Fe minerals as Alo + 1/2Feo). At landscape scale, the Al–humus complexes were strongly related to the CT concentration in topsoil (A horizons) but this relationship decreased with depth. In turn, the non-crystalline minerals and the C/N ratio explained the variability of the CT concentrations in C horizons. At local scale, CT concentrations and stocks were depleted after conversion of forest to agriculture in Vitric Andosols at the upper piedmont but this was not observed in Silandic Andosols. However, in Vitric Andosols the reduction of the CT stocks is partially recovered throughout the regeneration/reforestation processes. The results suggest that the lower vulnerability of Silandic Andosols than Vitric Andosols to changes in the CT after LUCC is due to the higher levels of SOM stabilized by Al–humus complexes and non-crystalline minerals in the Silandic soils. Furthermore, the importance of the allophane to explain the CT stocks in the Silandic Andosols of the middle slopes suggests that the CT stabilized by this mineral fraction in the subsoil adds an important fraction of the CT to the estimates of the stocks.  相似文献   

15.
Soils with morphological evidence of podzolization occur in Sierra Morena (southern Spain). Six soils, identified as Humic Acrisols, were sampled for detailed study. Distribution of oxalate- and EDTA-extractable Al in Fe in the profiles indicated that substantial amounts of both elements had been translocated from the A to the incipient podzolic B horizons. Part of the Al, but almost no Fe, was present as organic complexes, suggesting that these two elements were transported to, or remobilized in the B horizons by different mechanisms. Allophane was present, albeit in small amounts, in two soils. Both inorganic and organic theories of podzolization were able to explain the Fe and Al distribution data.  相似文献   

16.
Abstract

Acid oxalate reagent was used at various concentrations, pH values, shaking times, and soil to solution ratios to find the optimum conditions for the extraction of Al, Fe, and Si from short‐range‐order materials in soils and stream‐bed deposits. The optimum conditions vary with the nature of the soil sample and its components. For most soils maximum amounts of Al, Fe, and Si were extracted with 0.15M acid oxalate reagent at pH 3.0 with a soil to solution ratio of 1:100 and shaking for 4 h in the dark at 20°C. Soils with more than 5% oxalate‐extractable Al or Fe require a 0.20M oxalate solution at pH 3.0 with a soil to solution ratio of 1:200.

Allophane is extracted by acid oxalate reagent after shaking for 2 h and it may be estimated from the 4 h oxalate‐extractable Si values. Ferrihydrite is extracted after shaking for 4 h, and it may be estimated from the oxalate‐extractable Fe values. Either sodium oxalate or ammonium oxalate may be used  相似文献   

17.
The island of Milos (Greece), part of the South Aegean volcanic arc with a typical Mediterranean climate, is covered with volcanic deposits of different ages. The objective of this study was to investigate the physicochemical and mineralogical properties of the soils developing on these volcanic deposits and their classification. Samples were taken from seven locations of soil on different parent material and of different ages. There were substantial differences in their particle size distribution, with sand ranging from 19% to 92%, silt from 3.5% to 50%, and clay from 5% to 46%. Organic matter content was low (< 2.0%). The soil pH ranged from 5.6 to 8.0. In two of the profiles, CaCO3 equivalents of 1.4% to 24.6% were found and a calcic horizon identified. The cation exchange capacity (CEC) and specific surface area (SSA) varied between profiles ranging from 3 cmol(+) kg− 1 to 47 cmol(+) kg− 1 and 30 m2 g− 1 to 380 m2 g− 1, respectively. The soils exhibited high base saturation. The amounts of Al, Fe and Si extracted with ammonium oxalate (Αlo, Feo and Sio) were particularly low (< 0.1%, < 0.17%, and < 0.1%, respectively) which demonstrates the absence of amorphous clay-silicate minerals (allophane). Fe extracted with dithionite citrate bicarbonate — DCB (Fed) was greater than Feo sharing the dominance of crystalline Fe oxides. Al and Si extracted with hot 0.5 M NaOH (Al2Ο3NaOH and SiΟ2NaOH) and with Τiron-C6H4Na2O8S2, (Al2Ο and SiΟ). SiΟ2NaOH and SiΟ were particularly high (mean values 3.4% and 4.5%, respectively), showing that amorphous silica was present. The clay fraction of the soil was dominated by the presence of 2:1 (vermiculite and smectite) and 1:1 (kaolinite) clay-silicates. Alo+ 1/2Feo was low (< 0.18%), while the P-retention in most soils was less than 15%. These soils do not exhibit andic properties and hence cannot be classified as Andisols. The silica saturation index (ISS) may be used for these soils to describe a pedogenetic environment rich in Si which favours the formation of pedogenic amorphous silica. The climate is the major determinant of the evolution of these soils.  相似文献   

18.
In previous studies, Al extracted by acid ammonium acetate (Ala) or Na-pyrophosphate (Alp), rather than silt or clay content and climate conditions, was the most important factor that controls organic matter (OM) levels in volcanic soils. Here, the hypothesis was tested that Ala is a comparable method (as much as CuCl2) to quantify the proportion of Al bound to OM in allophanic soils. As far as we know, there are no previous antecedents in which selective dissolution method has been compared with this extractant. Secondly, we examine the effects of (a) Al, (b) silt plus clay content (particles size 0-53 µm) and (c) clay mineralogy on the control of organic carbon (OC) level in Chilean volcanic soils. This was achieved by sampling 16 soils series (11 Andisols, one Alfisol and four Ultisols, USDA classification) including 48 soil pedons up to 0.4 m depth. Soils were analyzed for Ala, Alp, oxalate (Alo, Sio and Feo), cold NaOH (Aln) and un-buffered salts, CuCl2 (AlCu), LaCl3 (AlLa) and KCl (Alk). We also measured the Al-humus as soluble C fraction after pyrophosphate extraction and the C associated to the silt plus clay fraction after sonication and gravity decantation. The statistical package (S)MATR was used to examine bivariate linear regressions among soil properties by computing the standardized major axis (SMA). Our results indicate that Ala had a good correspondence with Alp (R2 = 0.76) in the top soil with Ala/Alp ratio of 0.19 and both extractans presented significant and positively relationship with soil OC (R2 > 0.62). Acid ammonium acetate was as effective as AlCu to determine the Al-OM in allophanic soils. It is cheaper than AlCu and Alp and 0.5 h shaking is required compared to 2 h of AlCu and 16 h of Alp. The efficiency of the extraction was: Aln ≥ Alo > Alp > AlCu ≥ Ala > AlLa > Alk. We also found that allophane content (estimated by Al/Si ratio) was strongly correlated (R2 = 0.82) with the OC in the fine silt plus clay and that Al-humus together with C in the finest particles explained (R2 > 0.60) the largest proportion of variation of soil OC across studied soils.  相似文献   

19.
The clay mineralogy of 22 samples of the Ap horizons of Ando soils was determined by a combination of methods. Of these samples, 15 did and 7 did not contain allophane and imogolite. Opaline silica was found in 4 samples, whereas aluminum—humus complexes, iron oxides and layer silicates were found in all samples. The presence of allophane and imogolite and the absence of opaline silica in a few Ap horizons was related to mixing of A1 horizons and subsoils by cultivation and to lower supplies of organic matter relative to the amounts of aluminum released from volcanic ash by weathering. The contents of 2:1 and 2:1:1 layer silicates and their intergrades were larger in soils in which quartz predominated in fine fractions. It was inferred that aluminum bound with humus and in allophane-like constituents, rather than aluminum in allophane and imogolite, is important in reactions with phosphate and fluoride.  相似文献   

20.
Chemical and mineralogical properties of ochreous brown earths have been studied with particular reference to: (1) the distribution within the profiles of Fe and Al compounds; (2) the occurrence of smectite-like clay minerals in surface horizons. Ochreous brown earths studied belong to a developmental sequence of forest soils, from acid brown earths to ferric podzols, developed on sandy or loamy-sandy acid parent materials. In such a soil sequence, both selective chemical and mineralogical data show clearly that podzolization is already active in ochreous brown earths, whereas such an incipient podzolization is quite undetectable by direct morphological observations. The distribution patterns of amorphous Fe and Al hydrous oxides and organic associations, clearly show the intergrade character of ochreous brown earths, when compared with the vertical distribution of Fe and Al forms in acid brown earths and podzolized soils. The Fe/Al ratio of both an NH4-oxalate extract and an NaOH/Na-tetraborate extract buffered at pH 9.7, measured in the A1B diagnostic horizon of ochreous brown earths, is a particularly appropriate and useful genetic criterion for the detection of incipient podzolization. Moreover, the presence of expansible clay minerals (degradation smectites) in the clay-sized fraction of the surface horizons of ochreous brown earths (A1 and A1B) can be considered as supplementary evidence of incipient podzolization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号