首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Japan, as the climate is temperate and humid, almost all soils show acid reaction. Especially, a good many strongly acid soils were reported in the survey of reclaimed lands (1, 2). The great majority of strongly acid soils are mineral soils derived from Tertiary or Diluvial sediments.  相似文献   

2.
F.S. Hanna  H. Beckmann 《Geoderma》1975,14(2):159-170
The mineralogical composition of clay fractions of thirteen profiles, representing the soils of four transects across the Nile Valley, were studied. The soils represent Torrerts and Torrifluvents. The dominant mineral in the fractions is montmorillonite. Kaolinite is present in small amounts. Illite and chlorite are found in trace amounts. Traces of calcite, feldspar and goethite were also indicated in most of the samples. The mineralogical composition of the clay fractions is nearly the same. There is no significant difference in the clay mineral composition between Torrerts and Torrifluvents. The mineral composition of the clay fractions in soils across the transects from west to east and from south to north does not differ significantly.  相似文献   

3.
Soil scientists have been encouraged to investigate soils for clay minerals by very fact that soil characteristics fundamentally depend upon the nature of their clay. It is generally recognized that clays of different species develop under different conditions such as drainage, temperature weathering age, and parent rocks. On Kyushu Island, heavy, reddish soils derived from olivine basalt cover a considerably large area of its northeastern part, and a numbar of small islands belonging to Kyushu. Koga * Hiroshi Koga, Clay minerals of Oura basaltic soil, 1954 (unpublished). of this laboratory found a basaltic soil of clay consisting of hydrated halloysite, halloysite, hematite, and gibbsite at the eastern foot of Mt. Tara, by examining its clay separates by X-ray, thermal, chemical, and electron microscopical techniques. Kanno et al5 reported that in a basaltic soil at Oura, Saga prefecture, hydrated halloysite developed from plagioclase and ferro-magnesian minerals with gibbsite and hematite which was more abundant than in other Red and Yellow Soils. They also found some illite present in the soil derived from unknown minerals, and halloysite dehydrated in upper layers.  相似文献   

4.
通过化学分析 ,X-射线衍射及镜检法研究了黑土、白浆土、黑钙土等吉林省主要耕作土壤的含钾矿物组成及不同形态钾的含量。结果表明 ,土壤中的含钾矿物以含钾长石和伊利石为主 ,钾长石主要集中在土壤砂粒部分 ,伊利石主要存在于土壤的粘粒部分。土壤的含钾矿物总量约占土壤矿物总量的 1/ 3多些 ,比南方土壤高 ;缓效钾含量丰富 ,供钾潜力大 ;速效钾含量在黑土、黑钙土中较高 ,而在白浆土中稍低。 3种土壤的全钾量与含钾矿物总量、粘粒中伊利石含量与粘粒含钾量、伊利石含量与缓效钾量、细砂中含钾长石含量与细砂中全钾量、缓效性钾与速效性钾之间呈极显著或显著相关。  相似文献   

5.
Red-Yellow soils are widely developed on terraces and hilly lands in the south-western half of Japan. They do not show any evidence of bleaching in the lower part of the A horizon, and are characterized by an extremely strong acid reaction, and a very low base-status9). There are few studies on clay mineralogy of Red-Yellow soils in Japan. Egawa et al4). have reported on clay mineralogy of soils derived from the Pleistocene and the Tertiary sediments most of which may be regarded as Red-Yellow soils. Matsui and Katô10) have described clay minerals of Red-Yellow soils derived from the Pleistocene sediment in the environs of Shinjobara, Shizuoka Prefecture. These investigations indicated that clay minerals of Red-Yellow soils derived from the Pleistocene sediments consisted mainly of kaolin minerals, whereas those of Red-Yell ow soils derived from the Tertiary sediments were of the kaolin-illite association.  相似文献   

6.
Surface soil samples from seven profiles from the central plains of Sudan were investigated using XRD, chemical analysis and Mössbauer spectroscopy measured at 15K. Dioctahedral montmorillonite was the main constituent with different proportions of kaolinite and chlorite. Goethite was found as fine iron oxyhydroxide in all the samples, with haematite detected in two pedons. Crystallinity of the clays was observed to correlate negatively with the amount of free iron oxide in the soil. The influence of the climatic factors on the soil and its formation is discussed.  相似文献   

7.
《Geoderma》1987,39(4):307-321
Clay minerals and humus complexes and their effects on soil chemical properties were studied for five profiles around the Longonot and Susua volcanoes in Kenya. Morphologically, all profiles have some resemblance to Andepts, but there were clear-cut differences in clay contents and mineral composition as well as pH between profiles 1 through 4 and profile 5, which occur under semi-arid to subhumid and under humid climatic conditions, respectively. Profiles 1 through 4 contained embryonic halloysites with X-rays amorphous iron oxide and silica, whereas profile 5 contained a kaolin mineral, chloritized 2:1 layer silicates, gibbsite and hematite. These mineral associations probably represent early and advanced stages of weathering of volcanic ash under weak and strong leaching conditions, respectively. Embryonic halloysites consisted of more or less poorly ordered halloysite and “1.0- and 0.7-1.0-nm minerals”. The carbon contents of A horizons ranged from 100 to 112 g/kg in profiles 2, 3 and 5. Humus complexes increased in the order; Fehumus ⩽ Al-humus ⩽ Ca-humus in profiles 2 and 3, whereas Al- and Fe-humus were found exclusively in profile 5. The pH (NaF), phosphate retention and acid oxalate extractable Al qualify only profile 5 as an Andept or Andisol.  相似文献   

8.
In the northern forest-steppe of European Russia, under the conditions of surface waterlogging (freshwater) and a stagnant-percolative regime, gleyic podzolic chernozem-like soils with thick light-colored eluvial horizons are formed. These horizons are close or similar to the podzolic horizons of bog-podzolic soils in many properties of their solid phase. They are bleached in color and characterized by the removal of Ca, Mg, Fe, Al, and Mn and the relative accumulation of quartz SiO2. These soils differ from leached chernozems in their acid reaction and very low CEC, the presence of Fe-Mn concretions and coatings, and the significant decrease in the clay content in the A2 horizon as compared to the parent rock. The soils studied differ significantly from loamy podzolic and bog-podzolic soils by the composition of the clay minerals in the A2 horizons: (1) no essential loss of smectite minerals from this horizon was found as compared to the rest of the solum, (2) pedogenic chlorites (HIV and HIS) are absent, and (3) the distinct accumulation of illites is observed as compared to the subsoil and parent material, probably, due to the process of illitization.  相似文献   

9.
A weathering sequence with soils developing on volcanic, trachy-basaltic parent materials with ages ranging from 100–115,000 years in the Etna region served as the basis to analyse and calculate the accumulation and stabilisation mechanisms of soil organic matter (SOM), the transformation of pedogenic Fe and Al, the formation and transformation of clay minerals, the weathering indices and, by means of mass-balance calculations, net losses of the main elements. Although the soils were influenced by ash depositions during their development and the soil on the oldest lava flow developed to a great extent under a different climate, leaching of elements and mineral formation and transformation could still be measured. Leaching of major base cations coupled with a corresponding passive enrichment of Al or Fe was a main weathering mechanism and was especially pronounced in the early stages of soil formation due to mineral or glass weathering. With time, the weathering indexes (such as the (K + Ca)/Ti ratio) tend to an asymptotic value: chemical and mineralogical changes between 15,000 and 115,000 years in the A and B horizons were small. In contrast to this, the accumulation of newly formed ITM (imogolite type materials) and ferrihydrite showed a rather linear behaviour with time. Weathering consisted of the dissolution of primary minerals such as plagioclase, pyroxenes or olivine, the breakdown of volcanic glass and the formation of secondary minerals such as ITM and ferrihydrite. The main mineral transformations were volcanic glass ? imogolite ? kaolinite (clay fraction). In the most weathered horizons a very small amount of 2:1 clay minerals could be found that were probably liberated from the inner part of volcanic glass debris. The rate of formation and transformation of 2:1 clay minerals in the investigated soils was very low; no major changes could be observed even after 115,000 years of soil evolution. This can be explained by the addition of ash and the too low precipitation rates. In general, soil erosion played a subordinate role, except possibly for the oldest soils (115,000 years). The youngest soils with an age < 2000 years had the highest accumulation rate of organic C (about 3.0 g C/m2/year). After about 15,000 years, the accumulation rate of organic C in the soils tended to zero. Soil organic carbon reached an asymptotic value with abundances close to 20 kg/m2 after about 20,000 years. In general, the preservation and stabilisation of SOM were due to poorly crystalline Al- and Fe-phases (pyrophosphate-extractable), kaolinite and the clay content. These parameters correlated well with the organic C. Imogolite-type material did not contribute significantly to the stabilisation of soil organic matter.  相似文献   

10.
Abstract

Contents of soil phosphorus and potassium vary appreciably in different localities of the Indonesian Archipelago. Data collected for riceland soils from seven irrigation areas (five on Java and one each on Sumatra and Sulawesi) show that average available phosphorus contents in the tilled layer may range from 23 ppm P at the Sumatra location to 203 ppm Pat the Sulawesi location. Average exchangeable potassium contents ranged from less than 0.2 meq/100g. K in the Sumatran soils to over 1.0 meq/100g. in potash‐rich soils of Java. Distinct regional differences in soil fertility of the magnitude observed indicate that blanket fertilizer recommendations cannot be made if rice production is to be increased without wasting chemical fertilizers which are relatively scarce and expensive in Indonesia. Increased emphasis must be placed on soil testing and soil fertility research in order to achieve the national goal of self‐sufficiency in food stuffs.  相似文献   

11.
Clay fractions of three Andosols and a Latosol occurring in Indonesia, and two Alluvial Soils derived from pyroclastic sediments in the Philippines were examined by means of chemical analyses, X-ray diffraction, differential thermal analysis, thermogravimetry, infrared absorption spectroscopy, and electron microscopy. The results are summarized as follows.

Allophane is a dominant clay mineral of young volcanogenous soils occurring in the tropics. Small amounts of halloysite, gibbsite, and imogolite are also found in some of the young volcanogenous soils. Halloysite and imogolite are relatively abundant in the surface soil, while gibbsite is more abundant in the subsoil. In the clay fraction of the young volcanogenous soils in the tropics, α-cristobalite is often present, but quartz occurs rarely. Small amounts of feldspars are also present in the Philippine soils. 2 : 1-type minerals are found to a small extent in some of the sample soils. The above results agree well with the results for Japanese Andosols, except for a difference in the primary mineral composition.  相似文献   

12.
The clay mineralogical composition of soils on volcanic ashes from Mashū and Kamuinupuri-dake volcanoes, Hokkaido, which are rich in cristobalite, was determined using petrological, X-ray diffraction, differential thermal, and selective dissolution and differential infrared spectroscopic methods.

The cristobalite occurred in abundance in every size of fraction from coarse sand to clay and every soli from approximately 1,700 to 8,400 years old, and was concluded to be of igneous origin. The major clay minerals were allophanelike constituents and allophane with some layer silicates as the minor clay mineral, being similar to those of andesitic ash soils and different from those of volcanic ash soils containing abundant quartz. The quartz of volcanic ashes was presumed to bederived from the groundmass-equivalent portion of the ashes which had been formed from magma at a low temperature.  相似文献   

13.
Oxalic acid plays an important role in improving the bioavailability of soil nutrients. Batch experiments were employed to examine the influences of oxalic acid on extraction and release kinetics of potassium (K) from soils and minerals along with the adsorption and desorption of soil K^+. The soils and minerals used were three typical Chinese soils, black soil (Mollisol), red soil (Ultisol), and calcareous alluvial soil (Entisol), and four K-bearing minerals, biotite, phlogopite, muscovite, and microcline. The results showed that soil K extracted using 0.2 mol L^-1 oxalic acid was similar to that using 1 mol L^-1 boiling HNO3. The relation between K release (y) and concentrations of oxalic acid (c) could be best described logarithmically as y = a + blogc, while the best-fit kinetic equation of K release was y = a + b√t, where a and b are the constants and t is the elapsed time. The K release for minerals was ranked as biotite 〉 phlogopite 〉〉 muscovite 〉 microcline and for soils it was in the order: black soil 〉 calcareous alluvial soil 〉 red soil. An oxalic acid solution with low pH was able to release more K from weathered minerals and alkaline soils. Oxalic acid decreased the soil K^+ adsorption and increased the soil K^+ desorption, the effect of which tended to be greater at lower solution pH, especially in the red soil.  相似文献   

14.
The ability of a few soil bacteria to transform unavailable forms of potassium (K) to an available form is an important feature in plant growth-promoting bacteria for increasing plant yields of high-K-demand crops. In this research, isolation, screening, and characterization of six isolates of K solubilizing bacteria (KSB) from some Iranian soils were carried out. The ability of all isolates were tested in three treatments including acid-leached soil, biotite, and muscovite by analyzing the soluble K content after 5 days of incubation at 28 ± 2°C. Identification and phylogenetic analyses were also carried out by morphological, biochemical, and 16S rDNA analyses. Among the six efficient isolates, five isolates belonged to Bacillus megaterium (JK3, JK4, JK5, JK6, and JK7), while isolate JK2 belonged to Arthrobacter sp. The soluble K contents in all isolated-treatments were significantly (< 0.01) higher than the contents in nonbacteria treatment. Herein, isolate JK2 had lower potential for K solubilization (910 mg kg?1) compared with other isolates in acid-leached soils. The six bacterial strains showed higher solubilized K in biotite treatment than other two treatments. Overall, it can be concluded that the isolates belong to B. megaterium are the most efficient KSB under in vitro condition.  相似文献   

15.
Abstract

Phosphorus status of Bangladesh paddy soils covering the major paddy soil types was assessed in terms of parent materials and physiography. Total P concentration ranged from 172 to 604 mg kg?1 in the topsoil and from 126 to 688 mg kg?1 in the subsoil, and varied with the physiography to which the soils belonged. In most soils, the available P concentration was much higher for the topsoil than for the subsoil. The inorganic P concentration was higher than the organic P concentration, except for one soil series from the Old Himalayan Piedmont Plain, and was significantly and positively correlated with the total P concentration. Among the inorganic forms, only the concentration of Al-bound P showed a significant correlation with that of available P based on the Bray P-2 method in both topsoil and subsoil. In general, the P status was critically low in paddy soils of the terrace area. Normal growth of paddy rice in this area is expected to be difficult without application of P fertilizer.  相似文献   

16.
Release of potassium from some benchmark soils of India   总被引:1,自引:0,他引:1  
Release of potassium from 15 surface samples of benchmark Alluvial, Red and Black soils of India to 0.01 M solutions of BaCl2, CaCl2, NH4Cl and NaCl was studied in soils either untreated or pretreated with 5 × 10−3 M KCl. In the untreated soils, the efficacy of the extractants declined in the sequence: BaCl2 > NH4Cl > CaCl2 > NaCl. Cumulative K-release was greatest from Black soils, followed by Red and Alluvial soils. From soils pretreated with 5 * 10−3 M KCl, more K was released than retained, and more 'native' K was released than that from untreated soils. Increase in the release of 'native' K decreased in the sequence: Red > Alluvial > Black soils. The amounts of surface and internal K, desorption rate constants and parabolic diffusion constants were calculated from K release to the various electrolytes.  相似文献   

17.
Abstract

In view of the agronomic and economic significance of NH4 fixation in soils, an attempt has been made to relate this to the most reactive mineral constituents of soils ‐ the clay minerals, under the temperature‐moisture regimes normal to tropical upland rice soils. Laboratory fixation study was done with NH4, concentrations similar to those common in soils upon N fertilization, and under alternate wetting and drying at ambient temperatures rather than at 100°C as in many published studies.

Results of the investigation show that soil clays with dominant vermiculite and montmorillonite fix the greatest proportion of applied NH4 (94 and 91%), followed by beidellite (72%) and x‐ray amorphous (45–64%) clays. Fixation is negligible (10%) in the clay with mineral suite consisting of hydrous mica, halloysite, and chlorite. Crystallinity of minerals seems to influence NH4 fixation appreciably.  相似文献   

18.
We investigated the question of whether exchangeable K+ is a reliable factor for K+ availability to plants on representative arable soils (Aridisols) rich in K+-bearing minerals. Five soils with different textures were collected from different locations in Pakistan and used for pot experiments. The soils were separated into sand, silt, and clay fractions and quartz sand was added to each fraction to bring it to 1 kg per kg whole soil, i.e., for each fraction the quartz sand replaced the weight of the two excluded fractions. On these soil fraction-quartz mixtures wheat, elephant grass, maize, and barley were cultivated in a rotational sequence. Growth on the sand mixture was very poor and except for the elephant grass all species showed severe K+-deficiency symptoms. Growth on the mixture with silt and clay fractions was much better than on the sand fraction; there was no major difference in growth and K+ supply to plants whether grown on silt or clay, although the clay fraction was rich and the silt fraction poor in exchangeable K+. On both these fractions the plant-available K+ supply was suboptimal and the plants showed deficiency symptoms except for the elephant grass. This plant species had a relatively low growth rate but it grew similarly on sand, silt, and clay and did not show any K+ deficiency symptoms, with the K+ concentration in the plant tops indicating a sufficient K+ supply regardless of which soil fraction the plants were grown in. The reason for this finding is not yet understood and needs further investigation. It is concluded that on soils rich in mica, exchangeable K+ alone is a poor indicator of K+ availability to plants and that mica concentrations in the silt and clay fraction are of greater importance in supplying crops with K+ than exchangeable K+.  相似文献   

19.
Abstract

Three methods for soil potassium extraction (M NH4OAc pH 7, 0.01 M AgTU and 30 % hot H2SO4) were compared for a variety of kaolinitic soils of the tropics. The AgTU‐extractable K was much higher than the M NH4OAc‐extractable K when vermiculite clay was present in the soil. The correlation between both was given by an R value of 0.937. The amounts of K extracted by 0.01 M AgTU and by hot H2SO4 were approximately the same. The R value for these two methods was 0.843.

It is suggested that the AgTU extractant could be used for determination of plant‐available K in soil and for testing for the presence or absence of vermiculite clay in soils.  相似文献   

20.
Potassium (K+) directly released from primary K‐bearing minerals can contribute to plant nutrition. The objective of this research was to assess short‐term K+ release and fixation on a range of intensively cropped calcareous soils. Potassium sorption and desorption properties and the contributions of exchangeable‐K+ (EK) and nonexchangeable‐K+ (NEK) pools to K+ dynamics of the soil‐solution system was measured using a modified quantity‐to‐intensity (Q : I) experiment. Release and fixation of K+ were varied among soils. The relation between the change in the amount of NEK during the experiment and the initial constrain was linear, and soil ability for K+ release and fixation (β) for all soils varied from 0.041 to 0.183, indicating that 4% to 18% of added K+ converted to NEK when fixation occurred. The equilibrium potential buffering capacity (PBC) for K+ derived from Q : I experiments had significant correlation (r = 0.75, p < 0.01) with β, indicating that PBC depends not only on exchange properties but also on release and fixation properties. The depleted soils showed higher β value than the other soils, indicating much of the added K+ was converted to NEK in case of positive constraint. The range of the amount of EK which was not in exchange equilibrium with Ca (Emin) in the experimental conditions was large and varied from 0.68 to 9.00 mmol kg–1. On average, Emin amounted to 64% of EK. This fraction of EK may not be available to the plant. The parameters obtained from these short‐term K+ release and fixation experiments can be used in plant nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号