共查询到20条相似文献,搜索用时 15 毫秒
1.
流域尺度土壤厚度的模糊聚类与预测制图研究 总被引:3,自引:2,他引:3
基于土壤厚度与景观位置和特征之间的关系,运用模糊c均值聚类(FCM)方法对西苕溪流域的土壤厚度分布进行了空间预测。选取高程、坡度、平面曲率、剖面曲率、径流强度系数和地形湿度指数6个地形因子进行模糊聚类,根据相应的聚类参数将流域地形组合分为8类。利用部分调查获得的土壤剖面数据,结合样点属性和专家经验为典型区赋值,最后由加权平均得到流域土壤厚度预测图。验证结果表明,FCM方法可以对地形因子组合进行有效合理的分级,其预测精度较高,模型的稳定性较好,是一种低成本高效率的制图方法。该方法在土壤厚度预测方面具有一定的可靠性。 相似文献
2.
Quantitative mapping of soil types based on regression kriging of taxonomic distances with landform and land cover attributes 总被引:4,自引:0,他引:4
Nowadays, French soil scientists tend to gather new and existing soil data into a common database. The use of this database potentially allows for resolving environmental issues, largely through soil mapping. The purpose of this study is to present a methodology for mapping soil types illustrated by typical observations in the soil database, in this case from the La Rochelle area on the French Mid-Atlantic Coast. The main hypothesis underlying the method is that soil types result from environmental factors such as landform, parent material, and land cover. The method can be divided into four stages. The first step is to construct a local soil type classification from the database by a two-stage continuous classification procedure. The result of this procedure is that at each observation point, the soil is described by a vector of taxonomic distances to each of k centroidal soil types. In the example given, k=18. The second step involves fitting soil–environment equations, one for each centroidal soil type, by regressing taxonomic distances on layers of multivariate environmental data observed on a fine 20-m grid, by multiple linear regression. In this case, the layers are terrain attributes derived from a digital elevation model and land cover attributes derived from three bands of a SPOT image. The third step is to predict k maps or raster GIS layers representing taxonomic distances to soil types on the 20-m grid, using the soil–environment equations and the kriging of the residuals from the regressions. This results in many potential maps: a summary map depicting the nearest centroidal soil type (the soil type for which the taxonomic distance is least) at each location is possibly the most useful, and another one representing the minimum taxonomic distance which, if considered too large, might suggest locations for further field survey to refine the soil types. A map of standard errors of the kriged taxonomic distance residuals to the nearest centroidal soil type can be made to indicate spatial uncertainty. Continuous fuzzy membership maps can also be constructed from the distances. The fourth step involves validation with an independent soil data set allowing discovery of the nature of the actual prediction errors. Thirty-eight percent of sites in a validation sample of 1234 sites was unequivocally validated, 23% was equivocally validated, and the remainder was predicted wrongly by the method. 相似文献
3.
Mohsen Bagheri Bodaghabadi M.H. Salehi José A. Martínez-Casasnovas J. Mohammadi N. Toomanian I. Esfandiarpoor Borujeni 《CATENA》2011
Topography has an important influence on the distribution of soils and their properties, especially in hilly lands, and related data are easily available, measurable and recognizable from digital elevation models (DEMs). To our knowledge, little attention has previously been paid to the effect of DEM attributes on the distribution of soils, using ordination methods. The objective of this study was to analyze relationships between topographical properties derived from DEM and soil distribution and to discuss their applicability in Digital Soil Mapping (DSM). The study was carried out in the Borujen area of central Zagros, Iran. A total of 13 plots (each one of 6.75 ha) were set up to calculate the percentages of the dominant soil series. Fifteen DEM attributes, including slope, aspect, curvature, maximum and minimum curvature, planform curvature, profile curvature, tangent curvature, wetness index, power index, sediment index, area solar radiation, direct radiation, diffuse radiation and direct duration were also computed. Canonical Correspondence Analysis (CCA) was used to summarize the data set and to evaluate the expected relationships. The results obtained show that there was a relatively strong correspondence between soils' series distribution and topographical properties. The DEM attributes that best related to the first axis were maximum curvature, slope and sediment index, all of which significantly positive correlated, and wetness index, direct duration and minimum curvature, all of which were negatively related. The second axis showed a negative trend with wetness index, direct duration and aspect, and a positive trend with sediment index and slope. These gradients were closely related to the first three canonical axes and explained 71.8% of the total variance of the soil series. The residual variance (28.2% of the total variance) was related to other soil forming factors, like parent material and vegetation cover, which were not investigated in this study. Considering that DEMs are still the most important source of environmental information, understanding the role of topographical factors in a region should help us to identify soils and their properties better and enable us to apply these derivates as input data in DSM. 相似文献
4.
机器学习用于耕地土壤有机碳空间预测对比研究——以亚热带复杂地貌区为例 总被引:1,自引:0,他引:1
耕地土壤有机碳(SOC)是土壤质量的重要指标,也是生态系统健康的重要表征。当前机器学习(Machine Learning, ML)用于SOC数字制图日益热门,但不同算法在高空间分辨率SOC数字制图中的对比研究尚有欠缺。本研究以福建省东北部复杂地形地貌区为例,采用10m空间分辨率Sentinel-2影像数据,选取地形、气候、遥感植被变量为驱动因子,重点分析当前常用的机器学习算法——支持向量机(SupportVector Machine,SVM)、随机森林(RandomForest,RF)在SOC预测中的差异,并与传统普通克里格模型(Ordinary Kriging, OK)进行比较。结果表明:基于地形、遥感植被因子和气候因子构建的RF模型表现最佳(RMSE=2.004,r=0.897),其精度优于OK模型(RMSE=4.571, r=0.623),而SVM模型预测精度相对最低(RMSE=5.190, r=0.431);3种模型预测SOC空间分布趋势总体相似,表现为西高东低、北高南低,其中RF模型呈现的空间分异信息更加精细;最优模型反演得到耕地土壤有机碳平均含量为15.33 g·kg-1; RF模型和SVM模型变量重要性程度表明:高程和降水是影响复杂地貌区SOC空间分布的重要变量,而遥感植被因子重要性程度低于高程。 相似文献
5.
基于样点的数字土壤属性制图方法及样点设计综述 总被引:2,自引:1,他引:2
土壤剖面数据与土壤类型图按照某种原则进行连接是目前获取土壤属性空间分布信息的主要方法,这种传统的土壤属性制图方法以土壤专家的“经验”和手工描绘为基础,耗费资本高、生产周期长.数字土壤制图通过借鉴先进的空间信息处理技术和高分辨率地形数据的优势,能够快速地获取高精度、高分辨率的土壤属性空间变化信息,是一种精细、高效、经济的土壤属性制图技术.本文详细介绍了基于样点进行数字土壤属性制图的3种方法:①基于空间自相关的方法:②基于空间自相关和土壤-环境关系混合相关的方法:③基于土壤-环境关系的方法.同时,为保证样点能够全面地捕捉到研究区内土壤属性空间变异特征,以上3种方法都对样点的数量、分布或典型性提出了较为严格的要求,即样点应具有全局代表性.因此,如何设计样点成为数字土壤属性制图中的一个重要问题.依据样点设计过程中是否能够整合已有样点,本文将样点设计方案分为采样设计方案和补样设计方案两种,并对其分别进行了详细的综述. 相似文献
6.
CyberSoLIM:基于知识驱动的在线数字土壤制图原型系统 总被引:3,自引:0,他引:3
现有数字土壤制图软件在应用时,建模过程主要依赖于用户的专业知识,导致用户应用困难;软件通常实现为单机版,安装配置过程繁琐,算法库不易扩展;所采用的串行算法运行效率低,造成用户体验感差。针对上述问题,本文综合知识驱动、开源Web GIS、Web Service、并行计算等技术,设计并实现了基于知识驱动和并行计算的在线数字土壤制图原型系统(CyberSoLIM)。通过在安徽省宣城数字土壤制图的应用示范,表明该系统可以有效地降低用户应用的门槛和难度,提高用户体验,为非专业用户和大众提供了一个认识和参与数字土壤制图的快捷方式。 相似文献
7.
基于Fisher判别分析的数字土壤制图研究 总被引:2,自引:0,他引:2
利用已知类型的土壤样点及其所处位置的高程、坡度、平面曲率、剖面曲率、复合地形指数等数据,基于Fisher判别分析方法对安徽宣城样区的土壤类型进行预测和制图表达。结果表明,土纲级别的预测效果较好,正确率达到84.2%。但随着从土纲到亚类级别的降低,由于受土壤样点数量限制,土壤类型预测的准确率也逐步降低。通过与样区1986年基于发生分类的土壤图进行对比,采用的方法无论是在制图精度,还是图面信息的负载量方面都要优于传统方法,能够更加客观真实地反映土壤在自然界的空间分布。 相似文献
8.
面向土壤系统分类的土壤调查制图方法的初步研究 总被引:3,自引:0,他引:3
我国的土壤系统分类方案已经基本形成,但还没有相应的土壤调查方法技术研究。按照传统土壤调查的主要剖面、检查剖面、定界剖面的思想与办法,采用空间内插技术,在研究区的4条实验路线上共挖掘了64个剖面点,通过这些剖面点的诊断层和诊断特性确定了研究区的土壤类型并勾绘了土壤类型界线。再用1条检验路线对勾绘的土壤图进行检查,结果表明,在检验路线上设置的20个检查剖面点中,其中19个剖面点与实际情况相符,正确率95%,说明使用内插法进行面向土壤系统分类的土壤调查制图是可行的。再结合土壤景观可以辅助土壤调查工作者更高效地确定土壤类型、勾绘土壤界线。 相似文献
9.
10.
县域土壤质量数字制图方法比较 总被引:2,自引:1,他引:2
土壤质量研究几乎涵盖土壤研究的所有领域,土壤质量制图理论与方法是土壤质量研究的一项重要研究内容。该研究以北京市密云县为研究区,基于土壤质量评价最小数据集和指数和法计算的土壤质量指数,探究了在地学模型支持下区域土壤质量数字制图方法。研究设计了5种区域土壤质量数字制图方法,并比较了不同方法的空间数字制图精度。结果显示,目前广泛使用的基于参评指标空间插值结果的土壤质量数字制图方法精度最低、工序较繁琐,且无法反映研究区景观高度异质的特点;而基于计算后的土壤质量指数(soil quality index,SQI),借助于地统计学方法的土壤质量数字制图方法相对比较科学合理,其中又以基于计算后的SQI和回归克里格法预测效果最好,均方根误差最小,仅为0.01897,相对于基于参评指标空间插值结果的土壤质量数字制图方法,精度相对提高率最大,达到50%以上。综合考虑空间制图精度、工序的繁简程度,在该研究设计的5种方法中基于计算的SQI和回归克里格法最佳,该法避免了地统计插值在景观高度异质区的应用局限性,预测结果与实际最为相符。 相似文献
11.
B. O. Okoba A. J. Tenge G. Sterk L. Stroosnijder 《Land Degradation \u0026amp; Development》2007,18(3):303-319
Despite several approaches that aimed at mobilising East African farmers to embrace soil and water conservation (SWC) activities, farmers hardly responded since they were seldom involved in the planning of SWC activities. Two tools that employ farmers' participation were developed and applied at Gikuuri catchment in Kenya. The first tool involved farmers to map soil erosion using their own indicators and determine the soil erosion status at catchment scale. This formed the basis upon which they undertook to plan for SWC measures at catchment scale. Farmers also predicted crop yield losses based on the soil erosion status. Farmers widely approved the soil erosion status map since their own indicators and perceptions were used. The second tool provided cash flow trends for a variety of SWC activities and farmer situations. Farmers can use land with a high, moderate or low erosion status and often have rather different socio‐economic settings. The net benefits over 5 yr for bench terraces, fanya juu terraces and grass strips were illustrated to assist farmers in making informed decisions on SWC adoption. The two tools increased awareness on the need for collective actions among farmers and showed fields that cause run‐on on downslope fields. The improved awareness of erosion problems and the related financial consequences increased farmers' willingness to share the investment costs for cut‐off drains. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
12.
In coastal China, there is an urgent need to increase land for agriculture. One solution is land reclamation from coastal tidelands, but soil salinization poses a problem. Thus, there is need to map saline areas and identify appropriate management strategies. One approach is the use of digital soil mapping. At the first stage, auxiliary data such as remotely sensed multispectral imagery can be used to identify areas of low agricultural productivity due to salinity. Similarly, proximal sensing instruments can provide data on the distribution of soil salinity. In this study, we first used multispectral QuickBird imagery (Bands 1–4) to provide information about crop growth and then EM38 data to indicate relative salt content using measurements of apparent soil electrical conductivity (ECa) in the horizontal (ECh) and vertical (ECv) modes of operation. Second, we used a fuzzy k‐means (FKM) algorithm to identify three salinity management zones using the normalized difference vegetation index (NDVI), ECh and ECv/ECh. The three identified classes were statistically different in terms of auxiliary and topsoil properties (e.g. soil organic matter) and more importantly in terms of the distribution of soil salinity (ECe) with depth. The resultant three classes were mapped to demonstrate that remote and proximally sensed auxiliary data can be used as surrogates for identifying soil salinity management zones. 相似文献
13.
中国土壤温度的空间预测研究 总被引:16,自引:2,他引:16
土壤温度栅格数据是很多区域性宏观研究的重要基础,对离散的土壤温度数据进行空间预测分析获取空间上连续的土壤温度数据具有重要意义。本文用我国698个气象站点的年均土壤温度和年均气温数据以及数字高程模型数据,分析不同气象和地形因素对年均土壤温度的影响;根据全国各地可获取数据源的不同,分别用3组不同的影响因素为辅助变量:(1)年均气温;(2)经度、纬度和海拔;(3)年均气温、经度、纬度和海拔,采用回归克里格法预测我国年均土壤温度空间分布。结果表明年均气温、经度、纬度和海拔对年均土壤温度空间变异均有显著影响。土壤温度空间预测结果的准确性检验显示用经度、纬度和海拔预测土壤温度的精度最高,基于年均气温、经度、纬度和海拔预测的稍差,只用年均气温预测的最差。辅助变量数据的精度及其与年均土壤温度的相关性对预测效果的影响较大。 相似文献
14.
C.K.K. Gachene 《Soil Use and Management》1995,11(1):1-4
Abstract. The erosion susceptibility of the Erosion Research Farm at Kabete Campus was mapped using a qualitative parametric method. A grid soil survey of the 4 ha farm was combined with a map of slope gradients, slope segments being delineated by breaks in slope. Rainfall erosivity and soil erodibility were also measured. Areas with the greatest erosion susceptibility according to this method were those occupying convex slope positions and slopes of more than 30%. Field observations and soil loss measurements generally supported the erosion susceptibility rating map produced by this method. The soil and erosion susceptibility maps were useful for planning erosion control measures and for selecting suitable sites for runoff plot experiments. 相似文献
15.
Digital soil mapping as a tool to generate spatial soil information provides solutions for the growing demand for high‐resolution soil maps worldwide. Even in highly developed countries like Germany, digital soil mapping becomes essential due to the decreasing, time‐consuming, and expensive field surveys which are no longer affordable by the soil surveys of the individual federal states. This article summarizes the present state of soil survey in Germany in terms of digitally available soil data, applied digital soil mapping, and research in the broader field of pedometrics and discusses future perspectives. Based on the geomorphologic conditions in Germany, relief is a major driving force in soil genesis. This is expressed by the digital–soil mapping research which highlights the great importance of digital terrain attributes in combination with information on parent material in soil prediction. An example of digital soil mapping using classification trees in Thuringia is given as an introduction in digital soil‐class mapping based on correlations to environmental covariates within the scope of the German classification system. 相似文献
16.
X.‐L. SUN Y.‐G. ZHAO Y.‐J. WU M.‐S. ZHAO H.‐L. WANG G.‐L. ZHANG 《Soil Use and Management》2012,28(3):318-328
Estimation of spatio‐temporal change of soil is needed for various purposes. Commonly used methods for the estimation have some shortcomings. To estimate spatio‐temporal change of soil organic matter (SOM) in Jiangsu province, China, this study explored benefits of digital soil maps (DSM) by handling mapping uncertainty using stochastic simulation. First, SOM maps on different dates, the 1980s and 2006–2007, were constructed using robust geostatistical methods. Then, sequential Gaussian simulation (SGS) was used to generate 500 realizations of SOM in the area for the two dates. Finally, E‐type (i.e. conditional mean) temporal change of SOM and its associated uncertainty, probability and confidence interval were computed. Results showed that SOM increased in 70% of Jiangsu province and decreased in the remaining 30% during the past decades. As a whole, SOM increased by 0.22% on average. Spatial variance of SOM diminished, but the major spatial pattern was retained. The maps of probability and confidence intervals for SOM change gave more detailed information and credibility about this change. Comparatively, variance of spatio‐temporal change of SOM derived using SGS was much smaller than sum of separate kriging variances for the two dates, because of lower mapping variances derived using SGS. This suggests an advantage of the method based on digital soil maps with uncertainty dealt with using SGS for deriving spatio‐temporal change in soil. 相似文献
17.
18.
19.
20.
Digital soil mapping using artificial neural networks 总被引:1,自引:0,他引:1
Thorsten Behrens Helga Frster Thomas Scholten Ulrich Steinrücken Ernst‐Dieter Spies Michael Goldschmitt 《植物养料与土壤学杂志》2005,168(1):21-33
In the context of a growing demand of high‐resolution spatial soil information for environmental planning and modeling, fast and accurate prediction methods are needed to provide high‐quality digital soil maps. Thus, this study focuses on the development of a methodology based on artificial neural networks (ANN) that is able to spatially predict soil units. Within a test area in Rhineland‐Palatinate (Germany), covering an area of about 600 km2, a digital soil map was predicted. Based on feed‐forward ANN with the resilient backpropagation learning algorithm, the optimal network topology was determined with one hidden layer and 15 to 30 cells depending on the soil unit to be predicted. To describe the occurrence of a soil unit and to train the ANN, 69 different terrain attributes, 53 geologic‐petrographic units, and 3 types of land use were extracted from existing maps and databases. 80% of the predicted soil units (n = 33) showed training errors (mean square error) of the ANN below 0.1, 43% were even below 0.05. Validation returned a mean accuracy of over 92% for the trained network outputs. Altogether, the presented methodology based on ANN and an extended digital terrain‐analysis approach is time‐saving and cost effective and provides remarkable results. 相似文献