首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The influence of forest fires on the properties of taiga brown, gley taiga brown, and alluvial bog soils widespread in the area of the Norskii Reserve (the Amur River basin) was studied. During several years after the fire, the humus content increased, especially in the soils subjected to fires of high intensity. In the soils of steep slopes, the humus content decreased due to damage to the forest vegetation and activation of lateral runoff after the fire. As a rule, in the soils subjected to fire, the C ha-to-C fa ratio increased and correlated with the fire intensity. Some relationships between the forest fires and the acid-base properties of the soils were revealed. After the fires, the pH values often became higher. The stronger the fire, the higher the pH values. The stony soils differed from the other ones, since the reaction of their upper horizons turned out to be more acid after the fires. The analysis of the authors’ and literature data showed that the pyrogenic changes of some soil properties have been poorly studied and need further investigation, including their geographical aspects.  相似文献   

2.
The state of microbial communities in gray-humus soils (Eutric Fluvic Arenosols (Ochric)) of pine stands in the city of Tolyatti after forest fires of 2010 is analyzed. It is shown that fires exert negative effects on the structure and metabolic activity of microbial communities in the postpyrogenic soils. The content of the carbon of microbial biomass and the intensity of microbial respiration in the upper organic horizons of the post-fire plots decrease by 6.5 and 3.4 times, respectively, in comparison with those in the soils of background plots. However, the fire has not affected the studied microbiological parameters of the soils at the depths of more than 10 cm. The maximum content of the carbon of microbial biomass carbon and the maximum intensity of microbial respiration have been found in the subsurface AY2 and АС horizons two–three years the fire. An increase in the microbial metabolic quotient (the ratio of soil respiration to microbial biomass) attests to the disturbance of the ecophysiological state of soil microbial communities after the pyrogenic impact.  相似文献   

3.
The results of the studies of soil changes after the 2010 fires in the forest outliers of the city of Tolyatti have been reviewed. The morphological analysis of postpyrogenic soils has showed that the fire touched only the upper part of their profiles. It has been revealed that the surface fires favor the more intense loss of organic carbon than the crown fires (2.85 and 2.37%, respectively). However, the crown fires are more destructive for soils, because, first, they are a continuation of the surface fires and, second, sheet and linear water erosion of soils develops because of the complete denudation of the soil cover. It has been found that forest fires result in the dehumification of soils, which is related to the destruction of the organic horizons, the mineralization of root residues, and the almost complete absence of fresh plant waste on the postfire areas. The pyrogenic impact increases the portion of humic acids in the organic matter. Along with the transfer of the clay fraction, the translocation of polycyclic aromatic hydrocarbons resulting from the fires to the accumulative geochemical positions is also possible.  相似文献   

4.
Experimental data on the effect of surface fires on the organic matter transformation in the gray-humus soils of pine forests were obtained in the southwestern part of the Baikal region. The application of methods of thermal analysis (such as differential scanning calorimetry and thermogravimetry) made it possible to obtain qualitative and quantitative information about the decomposition (oxidation) of the components of the soil organic matter upon their heating. It was found that the organic matter content in the soils subjected to fires of high intensity decreased by 1.9 times in comparison with the control. In the litter horizons of the undisturbed soils, thermolabile components (mostly, oligo- and polysaccharides) comprised 61% of the organic matter, and the portion of thermostable components (aromatic compounds) was 39%. A significant decrease in the content of thermolabile components and an increase in the content of thermostable components (up to 62%) were observed in the organic matter of the postpyrogenic forest litter as a result of the charcoal formation during the fire.  相似文献   

5.
Morphological features, physicochemical properties, and specific characteristics of the organic matter of cryozems (Cryosols) under postpyrogenic larch forests affected by fires 2, 6, 22, 55, and 116 years ago are considered. The morphological changes in the soils affected by fires are manifested by the burning of the upper organic horizons with preservation of pyrogenic features in the soils for more than a century after the fire. In the first years (2 and 6 years) after the fire, the acidity of the organic horizons and their base saturation become lower. The postpyrogenic soils are characterized by the smaller contribution of the organic horizons to the total pools of soil organic carbon. In the studied cryozems, the organic carbon content is correlated with the contents of oxalate-extractable iron and aluminum. A decrease in the content of water-soluble organic compounds in the soils is observed after the fires; gradually, their content increases upon restoration of the ground cover.  相似文献   

6.
The composition and distribution of polycyclic aromatic hydrocarbons (PAHs) were studied in organomineral and organic soils of the Meshchera National Park. It was found that the background oligotrophic peat soils unaffected by fires in central parts of the bogs are characterized by the increased PAH concentrations due to their high sorption capacity. The fires of 2007 and 2010 resulted in the transformation of the plant cover and soil morphology, the formation of new horizons, and the change in the PAHs content and composition. Significant burn-off of organic matter was found in oligotrophic-eutrophic soils and resulted in the decrease of PAHs content after fire. Only partial burn-off of organic horizons and intense formation of PAHs were recorded in the soil with initially great thickness of peat horizons. Pyrogenic accumulation of PAHs was identified in organomineral soils of the marginal parts of bogs and of forest sites.  相似文献   

7.
Periodical forest fires are typical natural events under the environmental and climatic conditions of central and southern Yakutia and Transbaikal region of Russia. Strong surface fires activate exogenous geomorphological processes. As a result, soils with polycyclic profiles are developed in the trans-accumulative landscape positions. These soils are specified by the presence of two–three buried humus horizons with abundant charcoal under the modern humus horizon. This indicates that these soils have been subjected to two–three cycles of zonal pedogenesis during their development. The buried pyrogenic humus horizons accumulate are enriched in humus; nitrogen; total and oxalate-extractable iron; exchangeable bases (Са+2 and Mg+2); and the fractions of coarse silt, physical clay (<0.01 mm), and clay (<0.001 mm) particles in comparison with the neighboring mineral horizons of the soil profile. The humus of buried pyrogenic horizons is characterized by the increased content of humic acids, particularly, those bound with mobile sesquioxides (HA-1) and calcium (HA-2) and by certain changes in the type of humus.  相似文献   

8.
The results of investigation into the composition of stable carbon and nitrogen isotopes of organic matter in the soils developed within soil–sedimentary sequences in the central part of the Selenga Middle Mountains in the Late Glacial and Holocene are presented. In the past 15000 years, the organic matter of the investigated soils has only been formed from the biomass of C3 plants (without the participation of C4 plants). This is confirmed by the of δ13С values from–27.00 to–23.35‰. A combined analysis of the parameters of the organic matter (Сorg, Ntotal, C/N, δ13С, and δ15N) of soils formed in different periods makes it possible to assume that the isotopic composition of carbon and nitrogen reflects changes in the climate humidity during the Late Glacial and Holocene periods. The specified intervals of soil formation correspond to the climate humidification and stabilization of the surface owing to the development of dense vegetation. Aridization periods were characterized by the accumulation of sediments that buried soil horizons. The most pronounced stages of climate aridization occurred at the transition from the Late Glacial to the Holocene, from the Boreal to the Atlantic, and from the Atlantic to the Subboreal periods. The optimum soil-forming conditions existed in the periods of 11700–11000, 8800–6900, and 4700–1000 years ago, which is confirmed by the published data on the landscape-climatic changes in the adjacent areas in the past 15000 years.  相似文献   

9.
Data on postpyrogenic dynamics of soils under mountainous taiga cedar (Pinus sibirica) and pine (Pinus sylvestris) forests and subtaiga–forest-steppe pine (Pinus sylvestris) forests in the Baikal region are analyzed. Ground litter–humus fires predominating in this region transform the upper diagnostic organic soil horizons and lead to the formation of new pyrogenic organic horizons (Opir). Adverse effects of ground fires on the stock, fractional composition, and water-physical properties of forest litters are shown. Some quantitative parameters of the liquid and solid surface runoff in burnt areas related to the slope gradient, fire intensity, and the time passed after the fire are presented. Pyrogenic destruction of forest ecosystems inevitably induces the degradation of mountainous soils, whose restoration after fires takes tens of years. The products of soil erosion from the burnt out areas complicate the current situation with the pollution of coastal waters of Lake Baikal.  相似文献   

10.
This study compares mercury (Hg) and methylmercury (MeHg) distribution in the soils of two forested stream watersheds at Acadia National Park, Maine, U.S.A. Cadillac Brook watershed, which burned in 1947, has thin soils and predominantly deciduous vegetation. It was compared to the unburned Hadlock Brook watershed, with thicker soil and predominantly coniferous vegetation. Soils in both watersheds were primarily well drained. The fire had a significant impact on the Cadillac watershed, by raising the soil pH, altering the vegetation, and reducing carbon and Hg pools. Total Hg content was significantly higher (P > 0.05) in Hadlock soils (0.18 kg Hg ha-1) compared to Cadillac soils (0.13 kg Hg ha-1). Hadlock O horizon had an average Hg concentration of 134±48 ng Hg g-1 dry weight, compared to 103±23 ng Hg g-1 dry weight in Cadillac O horizon. Soil pH was significantly higher in all soil horizons at Cadillac compared to Hadlock soils. This difference was especially significant in the O horizon, where Cadillac soils had an average pH of 3.41±0.22 compared to Hadlock soils with an average pH of 2.99±0.13.To study the mobilization potential of Hg in the O horizons of the two watersheds, batch adsorption experiments were conducted, and the results were modeled using surface complexation modeling. The results of Hg adsorption experiments indicated that the dissolved Hg concentration was controlled by the dissolved organic carbon (DOC) concentration. The adsorption isotherms suggest that Hg is more mobile in the O horizon of the unburned Hadlock watershed because of higher solubility of organic carbon resulting in higher DOC concentrations in that watershed.Methylmercury concentrations, however, were consistently higher in the burned Cadillac O horizon (0.20±0.13 ng Hg g-1 dry weight) than in the unburned Hadlock O horizon (0.07±0.07 ng Hg g-1 dry weight). Similarly, Cadillac soils possessed a higher MeHg content (0.30 g MeHg ha-1) than Hadlock soils (0.16 g MeHg ha-1). The higher MeHg concentrations in Cadillac soils may reflect generally faster rates of microbial metabolism due to more rapid nutrient cycling and higher soil pH in the deciduous forest. In this research, we have shown that the amount of MeHg is not a function of the total pool of Hg in the watershed. Indeed, MeHg was inversely proportional to total Hg, suggesting that landscape factors such as soil pH, vegetation type, or land use history (e.g., fire) may be the determining factors for susceptibility to high Hg in biota.  相似文献   

11.
Abstract

Alkaline‐soluble, acid‐precipitable organic matter from the Ah and Bm horizons of Chernozemic soils developed on four parent materials in each of three soil zones was analyzed for total and carboxyl acidity, and methoxyl groups. The values are expressed as meq/g dry ash‐free organic matter.

Total acidity generally was higher in the Black Chernozems than in the Brown Chernozems and higher in the Bm horizon than in the Ah horizon. The distribution of carboxyl acidity between the Ah and companion Bm horizons of individual soils appeared to be related to texture and rainfall.

The. methoxyl group content of the Brown Chernozems was larger than that of the .Dark Brown Chernozems, which in turn had a larger methoxyl group content than that of the Black Chernozems. It was concluded that the organic matter in the Ah horizons of the Brown Chernozems was not as humified as that of the Black Chernozems. The pH value and a minimum clay content are possible determining factors as to the amounts of methoxyl carbon present.  相似文献   

12.
Abstract

We measured the concentration and composition (sensu Leenheer, 1981) of dissolved organic carbon (DOC) in lysimeter solutions from the forest floor of a spruce stand in Maine and in laboratory extracts of organic (Oa horizon) and mineral soils collected from various forests in Maine, New Hampshire, and Vermont. All soils were acid Spodosols developed from glacial till. The effects of different storage, extraction and filtration methods were compared. Extracts from Oa horizons stored fresh at 3°C contained a larger fraction of hydrophobic neutrals than lysimeter forest floor solutions (31 and 4% of DOC in stored and lysimeter solutions, respectively), whereas extracts from Oa horizons which had been extracted, incubated at 10–15°C, and extracted again had DOC compositions similar to that in lysimeter solutions. Mechanical vacuum and batch extractions of Oa horizons yielded DOC similar in concentration and composition if the extracts were filtered through glass fiber filters. Nylon membrane filters, however, removed more hydrophobic acids from batch extracts. Dissolved organic carbon extracted from frozen, air‐dry, and oven‐dry Oa and Bh horizons was relatively rich in hydrophilic bases and neutrals and was similar to that released after chloroform fumigation, indicating that common soil‐storage methods disrupt microbial biomass.  相似文献   

13.
The organic matter in soils may be stabilized by its interactions with minerals. We have studied such interactions in a Haplic Alisol under forest in which clay and organic matter have migrated from an eluvial A horizon to accumulate in an illuvial B horizon. We have tried to trace the fate of organic matter in these horizons (Ah and Bvt) by determining clay mineralogy, carbon and nitrogen content, hydrolysable amino acids, lignin signature by alkaline CuO oxidation and carbon species by 13C CPMAS NMR of bulk soils and particle‐size fractions. In both horizons, most of the organic matter was present in O–alkyl and methylene structures, each contributing one‐third to the bulk organic matter. In the Ah horizon the ratios of carbon‐to‐nitrogen, and yields for lignin and hydrolysable amino acids decreased as the particle‐size class decreased, but side‐chain oxidation of lignin compounds increased with decreasing particle size. In contrast to previous observations, the proportions of O–alkyl carbon increased as particle size decreased, constituting a major proportion of the organic carbon in the clay‐size fractions from both the Ah and Bvt horizons (≥ 38%), while proportions of methylene carbon decreased. Illite was the dominant mineral in the fraction ≤ 6 μm, whereas the mobile fine clay fraction (<0.2 μm) was rich in smectites – minerals with large surface areas. Our results support the hypothesis that potentially labile organic matter, such as O–alkyl carbon typically present in polysaccharides, may be stabilized against further degradation in organomineral complexes.  相似文献   

14.
Pyrogenic losses of carbon and nitrogen from the surface horizons of soils in shrub ecosystems of mountain tundra, which are the most affected by fires in natural environments, have been estimated in laboratory simulation tests. The specific features of pyrogenic transformation of the physical and chemical properties and microbiological processes after exposure to high temperatures simulating the effect of fires of different intensity have been identified. Pyrogenic nature of the impact depends not only on the intensity of a fire, but also on the soil type. Its impact on tundra soils leads only to short-term increases in CO2 emissions due to the destruction of pyrogenic organic compounds. A high level of fire impact leads to a significant reduction in microbiological processes in soils and shows no trend toward recovery in the long term, even under optimal conditions.  相似文献   

15.
为了探究林火烈度和火后时间对喀纳斯泰加林林下草本层碳密度的影响,在喀纳斯自然保护区设置火干扰样地,采用收获法进行了生物量调查。分莎草科、禾本科、豆科和其他草类4个功能群进行草本地上碳密度对林火烈度的火后时间响应研究。结果表明:喀纳斯林泰加林草本层地上碳密度的范围为0.096~0.359 t/hm2。在3个演替阶段,莎草科和禾本科对草本层地上碳密度贡献率大; 其他草类对草本层地上碳密度贡献率的范围为10.03%~40.97%; 豆科对草本层地上碳密度贡献率最小,仅在针叶阔叶林阶段中低烈度火后51~84 a的林分中其贡献率较大。喀纳斯林草生态系统大部分林分处于针叶阔叶和针叶混交林阶段,草本层地上碳密度在不同烈度的火干扰下总体趋势为:低烈度>中烈度>高烈度,表明低烈度火干扰有利于草本植物的生长。3个演替阶段草本功能群地上碳密度对林火烈度的火后时间响应并不相同,但草本层地上碳密度随着火后时间的增加总体呈减小趋势。高烈度火干扰对草本层地上碳密度的影响最大,且不利于保持或提高森林的生产力。通过清除林下凋落物将林火烈度控制在中、低烈度范围内,有利于提高草本层的碳汇功能。  相似文献   

16.
To evaluate the effects of forest fire and post-fire stand recovery on the organic layer chemistry and solute release within mound and trough microrelief elements (termed earth hummock microtopography) that mainly distribute permafrost affected area, we chose five fire plots (larch forests burned in 1951, 1981, 1990, 1994 and 2005) paired with adjacent control plots in mature larch forests in Central Siberian permafrost terrain. We determined total carbon, nitrogen and ash content in solid organic soils, and analyzed total carbon, nitrogen, bases and major anions in water extracts. There was a significant correlation between water-extracted organic carbon (WEOC) and total carbon (kg m−2) in area basis, implying that the quantity of total carbon was a major factor in WEOC production. WEOC correlated negatively with pH, indicating strong control by organic horizons (organic solute leaching) on soil acidity and base cation dynamics. The sum of water extractable base cations was also correlated significantly to total carbon, indicating that cations can be released through organic matter decomposition. Organic horizons in troughs in burned plots released greater amounts of Ca, Mg and K than those in mounds, probably due to greater content of organic matter as a cation source. Anions including nitrate and phosphate and WEOC also accumulated in trough depressions, due probably to organic matter degradation. The contrasting distribution of solutes between mounds and troughs in burned plots seems to be controlled by organic horizon development via changes in microtopography after forest fires.  相似文献   

17.
The effect of post-fire stand age on the boreal forest energy balance   总被引:3,自引:1,他引:3  
Fire in the boreal forest renews forest stands and changes the ecosystem properties. The successional stage of the vegetation determines the radiative budget, energy balance partitioning, evapotranspiration and carbon dioxide flux. Here, we synthesize energy balance measurements from across the western boreal zone of North America as a function of stand age following fire. The data are from 22 sites in Alaska, Saskatchewan and Manitoba collected between 1998 and 2004 for a 150-year forest chronosequence. The summertime albedo immediately after a fire is about 0.05, increasing to about 0.12 for a period of about 30 years and then averaging about 0.08 for mature coniferous forests. A mature deciduous (aspen) forest has a higher summer albedo of about 0.16. Wintertime albedo decreases from a high of 0.7 for 5- to 30-year-old forests to about 0.2 for mature forests (deciduous and coniferous). Summer net radiation normalized to incoming solar radiation is lower in successional forests than in more mature forests by about 10%, except for the first 1–3 years after fire. This reduction in net radiative forcing is about 12–24 W m−2 as a daily average in summer (July). The summertime daily Bowen ratio exceeds 2 immediately after the fire, decreasing to about 0.5 for 15-year-old forests, with a wide range of 0.3–2 for mature forests depending on the forest type and soil water status. The magnitude of these changes is relatively large and may affect local, regional and perhaps global climates. Although fire has always determined stand renewal in these forests, increased future area burned could further alter the radiation balance and energy partitioning, causing a cooling feedback to counteract possible warming from carbon dioxide released by boreal fires.  相似文献   

18.

Purpose

Pyrogenic organic matter (PyOM) in the soil of a maritime pine forest in Central Italy, formed during a fire of high severity, was characterised by Fourier transform infrared (FT-IR) and 13C nuclear magnetic resonance (NMR). Furthermore, soil samples from burnt and unburnt sampling sites and natural charcoal collected from the ground were characterised after progressive heating under air and nitrogen atmosphere. The aim was to better understand the role fire plays on PyOM formation and oxidation.

Materials and methods

The top 10 cm of mineral soil and the above-lying charcoal particles were collected soon after the fire. Sampling was also performed on an adjacent unburnt portion of the forest. The bulk soil organic matter (SOM), its extractable fraction and charcoal particles were investigated by FT-IR and 13C NMR spectroscopies. They also underwent thermogravimetric analysis under air or N2, stopping the thermal reactions at the end of the first exothermic reaction in the range 350–500 °C.

Results and discussion

The NMR investigation clearly revealed a significant enrichment in aromatic and alkyl C in the burnt soil compared to the unburnt one. Several clues led to hypothesise that SOM was not exposed to extreme heating during the fire, notwithstanding the high fire severity estimated by a vegetation-based visual scale. In the thermal treatment mimicking fire, charcoal lost much of its mass and carbon content. However, at 500 °C, it still maintained a significant recalcitrant fraction. Nitrogen concentration in the bulk soil increased after heating, particularly under air condition. This phenomenon could be due to the formation of heterocyclic nitrogen compounds in the charred material.

Conclusions

In the study area, PyOM is rich in aliphatic compounds presumably because of the understory sclerophyllous vegetation typically found in Mediterranean environments. A large fraction of the charcoal released to the soil during the fire is sensitive to oxidation by subsequent fires. On the other hand, charcoal preserves a significant fraction of C, the most recalcitrant one, with expected long residence time in soil. PyOM formed under high oxygen availability is richer in N than that formed in inert atmosphere, which might make PyOM more susceptible to biochemical degradation.
  相似文献   

19.
利用放射性碳对中国变性土的年代确定   总被引:1,自引:0,他引:1  
LIU Liang-Wu 《土壤圈》1996,6(2):147-153
Vertisols,which are mainly developed on fluvial and lacustrine deposits and basalt,are extensively distributed in China.66 samples of them for radiocarbon dating were collected across 5 porvinces and 1 autonomous region,ranging from warm-temperate to subtropical and tropical zones in China.The soil organic matter was dated via surface horizon,black soil horizon and dark-colour horizon of the vertisols,whereas carbonate through calcareous concretions and dispersed carbonate in soil profile using radiocarbon method.The present article elucidates the dates of genetic horizons,and of surface and buried vertisols as well.14C dating indicates that the surface vertisols were formed during the end of the late Pleistocene.ca.15600 years ageo.Correlation between depth of sampling and measured 14C age shows that age characteristics of the vertisols of China are close to those of West Germany,Italy,TUrnisia,Australia and Argentina,However,two buried vertisols developed on fluvial and lacustrine deposits were formed during different geological periods,The buried soils in warm-temperate zone were formed in the mid Holocene,while those in subtropics were buried at 12930 years B.P., and formed in the end of the late Pleistocene.  相似文献   

20.
The study of soils of different ages in different physiographic regions of the Crimean Peninsula made it possible to reveal the main regularities of pedogenesis in the Late Holocene (in the past 2800 years). With respect to the average rate of the development of soil humus horizons, the main types of soils in the studied region were arranged into the following sequence: southern chernozems and dark chestnut soils > mountainous forest brown soils > gravelly cinnamonic soils. In the newly formed soils, the accumulation of humus developed at a higher rate than the increase in the thickness of humus horizons. A sharp decrease in the rates of development of soil humus profiles and humus accumulation took place in the soils with the age of 1100-1200 years. The possibility for assessing the impact of climate changes on the pedogenetic process on the basis of instrumental meteorological data was shown. The potential centennial fluctuations of the climate in the Holocene determined the possibility of pulsating shifts of soil-geographic subzones within the steppe part of the Crimea with considerable changes in the rates of the development of soil humus horizons in comparison with those in the Late Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号