首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 544 毫秒
1.
Estimating detailed soil water profile records from point measurements   总被引:1,自引:0,他引:1  
Temporal and spatial patterns of soil water content affect many soil processes including evaporation, infiltration, ground water recharge, erosion and vegetation distribution. This paper describes the analysis of a soil moisture dataset comprising a combination of continuous time series of measurements at a few depths and locations, and occasional roving measurements at a large number of depths and locations. The objectives of the paper are: (i) to develop a technique for combining continuous measurements of soil water contents at a limited number of depths within a soil profile with occasional measurements at a large number of depths, to enable accurate estimation of the soil moisture vertical pattern and the integrated profile water content; and (ii) to estimate time series of soil moisture content at locations where there are just occasional soil water measurements available and some continuous records from nearby locations. The vertical interpolation technique presented here can strongly reduce errors in the estimation of profile soil water and its changes with time. On the other hand, the temporal interpolation technique is tested for different sampling strategies in space and time, and the errors generated in each case are compared.  相似文献   

2.
In this work we analyze the temporal stability of soil moisture at the field and watershed scales in the Little Washita River Experimental Watershed (LWREW), as part of the remote sensing Cloud and Land Surface Interaction Campaign (CLASIC07) during June 2007 in south-central Oklahoma. Temporal stability of surface and profile soil moisture data were investigated for 20 LWREW soil moisture measurement stations. In addition, daily surface and profile soil moisture measurements were obtained in four 800 m by 800 m fields (remote sensing footprint), including two rangeland sites and two winter wheat fields. The work aimed to analyze the temporal stability of soil moisture at the watershed and field scale and to identify stations within the watershed, as well as locations within each field, that were representative of the mean areal soil moisture content. We also determined the relationship between sites found to be temporally stable for surface soil moisture versus those determined stable for average profile soil moisture content. For the unusually wet experimental period, results at the watershed scale show that LWREW stations 133 and 134 provided stable underestimates, while stations 132 and 154 provided stable overestimates of the watershed mean at all depths. In addition, station 136 had very high non-zero temporal stability at the 25 cm and 45 cm depths indicating that it could be used as representative watershed site provided a constant offset value is used to acquire a watershed mean soil water content value. In general, the deeper depths exhibited higher soil moisture spatial variability, as indicated by the higher standard deviations. At the field scale, measured average profile soil moisture was higher in the winter wheat fields than the rangeland fields with the majority of the winter wheat depth intervals having high non-zero temporal stability. Field scale temporal stability analysis revealed that 4 of the 16 sampling sites in the rangeland fields and 3 of the 16 sampling sites in the winter wheat fields either under or overestimated the field means in the 0–5 and 0–60 cm depth intervals. Field sites considered temporally stable for the surface soil moisture were not stable for the profile soil moisture, except for the LW45 field where two sites were stable at both the surface and profile soil moisture. This finding is significant in terms of soil moisture ground-truth sampling for calibrating and validating airborne remotely sensed soil moisture products under extremely wet conditions. In addition, identification of temporally stable sites at the watershed and field scales in the LWREW provide insight in determining future measurement station locations and field scale ground sampling protocol, as well as providing data sets for hydrologic modeling.  相似文献   

3.
Soil moisture is an intrinsic state variable that varies considerably in space and time. From a hydrologic viewpoint, soil moisture controls runoff, infiltration, storage and drainage. Soil moisture determines the partitioning of the incoming radiation between latent and sensible heat fluxes. Although soil moisture may be highly variable in space and time, if measurements of soil moisture at the field or small watershed scale are repeatedly observed, certain locations can often be identified as being temporally stable and representative of the an area average. This study is aimed at determining the adequacy of long term point-scale surface soil moisture measurements in representing local field scale averages which may ultimately serve as in situ locations for the calibration and validation of remotely sensed soil moisture. Experimental data were obtained by frequency-domain reflectometry (FDR) sensors permanently installed in two agricultural fields, AS1 and AS2 (2.23 and 2.71 ha, respectively) at a depth of 5 cm. Twenty additional FDR sensors, spaced 35 m apart, were installed horizontally at a depth of 5 cm in each field with automated data collection being transmitted every 30 min from July 15 through September 20, 2009. Additionally, meteorological data were obtained from existing weather stations in each field. The FDR sensors revealed persistent patterns in surface soil moisture within each field and identified sites that were temporally stable. The locations that were optimal for estimating the area-average field water contents were different from the permanent sensor locations in both fields. Permanent sensor data showed approximately 4 and 10% mean relative differences for fields AS1 and AS2, respectively, with relatively large standard deviations. Thus, minimum offset values could be applied to the temporally stable field sites to obtain representative field average values of surface soil moisture. However, use of permanent sensor data for offset estimates gave poor results. These findings are of relevance for applications of geospatial surface soil moisture data assimilation in hydrologic modeling when only point-scale observations are available, as well as, remotely sensed surface soil moisture calibration and validation studies.  相似文献   

4.
The aquands found in southern Chile are derived from volcanic ash and contain high levels of organic matter. Due to the presence of an impermeable stratum, they have shallow soil profiles, which induce waterlogging for several months each year. These fragile soils, locally known as ‘Ñadi’, cover an area of 475 000 hectares and have undergone intensive land use changes, which have affected the soil physical properties. These are still not well understood but are relevant for the design of efficient drainage systems. The aim of this research was to analyse the impact of the land use change in Ñadi soils on the spatial and temporal variability of their soil physical properties. For the land use change from secondary native forest (sNF) to naturalized grassland (NG), the effective soil depth was measured at defined points. Time‐ and space‐dependent changes of water‐table depth and penetration resistance were recorded. Volumetric water content and soil temperature were measured with sensors installed at three depths and the water retention curve and air permeability at these depths were also determined. The changes in land use over time have induced a reduction in soil depth. Soils under NG showed a smaller soil water storage capacity, air capacity and permeability compared with soils under sNF, as well as waterlogging during winter and greater mechanical strength and soil profile temperatures during summer. Therefore, the land use change affected the spatial and temporal variability of soil physical functions across the field.  相似文献   

5.
The coupling effects and mechanisms of water, heat, and salt in frozen soils are considered to be one of the core scientific issues in frozen soil studies. This study was based on in situ observation data of active layer soil volumetric water content (VWC), temperature, and bulk electrical conductivity (EC) obtained at an alpine meadow site from October 2016 to November 2019. The site is located in the headwater area of the Yellow River (HAYR). We analyzed the synergetic variations of active layer soil VWC, temperature, and bulk EC during the freeze and thaw processes and discussed the underlying mechanisms. When the thaw process occurred from 10 to 80 cm depths, the VWC and bulk EC at a 10 cm depth showed synchronous high-frequency fluctuations and both increased linearly. The linear decreasing rate of the VWC (bulk EC) at an 80 cm depth in the freeze depths between 0 and 40 cm was 2 (1.6–2.3) times that of the VWC (bulk EC) at an 80 cm depth in the freeze depths occurring 0–10 cm. As soil temperature decreased in the frozen layer, unfrozen water content (bulk EC) decreased nonlinearly along with the absolute value of soil temperature (|T|), following a power (logarithmic) function. This study provided data that partly elucidate the interactions among permafrost, meadow, and ecohydrological processes in the HAYR. Also, our results can be used as a scientific basis for decision making on the protection and restoration of alpine grasslands, as well as for soil salinization studies.  相似文献   

6.
准确测定表层土壤水分对陆地-大气间水热交换研究具有重要意义。由于对土壤结构影响轻微,热脉冲技术在原位监测含水率方面具有较大优越性,但目前田间应用集中在5 cm以下土层。该研究利用多针热脉冲传感器测定土壤容积热容量,然后基于热脉冲含水率法和热脉冲含水率变化法分别得到了3、9、21和39 mm的土壤含水率。结果表明,与烘干法含水率比较,热脉冲含水率变化法含水率在4个深度的均方根误差分别为0.022、0.006、0.004和0.006 m3/m3,均小于相应深度上热脉冲含水率法含水率的均方根误差。另外,热脉冲含水率变化法也降低了4个热脉冲传感器测定含水率的变异性。因此,热脉冲技术能够监测表层的土壤水分动态,表层土壤含水率的均方根误差在0.022 m3/m3以内。  相似文献   

7.
膜下微润带埋深对温室番茄土壤水盐运移的影响   总被引:4,自引:0,他引:4  
为探讨微润灌溉对温室轻度盐碱地番茄土壤水盐的影响,通过设置3种不同埋深(10 cm、15 cm、20 cm),探究了不同微润带埋设深度下,膜内(番茄种植行)、膜间(番茄行间)土壤含水量和含盐量的变化特征。结果表明,膜内、膜间土壤水盐的变化规律在不同埋深下保持一致,膜内土壤水分随时间推移先增大后减小,盐分随时间推移逐渐减小;膜间土壤水分、盐分均随时间推移逐渐增大。膜间土壤含水量始终小于膜内,随着土层深度增加,膜内、膜间土壤含水量差距减小;表层土壤膜内、膜间土壤含水量差距最大,50~60 cm土层膜间与膜内土壤含水量基本趋于一致。微润带埋深大时,土壤含水量较高,开花结果期,20 cm、15 cm、10 cm埋深的土壤含水量分别为23.31%、24.46%及22.42%;且微润带埋深为10 cm时,膜内、膜间土壤含水量差值小于埋深为15 cm和20 cm。膜内土壤含盐量始终小于膜间,微润带埋深越小,膜内、膜间土壤含盐量差异也越小;全生育期内,膜内0~40 cm土层处于脱盐状态,脱盐率随深度增加逐渐降低,离微润带越近,脱盐效果越明显;40~60 cm土层土壤含水量少,盐分含量也较小,为轻微积盐状态。10~20 cm土层水分含量最大、盐分含量最小、脱盐率最高。膜间0~60 cm土层始终处于积盐状态,积盐率随深度增加逐渐降低,0~20 cm土层积盐率最高。开花结果期,20 cm、15 cm和10 cm埋深下,膜内10~20 cm土层平均最大脱盐率分别为24.66%、32.28%和14.71%,15 cm埋深下脱盐率最高;苗期和结果末期15 cm埋深处理脱盐率也达最高,平均最大脱盐率分别为27.42%、24.67%。研究结果充分说明微润带埋深对不同土层深度的洗盐效果具有显著影响。综合来看,微润带埋深15 cm时土层平均脱盐率和土壤平均含水率均最高,分别达到26.05%和25.1%,为番茄生长创造了一个良好的水盐环境,最有利于番茄生长发育,为最佳埋深。  相似文献   

8.
Information on the spatial variability of soil water storage (SWS) at different scales is important for understanding various hydrological, ecological and biogeochemical processes in the landscape. However, various obstructions such as roads or water bodies may result in missing measurements and create an irregular spatial series. The wavelet transform can quantify spatial variability at different scales and locations but is restricted to regular measurements. The objective of this study was to analyse the spatial variability of SWS with missing measurements using the second‐generation continuous wavelet transform (SGCWT). Soil water content (converted to SWS by multiplying with depth) was measured with a neutron probe and time‐domain reflectrometry along a transect of 128 points. Because there were missing measurements, I used SGCWT to partition the total variation into different scales and locations. Whilst there were some small‐scale variations (< 20 m) along the transect, the medium scale variations (20–70 m with an average of about 30–45 m) were mainly concentrated within the depressions along the transect. The strongest variations were observed at around 90–110 m scale, representing the variations resulting from alternating knolls and depressions. Similar spatial patterns at different scales were observed during different seasons, indicating temporal stability in the spatial pattern of SWS. Among the controlling factors, the wavelet spectra of relative elevation (RE) and organic carbon (OC) were very similar to that of SWS. The wavelet covariance was also large between SWS and RE and OC at all seasons. As the OC reflects the long‐term history of water availability and might be controlled by topographic setting or elevation, it can be concluded that elevation is an important controlling factor of SWS irrespective of seasons in this type of landscape. The SGCWT provides a new way of analysing the spatial variability of regularly measured soil properties or those with missing measurements.  相似文献   

9.
滴灌均匀性对土壤水分传感器埋设位置的影响   总被引:2,自引:2,他引:0  
合理选择土壤水分传感器埋设位置以减少监测点密度和成本,是基于无线传感器网络制定灌溉处方图亟待解决的一个关键问题。该研究基于土壤含水率时间稳定性原理,将直接代表平均土壤含水率的点位用于土壤水分传感器布设位置点的选取,在水平方向分布均匀,垂直剖面土壤颗粒组成变异程度随土层深度增加的粉壤土田块内分析了低、中、高灌水均匀系数(分别为0.6、0.8和0.97)对春玉米主要根系层土壤含水率空间分布均匀性和时间稳定性的影响。结果表明,春玉米生育期内,随灌水均匀系数降低,土壤含水率空间分布均匀度降低,但低、中、高灌水均匀系数处理的土壤含水率均匀系数均大于0.81;低、中、高灌水均匀系数处理的平均Spearman秩相关系数均达到了显著水平(P0.05),但土壤含水率空间分布结构相似性随灌水均匀度的增加而减小;对高灌水均匀系数处理,0~0.2、0.2~0.4、0.4~0.6、0.6~0.8 m土层直接代表平均土壤含水率的测点比例分别为83%、78%、53%和86%。随灌水均匀系数降低,各土层直接代表平均土壤含水率的测点数量减少,说明土壤水分传感器随机布设引起的测量误差将随滴灌灌水均匀度的减小而增大。  相似文献   

10.
Accurate determination of rooting depths in terrestrial biosphere models is important for simulating terrestrial water and carbon cycles. In this study, we developed a method for optimizing rooting depth using satellite-based evapotranspiration (ET) seasonality and an ecosystem model by minimizing the differences between satellite-based and simulated ET. We then analyzed the impacts of rooting depth optimization on the simulated ET and gross primary production (GPP) seasonality in California, USA. First, we conducted a point-based evaluation of the methods against flux observations in California and tested the sensitivities of the simulated ET seasonality to the rooting depth settings. We then extended it spatially by estimating spatial patterns of rooting depth and analyzing the sensitivities of the simulated ET and GPP seasonalities to the rooting depth settings. We found large differences in the optimized and soil survey (STATSGO)-based rooting depths over the northern forest regions. In these regions, the deep rooting depths (>3 m) estimated in the study successfully reproduced the satellite-based ET seasonality, which peaks in summer, whereas the STATSGO-based rooting depth (<1.5 m) failed to sustain a high ET in summer. The rooting depth refinement also has large effects on simulated GPP; the annual GPP in these regions is increased by 50–100% due to sufficient soil water during the summer. In the grassy and shrubby regions of central and southern California, the estimated rooting depths are similar to those of STATSGO, probably due to the shallow rooting depth in these ecosystems. Our analysis suggests that setting a rooting depth is important for terrestrial ecosystem modeling and that satellite-based data could help both to estimate the spatial variability of rooting depths and to improve water and carbon cycle modeling.  相似文献   

11.
Applying a combination of classical and geostatistical methods, we identified soil properties and their spatial variation in a 5-year grazed sand dune (GSD5) and a 20-year recovered sand dune (RSD20) in Horqin Sandy Land, northern China. The paper assesses the effect of grazing, topography and vegetation restoration on spatial heterogeneity of soil properties. The results showed that soil organic carbon, total nitrogen, very fine sand (0.1–0.05 mm) content and their coefficients of variation were lower in GSD5 than in RSD20, while soil water contents (0–20 cm and 20–40 cm depths) were higher in GSD5 than in RSD20. Geostatistical analysis revealed that the spatial structured variance accounted for the largest proportion of total sample variance in soil properties at the measured scale under grazing and restoration. The spatial autocorrelation ranges were 66.30 m for soil organic carbon and 50.80 m for total nitrogen in GSD5 less than those in RSD20 (70.00 m and 76.10 m, respectively), while the spatial autocorrelation ranges of soil particle size fractions and soil water contents in RSD20 were less than those in GSD5. Kriging-interpolated maps also showed that the heterogeneity of soil organic carbon and total nitrogen and their degree of patch fragmentation were higher in GSD5 than in RSD20. These results suggested that continuous grazing resulted in an increase in spatial variability of soil nutrient and a decrease in spatial variability of soil particle size fractions and soil water content. Soil organic carbon and total nitrogen of sand dunes are associated closely with soil particle size fractions, relative height of sampling site and vegetation cover. Spatial patterns of soil properties are most strongly related to grazing, topography and plant-induced heterogeneity in sand dune ecosystems prone to wind erosion.  相似文献   

12.
Wang  Luying  Yu  Xiaofei  Xue  Zhenshan  Huo  Lili  Jiang  Ming  Lu  Xianguo  Zou  Yuanchun 《Journal of Soils and Sediments》2019,19(1):275-285
Purpose

The purpose of this study was to research the differences in iron, phosphorus, nitrogen and organic matter contents at two soil depths in areas with different land use types in the Xingkai Lake National Nature Reserve and to determine the causes of those differences. Additionally, this study sought to analyse the correlations between the contents of different nutrients and to determine the reasons for those correlations.

Materials and methods

Five typical land use types, namely, lakeshore sandy land, grassland, forestland, dryland and wetland, were selected in the Xingkai Lake National Nature Reserve. The contents of amorphous iron (Feo), complexed iron (Fep), dithionite-extractable iron (Fed), total iron (TFe), total phosphorus (TP), total nitrogen (TN) and organic matter (OM) were measured in these soils at two depths: 0–5 cm (soil depth 1) and 5–10 cm (soil depth 2).

Results and discussion

For soil depth 1 and soil depth 2, the land use type had no significant effect on the element contents. For the entire soil depth range (0–10 cm), the land use type had the most significant impact on the TP content (p?<?0.01). Furthermore, soil depth had a significant effect on the contents of Feo (p?<?0.01), TP (p?<?0.01) and OM (p?<?0.05). Overall, the element content at soil depth 2 was higher than that at soil depth 1. The interaction between land use type and soil depth significantly influenced the contents of TN and OM (p?<?0.05). The contents of TN and OM in the lakeshore sandy land and dryland were high, and the contents of TN and OM were highly positively correlated (r?=?0.90652, p?<?0.01).

Conclusions

Different land use types caused different degrees of disturbance in the soil, resulting in differences in the element contents in the soils. The differences in the distribution of soil element contents in the topsoil were the result of important natural and human factors.

  相似文献   

13.
Abstract

Long-term vegetation restoration carried out on the slopes of the Loess Plateau of China employed different spatial and temporal land-use patterns but very little is known about the effects of these patterns on soil water-content variability. For this study the small Donggou catchment was selected to investigate soil water-content distributions for three spatial scales, including the entire catchment area, sampling transects, and land-use systems. Gravimetric soil water contents were determined incrementally to a soil depth of 1.20 m, on 10 occasions from April to October, 2007, at approximately 20-day intervals. Results indicated that soil water contents were affected by the six land-use types, resulting in four distinct patterns of vertical distribution of soil moisture (uniform, increasing, decreasing, and fluctuating with soil depth). The soil water content and its variation were also influenced in a complex manner by five land-use patterns distributed along transects following the gradients of five similar slopes. These patterns with contrasting hydrological responses in different components, such as forage land (alfalfa)–cropland–shrubland or shrubland–grassland (bunge needlegrass)–cropland–grassland, showed the highest soil water-content variability. Soil water at the catchment scale exhibited a moderate variability for each measurement date, and the variability of soil water content decreased exponentially with increasing soil water content. The minimum sample size for accurate data for use in a hydrological model for the catchment, for example, required many more samples for drier (69) than for wet (10) conditions. To enhance erosion and runoff control, this study suggested two strategies for land management: (i) to create a mosaic pattern by land-use arrangement that located units with higher infiltration capacities downslope from those with lower soil infiltrabilities; and (ii) raising the soil-infiltration capacity of units within the spatial mosaic pattern where possible.  相似文献   

14.
Soil compaction is one of the major problems facing modern intensive agriculture. To remove soil compaction and restore soil productivity soil must be ripped to loosen it. Ripping is a costly process involving high fuel consumption, as well as depreciation of the implements through wear and tear. This article shows research into some combinations of tine spacing and ripping depth and their consequences for soil properties and grain yields. Three sites were chosen for these experiments on clayey and sandy soils. Treatments were a factorial of three tine spacings (20, 30 and 40 cm) by three ripping depths (15, 30 and 40 cm) together with the control.Commercial gypsum at 2.5 t/ha was applied to all treatments to maintain soil structure after ripping and the treatments were treatments were monitored for two seasons under wheat and barley crops.The highest grain yield in sandy soil was found with the combination of 40 cm ripping depth and 20 cm tine spacing. In clayey soils tine spacings of 20 cm and 30 cm in combination with 40 cm ripping depth, were equally effective for grain yield. The shallowest depth treatment, 15 cm, did not significantly affect grain yields regardless of tine spacing. It seems that the best practical compromise of tine spacing and ripping depth is 30 cm × 30 cm. The highest stored soil water was obtained from the deepest ripping and the widest tine spacing (40 cm × 40 cm) treatments and the lowest was obtained from the shallowest depth and narrowest spacing (15 cm × 20 cm) treatments which was still higher than the control treatment. However, due to soil re-settlement and re-compaction, the soil water storage obtained in the year after ripping to 40 cm depth was in many cases only equal to that obtained from 30 cm ripping depth. Soils ripped at 30 cm or deeper had significantly higher water infiltration rate than soils ripped at 15 cm depth. Soil bulk density, though decreased significantly in all ripping treatments relative to the controlled treatments in the first year, showed no stable pattern of change in the second year. All shallow ripping treatments (15 cm) regardless of tine spacing had similar soil strength and were not significantly different from the control. The other two ripping depths in general were equal, and significantly better than the controls. It is concluded that ripping to 30 or 40 cm depth in combination with 30 or 40 cm tine spacing was most effective for treating compacted soils.  相似文献   

15.
The Tatura system for the preparation of seed-beds for irrigated annual row-crops is described, where the soil is tilled when wet and friable and so requires few passes with implements to become suitable for crops, and where seeds are sown into wet soil. In soil prepared by the Tatura system, the percentage of aggregates < 0.5 mm diameter (as measured by dry-sieving) in the seed-bed was about half that found in commercially prepared seed-beds which were tilled up to 50 times when dry. With the Tatura system, the wetter the soil (up to 22% water content) when tilled, or the more passes (up to 4) of the implement at a water content of 22%, the less dust (< 0.5 mm diameter) and/or fewer clods (> 20 mm diameter) were formed.

The macro-structure of the surface layer of soil tilled at different water contents by the Tatura system was also quantified statistically by the method of wax-impregnation. The macro-structures were compared at the 10 mm, 20 mm, 40 mm, 60 mm and 80 mm depths in beds of soil prepared for irrigated annual row-crops by a system which has been described previously. Within each treatment (21.7%; 19.0%; 11.6% water content at 0–100 mm depth at tillage), the linear porosity and mean pore-size each tended to decrease with depth to 40 mm, with no further change or slight decrease to 80 mm depth. In all treatments, the mean aggregate-size tended to increase with depth from 10 mm depth to 80 mm depth. The sizes of pores and aggregates varied across each bed and possibly depended on the position of tines within the bed at each pass at tillage. Water content at tillage led to small differences in structure of the beds of soil. Soil tilled at a water content slightly above the Casagrande Plastic Limit generally had slightly larger pores and aggregates than soil tilled at lower water contents.  相似文献   


16.
基于时间稳定性和降维因子分析的土壤水分监测优化   总被引:2,自引:0,他引:2  
刘玉娇  朱青  吕立刚  廖凯华  徐飞 《土壤》2016,48(1):186-192
以南京市高淳区青山茶场中相邻的茶园和竹林坡地为研究区,对研究区土壤水分进行长期定点监测。基于土壤水分时间稳定性,结合因子分析选取典型样点组合,采用多元线性回归模型构建各监测点土壤水与典型样点间的数量关系。通过典型样点预测各监测点土壤水分,并检验预测结果,以期通过少数样点的监测来反映研究区的整体概况,优化研究区土壤水分监测。结果表明:在茶园仅监测7个点时,验证期RMSE小于1.5 cm3/cm3;竹林仅监测5个样点时,验证期RMSE小于1.7 cm3/cm3,模型能很好地预测研究区各样点土壤水分,为优化土壤水监测、减少野外工作量提供了理论依据。不同土地利用方式、不同深度处土壤水分分布特征存在显著差异;竹林土壤水分具有较强的时间稳定性,土壤水分的空间自相关性较茶园强;30 cm深处比10 cm深处土壤水分具有更稳定的空间分布结构。  相似文献   

17.
半干旱黄土区不同土地利用的土壤水分效应是农业生产、植被恢复和土地合理利用的重要依据.通过对孙家岔流域不同土地利用格局实测土壤水分资料分析,结果表明,梯田区阴坡的土壤含水率高于阳坡;梁峁顶区封闭荒地不同累积深度的土壤含水率均高于农地;缓坡区(<15°)农地土壤平均含水率高于荒地;灌木林地表层(0-80 cm)土壤含水率高于荒地,而较深层(80-180 cm)低于荒坡;松树林地平均土壤含水率高于杏树林地.说明在半干旱黄土区,梯田的保水效益最好;杏树林相对于松树林耗水量更大,不适宜在无灌溉条件的半干旱黄土区大面积种植;柠条灌木林改善地表土壤水分状况的效应明显,并且能充分利用较深层的土壤水分;缓坡区种植农作物比荒地更有助于土壤水分的改善.  相似文献   

18.
三深度土壤水分传感器的研制及试验   总被引:5,自引:4,他引:1  
针对当前植物根区不同深度下土壤含水量测量存在的传感器安装困难、对原位土壤扰动大以及传感器间一致性差等问题,该文基于阻抗法设计了一种三深度土壤水分传感器。该传感器不仅可以同时测量3个不同深度的土壤含水量,并且在安装时对原位土壤扰动极小。试验标定结果显示,该传感器具有较高的精度,所测的土壤含水量与烘干法所得的实际含水量非常吻合,决定系数R2和均方根误差(RMSE,root mean square error)分别达到0.996和0.013 cm3/cm3;传感器可适用于多种不同质地的土壤,在3种不同质地土壤中的输出灵敏度均大于1V/(cm3/cm3)。传感器的输出与土壤体积含水量呈现良好的线性关系,对黏土、砂土及壤土的决定系数R2分别达到0.983、0.965和0.975;土壤水分入渗试验结果进一步表明,该传感器性能良好,3个不同深度的传感器电极具有较高的一致性,在壤土和砂土样本中3个深度传感器电极的输出,相对误差分别小于2%和5%。  相似文献   

19.
长期施肥下潮土速效钾含量与钾素投入水平关系   总被引:4,自引:2,他引:2  
以郑州潮土肥力与肥料效益长期试验为基础,分析了长期施肥条件下土壤速效钾含量演变特征及其与钾素投入量的关系。结果表明,在不施钾肥条件下,土壤速效钾含量先逐年下降,810年后稳定在60 mg/kg左右; 施用钾肥和有机肥均可以显著提高土壤速效钾含量; 土壤速效钾含量与钾素投入量之间具有显著的正相关关系。单施化肥的NPK处理每投入钾1 kg/hm2,土壤速效钾含量增加0.007 mg/kg; 而化肥配施有机肥或玉米秸秆处理每投入钾1 kg/hm2,土壤速效钾含量分别增加0.025和0.014 mg/kg。从提升土壤钾素供应能力的角度而言,化肥配合施用有机肥或秸秆还田是值得推广的培肥措施。  相似文献   

20.
苜蓿作物轮作模式对土壤团聚体稳定性及有机碳的影响   总被引:3,自引:0,他引:3  
本研究以苜蓿?作物轮作试验为研究对象,探讨了苜蓿?苜蓿(L-L)、苜蓿?休闲(L-F)、苜蓿?小麦(L-W)、苜蓿?玉米(L-C)、苜蓿?马铃薯(L-P)和苜蓿?谷子(L-M)6种轮作模式对陇中黄土高原雨养农田苜蓿土壤团聚体稳定性以及土壤总有机碳含量的影响。结果表明:不同轮作模式下土壤机械稳定性团聚体以≥0.25 mm团聚体为优势团聚体,均占72.17%以上,而土壤水稳性团聚体以0.25 mm团聚体为优势团聚体,均占95.18%以上。随着土层深度的增加,各处理≥0.25 mm的团聚体数量及平均重量直径(MWD)均随之增加,而水稳性大团聚体数量及MWD值无明显规律性。与L-L处理相比,L-C和L-P处理0~30 cm耕层土壤≥0.25 mm的团聚体含量分别增加5.94%和1.12%,L-C处理的MWD表现为最高,而其他轮作处理则不同程度降低了≥0.25 mm团聚体含量及MWD;随着土层深度的增加,6种不同轮作模式的土壤有机碳含量均呈现逐渐降低的趋势,在0~30 cm的耕层土壤,较之L-L处理,L-W、L-C、L-P和L-M处理均从不同程度上降低了土壤有机碳含量,其中L-P处理有机碳含量最低,降低了18.68%。相关性分析表明,土壤总有机碳分别与2~5 mm、1~2 mm、0.5~1 mm和0.25~0.5 mm粒径的水稳性团聚体比例以及MWD表现出极显著正相关,而与0.25 mm粒径的水稳性团聚体呈极显著负相关。综上所述,苜蓿?玉米轮作模式能明显增加土壤团聚体机械稳定性,而不同苜蓿?作物轮作模式对土壤团聚体的水稳性影响较小,土壤有机碳含量在很大程度上影响着土壤水稳性团粒结构的形成与稳定性,二者密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号