首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Quasi static tests of one steel frame and two the composite deep beams infilled steel frames were carried out. The effects of the deep beams on the load capacity, ductility, hysteretic property and energy dissipation of pure steel structure were analyzed. It is found that the hysteresis curve is a straight line with the constant of the stiffness at the beginning and without residual deformation. And the hysteresis curve of specimen was full after yielding, and the skeleton curves had a clear plastic flow phase with triple linear. The lateral drifts of the beam specimens at failure were 1/25 and 1/22. The composite deep beams enhance the initial stiffness, yield load and maximum load bearing capacity of steel frame. Therefore, seismic performance of the composite deep beams is better.  相似文献   

2.
通过对核心区应用X形配筋增强的高强钢筋异形柱边节点和同等条件下未被增强的高强钢筋异形柱边节点进行拟静力试验研究,对比分析异形柱边节点的破坏特征、滞回曲线、承载能力、位移及延性、刚度退化、耗能能力等抗震性能指标。研究结果表明,配置HRB500高强钢筋异形柱边节点比配置600 MPa级的边节点承载能低,但滞回性能好,变形能力强,刚度退化推迟,耗能能力强;在核心区加入X形配筋,均可以改善高强钢筋异形柱边节点的破坏特征,使边节点抗剪能力、变形能力、耗能能力增强,刚度退化推迟,提高异形柱边节点抗震性能,配置HRB500高强钢筋的试件核心区应用X形配筋加强后抗震性能提高效果更好。  相似文献   

3.
In order to improve seismic performance of steel frame with prefabricated reinforce-concrete infill shear walls (SFCW), the ear bar device was used in the connection between the steel frame and the infill wall. Two one-bay, two story and one-third scaled models of SFCW were tested with low cyclic load. The working performance of ear bar connection, the cracks development in infill walls and deformation performance of SFCW were investigated. And the failure mode, hysteretic behavior,stiffness degradation,deformation and ductility and energy dissipation of composite structure were analyzed. The comparison study of steel frame with prefabricated, cast-in-place and silt reinforce-concrete infill shear walls was carried out. The results show that no failure occurs in the connection between the steel frame and the infill wall because ear plates below and up the beam-to-column connections are added in the specimens, and the connection device of ear plate presents good working performance. The properly designed SFCW has good ductility.  相似文献   

4.
The seismic resistant performance and failure mechanism of the steel bracing Bound-Column were analyzed with tests and the finite element method. Two-story steel bracing Bound-Column test specimen was selected. The braces adopt long leg back-back double angle. Tests were divided into three groups, including one monotonic loading test and two cyclic tests. Lateral load-bearing capacity, stiffness and hysteretic behavior of the steel bracing Bound-Column were obtained by the comparison of test results and the finite element method. Results show that the steel brace of Bound-Column contributes a lot to its load capacity and stiffness, while the external frame provides little lateral rigidity and capacity. Bound-Column failure occurs only in the steel braces, while the external frame is with no damage.  相似文献   

5.
By comparing the tests of prestressed and nonprestressed brick masonry walls with peripheral beams and Constructional columns, under cyclic lateral loading,the apperaence and development of Cracks,failure mechanism,hysteretic behavior,strength,stiffness,ductility and ener-gy dissipation of the brick rnasonry walls arc studied.Only the crack resistance and bearing capacity of walls are discussed in this paper.It is shown that prestressing on brick masonry wall can obviotisly improve its seismic behavior.Morcover,calculating methods for the crack resistance and the ultimate bearing capacity are presented,and the caculating results are identical with the tests.  相似文献   

6.
配置600 MPa级高强钢筋T形柱抗震性能试验研究   总被引:2,自引:0,他引:2  
600 MPa级钢筋是一种新型高强度钢筋,为研究该钢筋应用于异形柱结构体系的可行性,对7根不同轴压比、体积配箍率和钢筋强度的混凝土T形柱试件进行低周往复荷载试验,分别对其承载力、位移、滞回曲线、骨架曲线、刚度退化和耗能性能进行研究,综合评估其抗震性能。研究结果表明:配置600 MPa级钢筋的混凝土T形柱具有良好的变形能力和承载能力,提高配箍率能有效提高试件的抗震性能,提高轴压比可以提高试件的承载力,但降低其变形能力。随着钢筋强度的提高,试件的承载力显著提高。  相似文献   

7.
Seismic performance of SRC-RC transfer column was analyzed based on experiment of 12 specimens of transfer columns and 1 RC specimen under low cyclic reversed loading, which mainly focused on the extension length of shape steel. Analysis and comparison on skeleton curves of specimens was carried out. Analysis was completed for ductility, bearing capacity, energy dissipation capacity and degeneration ratio of strength. Displacement ductility changes with the increase of extension length of shape steel, enhancing at first, then reducing, and reaching peak value when extension length is close to three fifths of column height. Extension length of shape steel has little effect on bearing capacity. Energy dissipation capacity of transfer columns has relationship with many factors. Three fifths of column height is rational for extension length of shape steel, and specimens have not only advanced performance of energy dissipation but also good stability of stiffness and strength in this condition. The bond performance between concrete and shape steel decreases with the increment of extension length of shape steel, and hence stability of strength decreases.  相似文献   

8.
To investigate mechanical behavior and seismic behavior of concrete filled steel tubular column node (CFSTCN) in space truss structure, both full-scale test and Finite Element Method (FEM) were employed. The test load was 1.6 times of design load and by incremental step loading. Meanwhile, stress and deformation in CFSTCN were observed to monitor bearing capacity of the node. The results show that steel tubular works in elastic state and a small part of concrete beyond of compressive stress limits; steel tube and concrete adhesive well. The hysteretic energy dissipation capacity and failure mode under cyclic loading were revealed by nonlinear FEM. weakest position and ultimate bearing capacity of the node were obtained from FEM results. The method of combining full-scale test and FEM can well reveal the mechanical behavior and the seismic behavior of the node.  相似文献   

9.
A New-type Steel Tube Buckling-Restrained Brace with Reinforced Concrete outside (ST-BRB-RC) was introduced in this paper. Six specimens of the ST-BRB-RC were designed and cyclic loading test were carried out to study the hysteretic energy dissipation performance of the six specimens. And then, ABAQUS finite element analysis was used to study the performance of four specimens. The results indicated that the ST-BRB-RC had stable and full hysteretic curve. The bearing capacity of the ST-BRB-RC was stable and the hysteretic behavior was excellent. And the analysis model of ST-BRB-RC could be described by a bilinear model. The construction of the ST-BRB-RC was reasonable, and the energy dissipation mechanism of the ST-BRB-RC was clear. It is proved that the design philosophy of using reinforced concrete for exterior restrained element was available.  相似文献   

10.
The effectiveness of equivalent strip model calculating the horizontal ultimate bearing capacity of multi-story steel plate shear walls(SPSW)by using the software SAP2000 to make Pushover analysis was demonstrated by comparing the simulated values with results from experimental studies performed by different researchers.The effect of different slenderness ratios on the ultimate bearing capacity of four-story single-span SPSW and four-story three-span dual steel shear walls system subjected to the inverse triangular load was obtained by the verified analytical model,which was compared with the performance of corresponding bare frames.The slenderness ratio of 250~300 is suggested for the design of SPSW.  相似文献   

11.
By the hysteretic experiments and the finite element analysis of the proof-of-concept connections, the mechanical properties and energy dissipation capacity of the new steel beam-to-column connections are investigated. These connections are semi-rigid ones improved by adding threaded rods into the angle connections and can be designed to limit the structural damage only to the angles and threaded rods. It is found, by the comparative analysis of six connections tested with the same loading sequence, that the performance degradation of the connections may be resulted from the plastic damage, crack propagation of the angles and the buckling and fatigue crack of the rods. The rotation capacity and failure modes of the connections with threaded rods depend on the ability of anti-fatigue crack of the rods, and the better ductility the rods have, the better energy dissipation capacity the connections have. In addition, the hysteretic behavior and the deformation modes of the connections prior to the significant strength degradation or the fracture of the rods could be well simulated by the finite element method. Meanwhile, the stiffening effect from pre-stressing the angles, the plastic distribution of the angles and the degradation induced by the rod buckling were strongly verified by the FEA. Finally, the advantages and disadvantages of such new beam-to-column dissipative connections were analyzed, and the proposal for further connection improvement and in-depth study was made.  相似文献   

12.
13.
根据框架结构耗散塑性变形能与存储弹性变形能能力的损失界定结构的整体损伤,根据塑性铰耗散塑性变形能能力的损失来界定局部损伤,并以拟力法为基础推导了局部损伤与整体损伤的解析表达式,进而讨论框架结构局部损伤与整体损伤的相关性。研究表明,控制框架结构整体损伤的手段有:减小局部损伤区域的强度衰减、提高局部损伤区域的极限转动能力和减小局部损伤区域的残余变形。其机理是通过提高局部损伤区域的耗能能力与约束能力来提高整个结构耗散与存储地震能量的能力;框架结构整体损伤与局部损伤的加权值较为接近,可以采用框架局部损伤的加权值来近似估计结构的整体损伤值。  相似文献   

14.
Based on concepts of mechanics, a mechanical model of novel type of steel plate composite shear wall is presented. The novel type of structure is formed by steel plate shear wall and T-shaped solid-web composite columns. Flexural stiffness of steel beams, lateral stiffness of the T-shaped solid-web composite columns, shear stiffness of steel plate composite shear wall and shear stiffness of beam-column connection are taken into account in the mechanical model. And the equivalent damping between steel plate and boundary is considered. Based on the deformation features of structures and the calculation hypothesis, the lateral stiffness model and the energy dissipation model of structures are developed. Meanwhile, the calculation equations of elastic ultimate and plastic ultimate of shear strength of structures are set up. The theoretical analysis results inosculate better with the results of experiment. The comparison between the result calculated from the formula and the experimental result shows that the calculation precision is high enough to meet the demand of theoretical analysis. The difference, including equivalent model, stress states, manufacturing defect and installation error, between the formula and the experiment has been further discussed.  相似文献   

15.
It is necessary to simplify the capacity spectrum into bilinear form so as to get characteristic point of hysteretic bone curve(especially the yield point and the yielded stiffness),ductility and equivalent damping of the structure.Three general methods of calculating yield point and yielded stiffness of equivalent SDOF are introduced and the yield point and the yielded stiffness of three frame structures are compared using above given methods in this paper.The hysteretic bone curves of equivalent SDOF are decided by the equivalent yield force and displacement,the maximum plastic displacements of equivalent SDOF under rare earthquake are calculated,and it is compared with the maximum plastic displacements of member structures using nonlinear dynamic analysis.Finally,the advice of simplifying capacity spectrum is advanced.  相似文献   

16.
A novel three-dimensional isolation bearing (3DIB) was proposed, based on respective mechanical characteristic of lead rubber bearing, combined disc springs and rhombic steel plated damper. Firstly, the configuration department and mechanical design methodology was introduced; the horizontal and vertical stiffness and energy dissipation performance test was performed on a full scale three-dimensional isolation bearing, respectively. The results indicated that the proposed three-dimensional isolation bearing has reasonable configuration and explicit mechanical transmission mechanism; appropriate stiffness and energy dissipation performance can be achieved by reasonable design, keeping favorable holistic stability at plentiful horizontal shear displacement.  相似文献   

17.
Joints are the most important parts of the space structure, the load-derormation curve (hysteretic curve) under repeated loading is the comprehensive reflection of their mechanical properties such as ductility, energy dissipation capacity, strength, stiffness and so on. By the simulation experiment analysis and the finite element simulation between the two models of hidden welding and no-welding hidden in K-type node in the chord axial reciprocating load resulted in the failure modes and hysteretic curve, the result of comparative analysis about finite elements is consistent with that of experiment study. The results show that the destroyment at hidden welding seam node is partly, the take-over is broken down at the welds finally. The welding line is destroyed overall when facing the destroyment of no-welding node. The carrying capacity of the hidden welding is obvious. Through the finite element simulation analysis instead of phase through node hysteretic performance test is feasible.  相似文献   

18.
HDPF加固钢筋混凝土柱抗震性能试验研究   总被引:2,自引:0,他引:2  
为了研究高延性聚酯纤维加固钢筋混凝土柱的抗震性能,共进行了7根柱的低周反复试验,其中,3根在未加固状态下进行试验,4根柱粘贴高延性聚酯纤维加固后进行试验,针对位移延性系数、等效粘滞阻尼系数、总耗能、承载力和纤维带的应变进行了研究与分析。研究结果表明:未加固柱的承载力、耗能能力和延性都比较低,采用高延性聚酯纤维加固后的试件裂缝发展缓慢,加固后柱的承载能力、耗能能力、延性均有不同程度地提高;在塑性铰区域内增加局部配筋,能够提高纤维布的约束效果。  相似文献   

19.
The FEM simulation analysis method was studied to identify the ultimate bearing capacity of cold-formed steel portal frames.In this study,the beam-spring system was used to simulate the performance of joints.The initial imperfection of frame components was considered.The deformation performance and failure features of portal frame structures under vertical loads also were studied.The analytic results of the FEM simulation analysis method are close to the values obtained by experimentation.The ultimate bearing capacity of portal frames were computed by changing parameters such as the web plate thickness,the flange width,the plate thickness of brackets,the portal frame roof inclination,and the column footing stiffness.The analytic results indicate that the ultimate bearing capacity may be improved when the parameters mentioned above are increased.  相似文献   

20.
Based on characteristics of hysteretic energy of structures which are simplified single freedom degree systems and under the short duration impulse modle mid duration and long duration modle earthquakes, correlation between the maximum hysteretic energy increment per cycle and the maximum inelastic displacement of different structures is investigated. Simplified equations to estimate the maximum inelastic displacement are obtained. The validity of the equation is recognized. It is pointed out that the impact destroy of the structures may occur when energy increment per cycleis 50 80 percent of total hysteretic energy, and the maximum hysteretic energy increment per cycle, and that the maximum inelastic displacement can be used to evaluate aseismic capacity.If energy increment per cycleis small relative to total hysteretic energy, the destroy of the structures by cumulate dissipation energy may occur, and the total hysteretic energy can be used to evaluate aseismic capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号