首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
地震序列下拉索模数伸缩缝联间限位分析   总被引:1,自引:0,他引:1  
主震作用下桥梁结构可能已发生联间相对变位,强余震作用将进一步加剧桥梁上部结构的碰撞或落梁灾害,以某连续梁桥为例进行地震序列分析,并对比有无拉索模数伸缩缝两种情况下的地震响应,结果表明:拉索模数伸缩缝能够有效限制主余震各阶段联间相对位移,对避免主震后产生联间残余位移的桥梁结构在强余震作用下发生碰撞、落梁具有重要意义;同时,拉索模数伸缩缝使桥梁各联间协同作用,从而墩梁相对位移得到相应的控制,桥墩受力亦有所改善。  相似文献   

2.
A finite element method considering interaction betwee bending and shear lag deformation was proposed and the finite element formulations including the effect of shear lag was deduced. The effect of shear lag on structural behaviours in indeterminate box girders was studied in detail based on the proposed method. Firstly, the shear lag effects on deflection and the shear lag coefficients were analyzed for both determinate and indeterminate beams. The results obtained by using the proposed method were compared with those by using the analytical method. Finally, the effect of shear lag on redistribution of internal forces including shear force, bending moment, and additional bending moment due to shear lag in indeterminate box girder bridges was studied. It is found that the effects of shear lag on deflection and stresses at a cross section are obvious for both determinate and indeterminate beams, while the effect of shear lag on internal forces in indeterminate box girder bridges is small and may be neglected.  相似文献   

3.
According to the elastic catenary theory,this paper derives the spatial catenary cable element from the exact analytical expression,which is used for finite element analysis of the structure.It deduces the precise expression of two-node cable element tangent stiffness matrix and the tension of cable end.The equivalent node load of cable element is expressed by the total load algorithm,and the non-linear equation is solved by double Newdon-rapson method.The proposed non-linear semi-analytical finite element method based on spatial catenary cable element can take full account of the impact of non-linear geometry.The initial configuration and the internal forces on any directional spatial loads can be solved.The example shows that the calculation method is accurate and effective.  相似文献   

4.
Earthquake induced dynamic axial force in reinforced concrete (RC) bridge bent columns will not only change the yield strength of the columns but also change their stiffness, which is seldom considered by the common lumped plasticity line model. Based on the fiber element model results that taking into account the influence of dynamic axial force on strength and stiffness simultaneously, the axial force stiffness interaction effect on the seismic responses of RC double column bridges was analyzed. The results show that, axial force stiffness interaction has a large effect on the seismic responses of the double column bridge in the elastic range, and it does not alter the ultimate capacity of the columns. Since the stiffness of the columns under compression and tension dynamic axial forces offset each other, the global displacement of bridge bent with equal columns is relatively unaffected by the axial force stiffness interaction, however, the differences of the column member forces are manifest. For the short column controls the global stiffness, the axial force stiffness interaction has significant influences on both the global displacement and member force responses. The influences become larger as the irregularity of the bridge bent increases, so the interaction between axial force and member stiffness should be sufficiently considered in seismic analyses.  相似文献   

5.
Jinma bridge is a long span cooperative-system cable-stayed bridge with one tower cooperated with T frames on both sides.Owing to artistic form and lying in typhoonprone area,it is essential to process the buffeting analysis.In this paper,the turbulent wind velocity was first simulated with cosine wave superposition method as multi-correlated random processes;then,the time domain expressions for the buffeting and self-excited forces were given.On this basis,the buffeting analysis of Jinma Bridge was made.The results show that the anti-wind capacity of the cooperative-system cable-stayed bridge is ensured although the torsional resistibility of the main girders of this bridge is not good.  相似文献   

6.
A tangent stiffness matrix for quadrilateral plane stress element under large rotation with small strain is proposed in this paper,The corresponding program based on this theory has been worked out;The computation of examples with analytic values has verified that the element's formulation, its program given in this paper have strong nonlinear computation ability;A nonlinear whole-course analysis of stone arch bridge has been done in this paper.The computations presented preferably a comprehensive understanding of nonlinear characteristics of stone arch bridge with small span and could be beneficial for the engineer designers.  相似文献   

7.
An improved computational method for buffeting forces of long span bridges, which substitutes the traditional wind tunnel test with the bridge segment model for CFD method, is proposed. In the case study of Tsing Ma Bridge, the pressure distribution induced by the wind field of the bridge decks was simulated. The nodal buffeting forces were computed and the local stress responses were obtained according to the CFD simulation and the refined finite element model. Preparation for buffeting induced fatigue analysis of bridges and structural health monitoring are provided.  相似文献   

8.
Based on the refined three dimensional modeling method, a coupled vibration FEA(finite element analysis) model was established for light railway train and long span two layer cable stayed bridge with the consideration of the material and geometry nonlinearity and over 2.2 million of element and nodes.To overcome the computing difficulty for large number of element, the solution was carried out with the Dawning 4000A supercomputer in Shanghai Supercomputer Center based on Contact Balance Bisection Algorithm for parallel computing.Through the simulation of one way and two way conditions, the key component's stress of cable stayed bridge girders and dynamic response of middle span section was respectively analyzed.  相似文献   

9.
According to the structural features of three main trusses continuous plate truss composite bridge, two composite beam methods are presented by constructing the displacement mode of composite beam elements and deriving the stiffness matrix of composite beam elements. The characteristic of composite beam method one is that the bridge slab is taken as the top flange of the chord of main truss and combined with the chord of main truss to form a steel concrete composite beam; the characteristic of composite beam method two is that the bridge slab is taken as the top flange of longitudinal and traverse beam and form a steel concrete composite beam with longitudinal and traverse beams. And as for the conventional plate beam composite method, the slab is characterized by forming bridge slab system with continuous isotropic sheets and longitudinal and traverse beams to bear load. Also, the comparison between theoretical results and experimental ones verifies the effectiveness of the above three methods.  相似文献   

10.
Based on basic theory of numerical manifold method, effects of cover displacement functions for the stiffness matrix is analyzed with the relationship between the cover displacement function and the formation of the stiffness matrix. The increasing speed of matrix element value has relation to the values of absolute coordinates in cover displacement function. An improved function is adopted for better solution to solve partial oversize problem of stiffness values in the stiffness matrix with the high order cover displacement function. The validity of the proposed approach is approved with case study.  相似文献   

11.
A method which is used for calculating steady vibration response of shipping propulsion shafting connecting with a coupling with nonlinear hysteresis characteristics are studied. On condition that the nonlinear dynamic stiffness and hysteresis damping of the coupling be considered, on the basis of GLM(Galerki Levenberg Marquard) method, a method called SSGILM(Separate System Galerkin and Improved Levenberg-Marquardt)to be used for calculating steady vibration response of propulsion shafting with local nonlinear dynamic stiffness and hysteresis damping, is proposed. A simple example is given out and the analyses show that it is effective to calculate steady vibration response of the shafting with local nonlinear dynamic stiffness and hysteresis damping by SSGILM method. From initial response values given arbitrarily, the automatic search algorithm in SSGILM method can converge the given initial response values to the response values accorded with required accuracy quickly; nonlinear dynamic stiffness and hysteresis damping of the coupling have different effect on vibration response of the shafting at different range of frequency. At the area of close nature frequency of the shafting ,displacement amplitude of the shafting is bigger. Beyond the range, the characteristics of the coupling have restraint effect on vibration of the shafting.  相似文献   

12.
There were often happened cases for beam elements with initial stress or initial strain while the geometrically nonlinear analysis was performed for the plane structure. The deduction of stiffness matrices was awfully difficult because the nonlinear stiffness matrices included node displacement vectors and extensive matrix operations. Based on the nonlinear geometric equation of plane beam element and general elastic relationship of stress-strain including initial stress and initial strain,the tangent stiffness matrix was derived. All explicit formula of stiffness matrices including initial stress and strain item have been developed by use of the MATLAB Mathematical Tools. The results are of great significance to the nonlinear finite element programming for plane beam elements.  相似文献   

13.
A fiber beam-column element in conjunction with zero-length elements attached to its ends was proposed to simulate the flexural and shear mechanism respectively. Based on the Limit State Material model and the Shear Limit Curve model provided by OpenSees, the nonlinear shear effect of reinforced concrete column and its coupling with the flexural effect were defined. The reliability of the proposed model was validated by means of comparisons with existing test results. Finally, a plane frame from in-situ pushover test was simulated. It is shown that the proposed method, by taking the nonlinear shear effect into account, produces satisfactory results for frame columns with shear strength and stiffness degradation, while the conventional fiber beam-column element can hardly simulate actual flexure-shear failure mechanism for columns characterized by insufficient transverse reinforcement. The proposed method is applicable for nonlinear analysis of reinforced concrete frame structures with shear deficiencies.  相似文献   

14.
为更好地分析钢板弹簧刚度特性,对钢板弹簧建模方法进行了对比研究。依据钢板弹簧国家标准GB/T 19844-2005,针对某型渐变刚度钢板弹簧分别在有限元软件Hypermesh和多体动力学软件Adams中建立其有限元模型和离散梁模型,并进行了仿真,得到刚度特性。将仿真结果与试验值进行了比较。结果表明,在针对该钢板弹簧的刚度分析中,运用离散梁法得到的刚度特性更加接近试验值。  相似文献   

15.
The basic structure of Variable Curvature Friction Pendulum Isolation Bearing (VCFP) is introduced. Based on the principle of mechanical equilibrium, theoretical analysis on two types of VCFP which are Variable Frequency Pendulum Isolation Bearing (VFPI) and Conical Friction Pendulum Bearing (CFPI) are conducted. The stiffness of each VCFP is derived, and the recovery characteristics were discussed and the computing formula of maximum residual displacement was deduced as well. Moreover, with the use of ABAQUS software, the models with solid element of each VCFP are built, and the hysteresis property under low cyclic loading and recovery characteristic are simulated. The comparative analysis of VCFP and Friction Pendulum Bearing (FPB) are also conducted. The results show that: 1) the numerical simulation results are identical to the theoretical analysis; 2) according to its plump hysteresis loops, the hysteresis property of VCFP is favorable, further more, its effective viscous damping ratio and coefficient of energy dissipation are higher than FPB, which indicates its greater ability in energy dissipation; 3) the stiffness of the VCFP is determined by curvature radius, that is, sliding surface function. And its stiffness decreases with the increase of bearing displacement through rational design. And then its isolation period increases as the displacement increases and the low frequency resonance problem of isolated structures can be well solved; 4) compared with FPB, the softening mechanism of stiffness can make the shear force transferred to superstructure decrease; 5) the maximum stress of bearing appears when the bearing reaches its designed displacement, and in general it may situate in the edge of ball joint surface of slider or bearing plate 6) the maximum residual displacement of VCFP depends on both friction coefficient and the parameters of sliding surface function, therefore, parametric design based on analysis or simulation is necessary so as to control the maximum value in an acceptable range in engineering.  相似文献   

16.
Owing to the randomness of shrinkage and creep of concrete, random analysis method should be adopted to give a reasonable result with probabilistic guarantee. Stochastic variables for long-term analysis with GL2000 model about creep and shrinkage of concrete were presented. Combining Monte Carlo sampling with the response surface method, the stochastic analysis model was performed which is on time-variant deflection of prestressed concrete bridge. The long-term deflection of a prestressed concrete bridge was analyzed by this model. Sensitivity analysis and parametric study were carried out. And the uncertainty of creep model, elastic modulus of concrete, magnitude of sustained load, and prestress forces are the most important factors for long-term deflection. Furthermore, controlling accuracy of prestress forces and delaying the loading time are helpful to inhibit long-term deflection.  相似文献   

17.
Excessive creep camber of prestressed concrete bridge would result in risk on the traffic safety in high speed railway. To control creep camber of presstressed concrete bridge, a new twice prestressed technology was proposed to presstressed concrete beam. Four twice prestressed simply supported box girders with different prestressed degrees were designed as an example. Its section stress, strength and crack resistance in different construction stages were analyzed. Compared the creep camber between conventional prestressed simply supported concrete beam and twice prestressed simply supported composite beam with the same prestressed steels, it was shown that twice prestressed composite beam has a smaller stress gradient. And the creep camber decreased approximately 40% to 60% with building height reduction, as well as some 10% energy saving and some amount of concrete.  相似文献   

18.
19.
The connections of frame structure elements at a node are ofen an elastic connection between hinged and rigid.In this paper,the stiffness matrix and the loading transfer matrix of frame element with turn elastic connections is deduced,the cross shear effect has been taken into consideration simultaneously.The stiffness matrices of some bar elements,such as both ends of the bar are hinged or rigid and one end is hinged but the other is rigid,are special cases of the stiffness matrices presented in this paper.After pointing out that the elastic coefficient at a node of a bar element with elastic joint is really a fuzzy quantity,the fuzzy stiffness matrix of the bar element is obtained,and a solution to structural fuzzy finite element equilibrium equations is presented.The fuzzy solution obtained from above is not only containing the solution of ordinary finite element method but also providing some additional informations with practical value.[WT5HZ]  相似文献   

20.
The effects of the restraint stiffness ratio, the axial load ratio and the column slenderness on the buckling temperature and failure temperature of a restrained H section steel column under axial load in fire were studied with a calibrated finite element method (FEM) model. And the calculation methods of buckling temperature and failure temperature were proposed. The effect of the restraint stiffness ratio on the buckling temperature and failure temperatures could be expressed with an exponent curve while polynomial functions was appropriate for the effects of the axial load ratio and the column slenderness. The results of the proposed method were in good agreement with those by FEM method and on the safe side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号