首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本研究对2011年分离自吉林省猪群的3株流感病毒进行了遗传进化分析。结果表明欧亚类禽H1N1猪流感病毒和古典H1N1猪流感病毒在吉林省猪群中共同流行,因此加强猪流感流行病学调查具有重要意义。  相似文献   

2.
中国类禽型H1N1亚型猪流感病毒的发现和遗传分析   总被引:1,自引:0,他引:1  
采用禽流感病毒通用引物,对2006年发现的1株H1N1亚型的类禽型猪流感病毒的全基因组进行了测序,并进行了遗传学分析。序列分析表明它的8个片段与欧洲的类禽型猪流感病毒A/swine/Ile et Vilaine/1455/99(H1N1)病毒和A/swine/Cotes d'Armor/1488/99(H1N1)病毒的相应基因具有高度的同源性,同源性可达97%~99%,表明类禽型猪流感病毒已在中国出现。其血凝素基因的190E→D和225G→E的突变使得其结合NeuAc-a2,6Gal受体的能力高于NeuAca2,3Gal受体。欧洲的类禽型猪流感病毒可以直接感染人,并且可导致人的肺炎和死亡。中国类禽型猪流感病毒的发现及其的NeuAca2,6Gal受体结合特性使其成为一个潜在可感染人的病毒。  相似文献   

3.
猪流感病毒H1N1、H1N2和H3N2亚型多重RT-PCR诊断方法的建立   总被引:2,自引:3,他引:2  
对我国分离到的猪流感病毒和GenBank数据库中已有的猪流感病毒H1N1、H1N2和H3N2亚型毒株的HA、NA基因核苷酸序列进行分析,分别选出各个病毒亚型HA和NA基因中高度保守且特异的核苷酸区域,设计扩增猪流感病毒H1和H3、N1和N2亚型的2套多重PCR特异性引物,建立了猪流感H1N1、H1N2和H3N2亚型病毒多重RT-PCR诊断方法。采用该方法对H1N1、H1N2、H3N2亚型猪流感病毒标准参考株进行RT-PCR检测,结果均呈阳性,对扩增得到的片段进行序列测定和BLAST比较,表明为目的基因片段。其它几种常见猪病病毒和其它亚型猪流感病毒的RT-PCR扩增结果都呈阴性。对107EID50/0.1mL病毒进行稀释,提取RNA进行敏感性试验,RT-PCR最少可检测到102EID50的病毒量核酸。对40份阳性临床样品的检测结果是H1N1、H1N2和H3N2亚型分别为16份、1份和20份,其它3份样品同时含有H1N1和H3N2亚型猪流感病毒,和鸡胚分离病毒结果100%一致。试验证明建立的猪流感病毒H1N1、H1N2和H3N2亚型多重RT-PCR诊断方法是一种特异敏感的诊断方法,可用于临床样品的早期快速诊断和分型。  相似文献   

4.
The introduction of the 2009 pandemic H1N1 (pH1N1) influenza virus in pigs changed the epidemiology of influenza A viruses (IAVs) in swine in Europe and the rest of the world. Previously, three IAV subtypes were found in the European pig population: an avian‐like H1N1 and two reassortant H1N2 and H3N2 viruses with human‐origin haemagglutinin (HA) and neuraminidase proteins and internal genes of avian decent. These viruses pose antigenically distinct HAs, which allow the retrospective diagnosis of infection in serological investigations. However, cross‐reactions between the HA of pH1N1 and the HAs of the other circulating H1 IAVs complicate serological diagnosis. The prevalence of IAVs in Greek swine has been poorly investigated. In this study, we examined and compared haemagglutination inhibition (HI) antibody titres against previously established IAVs and pH1N1 in 908 swine sera from 88 herds, collected before and after the 2009 pandemic. While we confirmed the historic presence of the three IAVs established in European swine, we also found that 4% of the pig sera examined after 2009 had HI antibodies only against the pH1N1 virus. Our results indicate that pH1N1 is circulating in Greek pigs and stress out the importance of a vigorous virological surveillance programme.  相似文献   

5.
The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains.  相似文献   

6.

Background

Swine influenza is an infectious acute respiratory disease of pigs caused by influenza A virus. We investigated the time of entry of swine influenza into the Finnish pig population. We also describe the molecular detection of two types of influenza A (H1N1) viruses in porcine samples submitted in 2009 and 2010.This retrospective study was based on three categories of samples: blood samples collected for disease monitoring from pigs at major slaughterhouses from 2007 to 2009; blood samples from pigs in farms with a special health status taken in 2008 and 2009; and diagnostic blood samples from pigs in farms with clinical signs of respiratory disease in 2008 and 2009. The blood samples were tested for influenza A antibodies with an antibody ELISA. Positive samples were further analyzed for H1N1, H3N2, and H1N2 antibodies with a hemagglutination inhibition test. Diagnostic samples for virus detection were subjected to influenza A M-gene-specific real-time RT-PCR and to pandemic influenza A H1N1-specific real-time RT-PCR. Positive samples were further analyzed with RT-PCRs designed for this purpose, and the PCR products were sequenced and sequences analyzed phylogenetically.

Results

In the blood samples from pigs in special health class farms producing replacement animals and in diagnostic blood samples, the first serologically positive samples originated from the period July–August 2008. In samples collected for disease monitoring, < 0.1%, 0% and 16% were positive for antibodies against influenza A H1N1 in the HI test in 2007, 2008, and 2009, respectively. Swine influenza A virus of avian-like H1N1 was first detected in diagnostic samples in February 2009. In 2009 and 2010, the avian-like H1N1 virus was detected on 12 and two farms, respectively. The pandemic H1N1 virus (A(H1N1)pdm09) was detected on one pig farm in 2009 and on two farms in 2010.

Conclusions

Based on our study, swine influenza of avian-like H1N1 virus was introduced into the Finnish pig population in 2008 and A(H1N1)pdm09 virus in 2009. The source of avian-like H1N1 infection could not be determined. Cases of pandemic H1N1 in pigs coincided with the period when the A(H1N1)pdm09 virus was spread in humans in Finland.  相似文献   

7.
Quail has been proposed to be an intermediate host of influenza A viruses. However, information on the susceptibility and pathogenicity of pandemic H1N1 2009 (pH1N1) and swine influenza viruses in quails is limited. In this study, the pathogenicity, virus shedding, and transmission characteristics of pH1N1, swine H1N1 (swH1N1), and avian H3N2 (dkH3N2) influenza viruses in quails was examined. Three groups of 15 quails were inoculated with each virus and evaluated for clinical signs, virus shedding and transmission, pathological changes, and serological responses. None of the 75 inoculated (n = 45), contact exposed (n = 15), or negative control (n = 15) quails developed any clinical signs. In contrast to the low virus shedding titers observed from the swH1N1-inoculated quails, birds inoculated with dkH3N2 and pH1N1 shed relatively high titers of virus predominantly from the respiratory tract until 5 and 7 DPI, respectively, that were rarely transmitted to the contact quails. Gross and histopathological lesions were observed in the respiratory and intestinal tracts of quail inoculated with either pH1N1 or dkH3N2, indicating that these viruses were more pathogenic than swH1N1. Sero-conversions were detected 7 DPI in two out of five pH1N1-inoculated quails, three out of five quails inoculated with swH1N1, and four out of five swH1N1-infected contact birds. Taken together, this study demonstrated that quails were more susceptible to infection with pH1N1 and dkH3N2 than swH1N1.  相似文献   

8.
We report the serological evidence of low‐pathogenic avian influenza (LPAI) H9N2 infection in an occupational poultry‐exposed population and a general population. A serological survey of an occupational poultry‐exposed population and a general population was conducted using a haemagglutinin‐inhibiting (HI) assay in Shanghai, China, from January 2008 to December 2010. Evidence of higher anti‐H9 antibodies was found in serum samples collected from poultry workers. During this period, 239 H9N2 avian influenza viruses (AIVs) were isolated from 9297 tracheal and cloacal paired specimens collected from the poultry in live poultry markets. In addition, a total of 733 influenza viruses were isolated from 1569 nasal and throat swabs collected from patients with influenza‐like symptoms in a sentinel hospital, which include H3N2, H1N1, pandemic H1N1 and B, but no H9N2 virus was detected. These findings highlight the need for long‐term surveillance of avian influenza viruses in occupational poultry‐exposed workers.  相似文献   

9.
对2009年H1N1甲型流感流行前后的上海地区养殖场户410份猪血清样品,分别采用血凝抑制试验(hemagglutination inhibition,HI)和酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)进行检测H1N1甲型流感病毒和猪流感病毒(Swine in?uenza virus,SIV)。检测结果表明,除2007年外,2008~2010年猪血清中均存在不同水平的HI抗体,阳性率呈显著上升趋势,且抗体水平与猪群饲养周期及饲养密度正相关,而与猪流感病毒的流行无相关性。  相似文献   

10.
《Veterinary microbiology》2015,175(2-4):224-231
During 2006 and 2007, two swine-origin triple-reassortant influenza A (H1N2) viruses were isolated from pigs in northern China, and the antigenic characteristics of the hemagglutinin protein of the viruses were examined. Genotyping and phylogenetic analyses demonstrated different emergence patterns for the two H1N2 viruses, Sw/Hebei/10/06 and Sw/Tianjin/1/07. Sequences for the other genes encoding the internal proteins were compared with the existing data to determine their origins and establish the likely mechanisms of genetic reassortment. Sw/Hebei/10/06 is an Sw/Indiana/9K035/99-like virus, whereas Sw/Tianjin/1/07 represents a new H1N2 genotype with surface genes of classic swine and human origin and internal genes originating from the Eurasian avian-like swine H1N1 virus. Six-week-old female BALB/c mice infected with the Sw/HeB/10/06 and Sw/TJ/1/07 viruses showed an average weight loss of 12.8% and 8.1%, respectively. Healthy six-week-old pigs were inoculated intranasally with either the Sw/HeB/10/06 or Sw/TJ/1/07 virus. No considerable changes in the clinical presentation were observed post-inoculation in any of the virus-inoculated groups, and the viruses effectively replicated in the nasal cavity and lung tissue. Based on the results, it is possible that the new genotype of the swine H1N2 virus that emerged in China may become widespread in the swine population and pose a potential threat to public health.  相似文献   

11.
猪流感病毒H1、H3、N1、N2亚型分型 RT-PCR方法的建立   总被引:1,自引:0,他引:1  
根据GenBank中H1N1和H3N2亚型猪流感病毒(SIV)血凝素(hemagglutinin,HA)、神经氨酸酶(neuraminidase,NA)和M基因保守序列,分别设计合成了5对特异性引物,利用RT-PCR技术对SIV的型和亚型进行鉴定。结果表明,该方法的型RT-PCR可以检测出104 EID50病毒量所提取的RNA;H1、H3、N1和N2的亚型RT-PCR均可以检测出104 EID50病毒量所提取的RNA。除每对特异性引物所对应的亚型外,对其他亚型及猪繁殖与呼吸综合征病毒(PRRSV)和猪瘟病毒(CSFV)的检测均为阴性,应用该方法对临床样品进行检测,其结果与病毒分离结果符合率为100%。结果表明,该方法特异性好、敏感性高,有望成为SIV的一种特异、敏感、快速的分型检测方法,为猪流感分子流行病学的调查奠定了良好的基础。  相似文献   

12.
本试验旨在建立一种针对检测抗H1N1亚型猪流感病毒单克隆抗体的免疫过氧化物酶单层细胞试验(immunoperoxidase monolayer assay,IPMA)筛选方法。通过优化MDCK细胞接毒量、细胞接毒后培养时间、封闭液的种类和工作浓度、工作时间等各个反应条件,并对建立的IPMA筛选方法的特异性、敏感性和重复性进行评价。结果显示,建立的IPMA检测方法的最优反应条件为MDCK细胞接毒102.63 TCID50/100 μL H1N1亚型猪流感病毒,37℃培养24 h,含3‰ H2O2的甲醇室温固定15 min,5%脱脂乳37℃封闭2 h,50 μL杂交瘤细胞上清作为一抗,37℃孵育2 h,羊抗鼠HRP-IgG二抗37℃孵育1 h。所建立的IPMA方法能特异性地检测H1N1亚型猪流感病毒单克隆抗体,与猪繁殖与呼吸综合征病毒(PRRSV)、猪圆环病毒2型(PCV2)和猪瘟病毒(CSFV)阳性血清不发生交叉反应;其敏感性检测结果显示,可检测1:3 200的HI=2-9标准H1N1猪阳性血清;批间和批内重复性试验结果较好。综上所述,本试验成功建立了抗H1N1亚型猪流感病毒单克隆抗体的IPMA检测方法,该方法特异性强、敏感性高、重复性好,为生产鉴定H1N1亚型猪流感病毒单克隆抗体提供了一种简便、实用、有效的检测手段。  相似文献   

13.
对南京市首例甲型H1N1(2009)病毒进行细胞分离,获得一株具有较高血凝活性的病毒,命名为A/Nanjing/1/2009。在全基因组测序的基础上,对分离株的血凝素基因(haemagglutinin,HA)的遗传特征进行了详细研究。分离株HA蛋白不具有多碱基HA裂解位点,具有低致病性流感病毒特点。与参考株A/California/04/2009相比,分离株A/Nanjing/1/2009HA蛋白的有5个氨基酸发生了突变,其中一个位于Ca抗原位点208位氨基酸(R→K),这一突变虽然还不会影响抗原性的改变,但预示了新甲型H1N1(2009)抗原漂移的启动。分离株有5个潜在糖基化位点,这与近年来古典猪H1N1和北美三源重配猪H1病毒完全一致,保留了古典猪H1病毒的特点。与禽H1病毒相比,分离株HA蛋白受体结合位点上的190(E→D)和225(G→D)位点发生突变,这可能成为新甲型H1N1(2009)在人际间传播的一个重要分子基础。此外,其它受体结合位点上相关氨基酸同时具有人和猪流感病毒的特点。本研究对南京市早期流行的甲型H1N1(2009)流感病毒的HA蛋白的分子遗传特征进行了详细研究,对进一步监测病原变异具有重要指导意义。  相似文献   

14.
A serological survey for the detection of antibodies to influenza A(H1N1)pdm09 was carried out in a population of dogs and cats in Germany. A total of 1150 sera collected in 2010 and 2011 were screened using an ELISA targeting anti‐nucleoprotein NP antibodies. Those initially screened positive samples were subsequently tested for antibodies to N1 neuraminidase followed by a virus neutralization test using A/Bayern/74/2009 strain. A prevalence of A(H1N1)pdm09‐specific antibodies of 0.13% and 1.93% was estimated among dogs and cats, respectively. Evidence of exposure to other influenza A virus subtypes was also observed.  相似文献   

15.
从天津地区不同猪场分离到6株H1N1亚型猪源流感病毒(SIV)。根据GenBank发表的H1N1亚型 SIV的核蛋白(NP)、基质蛋白(M)及非结构蛋白(NS)基因序列,分别设计3对引物,将RT-PCR产物克隆至pMD18-T载体,进行测序分析。遗传进化分析结果表明:A/swine/Tianjin/TJ2/2005(H1N1)与A/swine/Tianjin/TJ4/2006(H1N1)的NP、M及NS基因核苷酸序列在遗传进化树中均与A/swine/Guangdong/33/2006(H1N1)位于同一分支上,属于古典型H1N1猪谱系;A/swine/Tianjin/TJ3/2006(H1N1)与A/swine/Tianjin/TJ8/2006(H1N1)的NP、M及NS基因核苷酸在遗传进化树中均与A/Dunedin/2/2000(H1N1)组成一个大分支,可能起源于人谱系;A/swine/Tianjin/TJ6/2009(H1N1)与A/swine/Tianjin/TJ7/2009(H1N1)NP、M及NS基因核苷酸序列在遗传进化树中均与A/swine/Jiangsu/s15/2011(H1N1)位于同一分支上,属于类禽H1N1猪谱系。本试验对6株H1N1亚型SIV的NP、M及NS全基因序列进行分析,在一定程度上揭示了天津地区H1N1亚型SIV的基因进化与流行情况。  相似文献   

16.
本研究2012年底从辽宁省某屠宰场猪鼻咽拭子样品中分离到1株流感病毒,经HA—HI试验和RT—PCR鉴定为H1N1亚型猪流感病毒株,命名为A/swine/Liaoning/01/2012(H1N1),通过对病毒的8个基因片段克隆并测序,并利用分子生物学软件进行遗传演化分析。结果表明,分离株HA基因裂解位点附近的氨基酸序列为IPSIQSRjG,符合低致病力流感病毒的分子特征。全基因组进化树结果表明,分离株的8个基因片段与A/swine/Jiangsu/40/2011(H1N1)株核苷酸同源性最高,分离株处在类禽型H1N1亚型遗传进化分支上;由于类禽型H1N1猪流感病毒具有潜在感染人的潜力,在国外和国内均有感染人的报道,因此,辽宁省首次分离到该型猪流感病毒对全省养猪业和公共卫生安全具有重要意义,值得深入研究。  相似文献   

17.
Novel swine influenza virus subtype H3N1 in Italy   总被引:2,自引:0,他引:2  
To date, three subtypes of swine influenza viruses, H1N1, H1N2, and H3N2 have been isolated in Italy. In 2006, a novel swine influenza virus subtype (H3N1) was isolated from coughing pigs. RT-PCR performed on lung tissues, experimental infection in pigs with the novel isolate, and cloning the virus by plaque assay confirmed this unique H and N combination. The novel isolate was also antigenically and genetically characterized. Genetic and phylogenetic analysis showed that the complete HA gene of the H3N1 strain has the highest nucleotide identity to three Italian H3N2 strains, one isolated in 2001 and two in 2004, whereas the full length NA sequence is closely related to three H1N1 subtype viruses isolated in Italy in 2004. The remaining genes are also closely related to respective genes found in H1N1 and H3N2 SIVs currently circulating in Italy. This suggests that the novel SIV could be a reassortant between the H3N2 and H1N1 SIVs circulating in Italy.  相似文献   

18.
Although swine origin A/H1N1/2009 influenza virus (hereafter "pH1N1″) has been detected in swine in 20 countries, there has been no published surveillance of the virus in African livestock. The objective of this study was to assess the circulation of influenza A viruses, including pH1N1 in swine in Cameroon, Central Africa. We collected 108 nasal swabs and 98 sera samples from domestic pigs randomly sampled at 11 herds in villages and farms in Cameroon. pH1N1 was isolated from two swine sampled in northern Cameroon in January 2010. Sera from 28% of these herds were positive for influenza A by competitive ELISA and 92.6% of these swine showed cross reactivity with pandemic A/H1N1/2009 influenza virus isolated from humans. These results provide the first evidence of this virus in the animal population in Africa. In light of the significant role of swine in the ecology of influenza viruses, our results call for greater monitoring and study in Central Africa.  相似文献   

19.
Several highly pathogenic H5N1 avian influenza viruses were isolated from swine populations in Fujian Province, China, since 2001. Because it is thought that H5N1 infection in pigs might result in virus adaptation to humans, we surveyed swine populations in Fujian Province in 2004 and 2007 for serological evidence of the infection. Twenty‐five pig farms covering all nine administrative districts of Fujian Province were sampled and a total of 1407 serum specimens were collected. The haemagglutination inhibition (HI) tests revealed no evidence of H5 infection and only a few cases of H9 infection. The negative results for H5 infection were further verified by micro‐neutralization tests. By contrast, H1 influenza virus infections were prevalent in swine in both surveys according to the results of enzyme‐linked immunosorbent assay (ELISA). The H3 infection rate was reduced dramatically in 2007 compared with 2004, when examined by HI and ELISA. In summary, the results imply that the swine populations in Fujian Province had not been affected greatly by the H5N1 avian influenza virus, given that there is no serological evidence that H5N1 influenza virus has infected the pig populations. The reported isolates represent only sporadic cases.  相似文献   

20.
旨在了解河南省猪流感病毒的流行情况及其遗传进化和基因组特征。2018年4月,从河南省某一出现疑似流感症状猪群中采集鼻拭子样品150份用于分离病毒,对分离病毒的全基因组进行序列测定和分析。同时感染6周龄BALB/c小鼠,研究其对小鼠的致病性。结果显示,获得1株H1N1亚型病毒[命名为A/swine/Henan/NY20/2018(H1N1)]。遗传进化表明,其HANA基因属于欧亚类禽H1N1分支,PB2、PB1、PANPM基因属于2009甲型H1N1分支,NS基因属于经典H1N1分支。HA蛋白的裂解位点序列为PSIQSR↓GL,具有低致病性流感病毒的分子特征,在小鼠肺和鼻甲有效复制并能引起肺组织病理学变化。本研究分离到1株3源重排H1N1亚型病毒,对小鼠呈现一定致病力,提示应进一步加强对SIV的监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号