首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pharmacokinetics of theophylline were determined after an intravenous (i.v.) dose of 2.36 mg/kg in six camels and 4.72 mg/kg body weight in three camels. The data obtained (median and range) for the low and high dose, respectively, were as follows: the distribution half-lives (t1/2 alpha) were 1.37 (0.64-3.25) and 2.66 (0.83-3.5) h, the elimination half-lives (t1/2 beta) were 11.8 (8.25-14.9) and 10.4 (10.0-13.5) h, the steady state volumes of distribution (Vss) were 0.88 (0.62-1.54) and 0.76 (0.63-0.76) L/kg, volumes of the central compartment (Vc) were 0.41 (0.35-0.63) and 0.51 (0.36-0.52) L/kg, total body clearances (Clt) were 62.3 (39.4-97.0) and 50.2 (47.7-67.4) mL/h.kg body weight and renal clearance (Vr) for the low dose was 0.6 (0.42-0.96) mL/h.kg body weight. There was no significant difference in the pharmacokinetic parameters between the two doses. Theophylline protein binding at a concentration of 5 micrograms/mL was 32.2 +/- 3.3%. Caffeine was identified as a theophylline metabolite but its concentration in serum and urine was small. Based on the pharmacokinetic values obtained in this study, a dosage of 7.5 mg/kg body weight administered by i.v. injection at 12 h intervals can be recommended. This dosing regimen should achieve an average steady state serum concentration of 10 micrograms/mL with peak serum concentration not exceeding 15 micrograms/mL.  相似文献   

2.
The pharmacokinetics of pentoxifylline (P) and its alcohol metabolite I (MI) were determined after administration of intravenous pentoxifylline, sustained release pentoxifylline tablets (Trental®), and crushed pentoxifylline tablets in corn syrup, to five healthy adult horses. Pharmacokinetics were evaluated in a model-independent manner. After intravenous administration, pentoxifylline was rapidly eliminated (mean residence time 1.09 f 0.67 h), had a large steady-state volume of distribution (2.81 f 1.16 Vkg), and high clearance (3.06 51.05 I/kg/h). Oral absorption of pentoxifylline from both dose forms varied
considerably between individuals. Times to peak concentration ranged from 1–10 h for either dose form. There was no difference in relative bioavailability (Fâ'™)between whole (0.98 k 0.30) and crushed Trental® tablets. Ratios between areas under the curve (AUC) for pentoxifylline and MI were different following administration of oral versus intravenous doses. This finding suggests that route of administration may affect the metabolic profile of pentoxifylline. Given the extreme differences in absorption characteristics between indi-viduals in this study, recommendations are not made as to appropriate dose, dose interval, or dose form for administration of pentoxifylline to horses.  相似文献   

3.
The pharmacokinetics of tripelennamine (T) was compared in horses (n = 6) and camels (n = 5) following intravenous (i.v.) administration of a dose of 0.5 mg/kg body weight. Furthermore, the metabolism and urinary detection time was studied in camels. The data obtained (median and range in brackets) in camels and horses, respectively, were as follows: the terminal elimination half-lives were 2.39 (1.91-6.54) and 2.08 (1.31-5.65) h, total body clearances were 0.97 (0.82-1.42) and 0.84 (0.64-1.17)L/h/kg. The volumes of distribution at steady state were 2.87 (1.59-6.67) and 1.69 (1.18-3.50) L/kg, the volumes of the central compartment of the two compartment pharmacokinetic model were 1.75 (0.68-2.27) and 1.06 (0.91-2.20) L/kg. There was no significant difference (Mann-Whitney) in any parameter between camels and horses. The extent of protein binding (mean +/- SEM) 73.6 + 8.5 and 83.4 +/- 3.6% for horses and camels, respectively, was not significantly statistically different (t-test). Three metabolites of T were identified in urine samples of camels. The first one resulted from N-depyridination of T, with a molecular ion of m/z 178, and was exclusively eliminated in conjugate form. This metabolite was not detected after 6 h of T administration. The second metabolite, resulted from pyridine ring hydroxylation, had a molecular ion of m/z 271, and was also exclusively eliminated in conjugate form. This metabolite could be detected in urine sample for up to 12 h after T administration. The third metabolite has a suspected molecular ion of m/z 285, was eliminated exclusively in conjugate form and could be detected for up to 24 h following T administration. T itself could be detected for up to 27 h after i.v. administration, with about 90% of eliminated T being in the conjugated form.  相似文献   

4.
Ingvast-Larsson, C, Paalzow, G., Paalzow, L., Ottosson, T., Lindholm, A. & Appelgren, L.E. Pharmacokinetic studies of theophylline in horses. J. vet. Pharmacol. Therap. 8, 76–81.
The pharmacokinetics of theophylline were determined in Standardised trotters after single intravenous and oral administration. A bi-exponential equation was fitted to the intravenous data and a tri-exponential equation to the oral data. The biological half-life of theophylline was found to be 14.8 h, the volume of distribution 1.02 l/kg and the total plasma clearance 0.86 ml/kg/min. The oral absorption of the drug was complete (bioavailability 108%) and rapid (absorption half-life 0.4 h).
Professor L. E. Appelgren, Department of Pharmacology and Toxicology, Biomedicum. Box 573, S-75J 23 X'ppsala, Sweden.  相似文献   

5.
The pharmacokinetics of a slow-release theophylline formulation was investigated following intravenous and oral administration at 10 mg/kg in horses. A tricompartmental model was selected to describe the intravenous plasma profile. The elimination half-life (t1/2) was 16.91 ± 0.93 h, the apparent volume of distribution (V d) was 1.35 ± 0.18 L/kg and the body clearance (ClB) was 0.061 ± 0.009 L kg–1 h. After oral administration the half-life of absorption was 1.24 ± 0.30 h, and the calculated bioavailability was above 100%. Thet1/2 after oral administration was 18.51 ± 1.75 h, only a little longer than that after intravenous administration. The slow release formulation did not exhibit any advantage in prolonging thet1/2 of theophylline in the horse.  相似文献   

6.
7.
The pharmacokinetics of diclofenac was studied in camels (Camelus dromedarus) (n=6) following intravenous (i.v.) administration of a dose of 2.5 mg kg(-1) body weight. The metabolism and urinary detection time were also studied. The results obtained (median and range) were as follows: the terminal elimination half-life (t(1/2beta)) was 2.35 (1.90-2.73)h, total body clearance (Cl(T)) was 0.17 (0.16-0.21)lh kg(-1). The volume of distribution at steady state (V(SS)) was 0.31 (0.21-0.39)l(-1)kg(-1), the volume of the central compartment of the two compartment pharmacokinetic model (V(C)) was 0.15 (0.11-0.17)l kg(-1). Five metabolites of diclofenac were tentatively identified in urine and were excreted mainly in conjugate form. The main metabolite was identified as hydroxy diclofenac. Both diclofenac and hydroxy diclofenac, appear to be the main elimination route for diclofenac when administered i.v. in camels. Diclofenac could be identified up to 4 days following i.v. administration in camels using a sensitive gas chromatography/mass spectrometry (GC/MS) method.  相似文献   

8.
9.
OBJECTIVE: To determine the pharmacokinetics of acetazolamide administered IV and orally to horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Horses received 2 doses of acetazolamide (4 mg/kg of body weight, IV; 8 mg/kg, PO), and blood samples were collected at regular intervals before and after administration. Samples were assayed for acetazolamide concentration by high-performance liquid chromatography, and concentration-time data were analyzed. RESULTS: After IV administration of acetazolamide, data analysis revealed a median mean residence time of 1.71 +/- 0.90 hours and median total body clearance of 263 +/- 38 ml/kg/h. Median steady-state volume of distribution was 433 +/- 218 ml/kg. After oral administration, mean peak plasma concentration was 1.90 +/- 1.09 microg/ml. Mean time to peak plasma concentration was 1.61 +/- 1.24 hours. Median oral bioavailability was 25 +/- 6%. CONCLUSIONS AND CLINICAL RELEVANCE: Oral pharmacokinetic disposition of acetazolamide in horses was characterized by rapid absorption, low bioavailability, and slower elimination than observed initially after IV administration. Pharmacokinetic data generated by this study should facilitate estimation of appropriate dosages for acetazolamide use in horses with hyperkalemic periodic paralysis.  相似文献   

10.
Dimethyl sulfoxide (DMSO) was administered IV to 6 Thoroughbred horses at 2 dosages: 1.0 g/kg and 0.1 g/kg. The pharmacokinetics seemed linear, with biological half-lives of 8.6 +/- 0.3 hours and 9.8 +/- 2.2 hours for the 1.0 g/kg and 0.1 g/kg dosages, respectively. This was further substantiated by mean residence times of 9.8 +/- 0.44 hours and 13.8 +/- 4.25 hours, areas under the curve of 12.55 +/- 1.42 mg/ml/hr and 1.63 +/- 0.49 mg/ml/hr, and the clearances of 0.081 +/- 0.009 L/kg/hr and 0.066 +/- 0.022 L/kg/hr for the large and small dosages, respectively. At 12 hours after 1.0 g/kg was administered, 26.6% of the DMSO dose was excreted unchanged into the urine; at 12 hours after 0.1 g/kg was administered, 25.3% of the DMSO dose was excreted unchanged into the urine. It was predicted that 29.4% and 40.6% of the total DMSO dose would be excreted into the urine for the 1.0 g/kg and 0.1 g/kg dosages, respectively. A 10% DMSO concentration in normal saline solution was safe to give as rapid IV infusion. Slow administration is recommended for more concentrated solutions. Based on the half-life, DMSO should be administered 2 times a day IV for the treatment of increased intracranial pressure and/or cerebral edema in horses.  相似文献   

11.
12.
OBJECTIVE: To determine pharmacokinetic variables of mivacurium chloride after IV administration in dogs. ANIMALS: 5 healthy Labrador Retrievers. PROCEDURE: Anesthesia was induced with thiopental and maintained with halothane in oxygen. Dogs were ventilated mechanically to an end-tidal P(CO)2 value between 35 and 40 mm Hg. Heart rate, direct blood pressure, and arterial pH were recorded throughout the experiment. Core temperature, end-tidal P(CO)2, and halothane concentration were kept constant throughout the experiment. Paired blood samples for determination of plasma cholinesterase activity were collected prior to administration of a bolus of mivacurium (0.05 mg/kg of body weight), which was administered IV during a 2-second period. Arterial blood samples were obtained for determination of plasma mivacurium concentration 0, 1, 3, 5, 10, 30, 60, 120, 150, and 180 minutes after administration of mivacurium. Blood was collected into tubes containing EDTA and 0.25% echothiophate. Mivacurium concentration was determined, using reversed-phase high-performance liquid chromatography. RESULTS: For the trans-trans isomer, mean +/- SEM volume of distribution was 0.18+/-0.024 L/kg, median half-life was 34.9 minutes (range, 26.7 to 53.5 minutes), and clearance was 12+/-2 ml/min/kg. For the cis-trans isomer, values were 0.31+/-0.05 L/kg, 43.4 minutes (range, 31.5 to 69.3 minutes), and 15+/-2 ml/min/kg, respectively. Values for the cis-cis isomer were not calculated, because it was not detectable in plasma 60 minutes after mivacurium administration in all 5 dogs. CONCLUSIONS AND CLINICAL RELEVANCE: The transtrans and cis-trans isomers of mivacurium have a long half-life and slow clearance in healthy dogs anesthetized with halothane.  相似文献   

13.
Six horses were administered either 15 or 20 mg/kg body weight (b.w.) procainamide (PA) as an intravenous (i.v.) dose over 10 min. The plasma concentrations of PA and N-acetylprocainamide (NAPA) as well as the pharmacodynamic effect (prolongation of the QT interval) were monitored. The PA plasma concentrations could be described by a one-compartment model with a t ½ of 3.49 ± 0.61 h. The total body clearance of PA was 0.395 ± 0.090 1/hr/kg and the volume of distribution was 1.93 ± 0.27 l/kg. As observed after PA administration, NAPA (an active metabolite) had a t ½ longer than PA of 6.31 ± 1.49 h. Peak NAPA concentrations (1.91 ± 0.51 μg/ml) occurred at 5.2 h after the PA i.v. dose. The ratio of area under the curves for NAPA to PA was 0.46 ± 0.15 which is similar to that expected in humans classified as slow acetylators. Percentage change in the QT interval was examined with respect to PA and PA + NAPA plasma concentrations. For PA, %ΔQT = 41.2 log (PA) - 13.26 and correlations ( r ) ranged from 0.77 to 0.91 among the horses. In the case of PA + NAPA,%ΔQT= 57.3 log(PA+NAPA)-31.83 andrangedfrom0.77to0.90. No evidence of toxicity was noted with respect to changes in the PR interval.  相似文献   

14.
OBJECTIVE: To characterize pharmacokinetics of voriconazole in horses after oral and IV administration and determine the in vitro physicochemical characteristics of the drug that may affect oral absorption and tissue distribution. ANIMALS: 6 adult horses. PROCEDURES: Horses were administered voriconazole (1 mg/kg, IV, or 4 mg/kg, PO), and plasma concentrations were measured by use of high-performance liquid chromatography. In vitro plasma protein binding and the octanol:water partition coefficient were also assessed. RESULTS: Voriconazole was adequately absorbed after oral administration in horses, with a systemic bioavailability of 135.75 +/- 18.41%. The elimination half-life after a single orally administered dose was 13.11 +/- 2.85 hours, and the maximum plasma concentration was 2.43 +/- 0.4 microg/mL. Plasma protein binding was 31.68%, and the octanol:water partition coefficient was 64.69. No adverse reactions were detected during the study. CONCLUSIONS AND CLINICAL RELEVANCE: Voriconazole has excellent absorption after oral administration and a long half-life in horses. On the basis of the results of this study, it was concluded that administration of voriconazole at a dosage of 4 mg/kg, PO, every 24 hours will attain plasma concentrations adequate for treatment of horses with fungal infections for which the fungi have a minimum inhibitory concentration 相似文献   

15.
Tissue disposition of azithromycin after intravenous (IV) or intramuscular (IM) injection at a single dose rate of 10mg/kg bodyweight were investigated in rabbits using a modified agar diffusion bioassay for determining tissue concentrations. The pharmacokinetic behaviour of azithromycin was characterized by low and sustained plasma concentrations but high and persistent tissue concentrations. Kinetic parameters indicated a high retention of the drug in peripheral compartments. The plasma half-lives after IV and IM administrations were similar being 21.8h and 23.1h, respectively, while the half-lives obtained in tissues after IV and IM administration were at least 1.4 and 1.9 times longer than in plasma, respectively. The highest tissue concentrations were found in bile, liver and spleen whereas the lowest ones were found in skeletal muscle (although they were higher than those in plasma). From the results of the single administration in this study an IM dosage regimen can be proposed that achieves minimum concentrations over 2mg/L in rabbits: three doses of 4-5mg/kg/day would provide suitable therapeutic concentrations in pulmonary tissues over seven days.  相似文献   

16.
The origin of caffeine detections in equine serum and urine after theophylline administrations was examined. Three different preparations containing theophylline were administered to standardbred mares. Both blood and urine samples were collected. Caffeine was detected and quantified in theophylline administration samples by high performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrometry (LC-MS-MS). Further in vitro analysis showed that caffeine metabolites were not detected when caffeine, or caffeine-containing products, were added to urine. Data derived from HPLC-UV and LC-MS-MS analysis of dosages of theophylline and caffeine are used to propose the establishment of a threshold limit to control and discern between metabolic and administered caffeine concentrations. A serum caffeine concentration of 250 ng/mL and a urine caffeine concentration of 1000 ng/mL are suggested. Based on the data supplied, these threshold concentrations could effectively control orally administered caffeine in racehorses, up to the dosage used in this work, up to 72 h before sampling time.  相似文献   

17.
Tramadol is a centrally acting analgesic drug that has been used clinically for the last two decades to treat moderate to moderately severe pain in humans. The present study investigated tramadol administration in horses by intravenous, intramuscular, oral as immediate-release and oral as sustained-release dosage-form routes. Seven horses were used in a four-way crossover study design in which racemic tramadol was administered at 2 mg/kg by each route of administration. Altogether, 23 blood samples were collected between 0 and 2880 min. The concentration of tramadol and its M1 metabolite were determined in the obtained plasma samples by use of an LC/MS/MS method and were used for pharmacokinetic calculations. Tramadol clearance, apparent volume of distribution at steady-state, mean residence time (MRT) and half-life after intravenous administration were 26+/-3 mL/min/kg, 2.17+/-0.52 L/kg, 83+/-10 min, and 82+/-10 min, respectively. The MRT and half-life after intramuscular administration were 155+/-23 and 92+/-14 min. The mean absorption time was 72+/-22 min and the bioavailability 111+/-39%. Tramadol was poorly absorbed after oral administration and only 3% of the administered dose was found in systemic circulation. The fate of the tramadol M1 metabolite was also investigated. M1 appeared to be a minor metabolite in horses, which could hardly be detected in plasma samples. The poor bioavailability after oral administration and the short half-life of tramadol may restrict its usefulness in clinical applications.  相似文献   

18.
Metronidazole pharmacokinetics in horses was studied after intravenous (i.v.), rectal (p.r.) and oral (p.o.) administration at 20 mg/kg using a triple crossover study design. Metronidazole mean+/-SD half-life was 196+/-39, 212+/-30 and 240+/-65 min after i.v., p.r. and p.o. administration, respectively. The metronidazole clearance was 2.8 (mL/min/kg) and the volume of distribution at steady state was 0.68 L/kg. The pharmacokinetic parameters calculated for metronidazole after administration of the drug by the various routes showed that bioavailability (74+/-18 vs. 30+/-9%) and maximum serum concentration (22+/-8 vs. 9+/-2 microg /mL) were significantly higher after p.o. administration compared with p.r. administration. There were no significant differences in mean absorption time (45+/-69 vs. 66+/-18 min) and the time to reach maximum serum concentration (65+/-36 vs. 58+/-18 min). The results indicated that p.r. administration of metronidazole to horses, although inferior to p.o. administration in terms of bioavailability, provides an alternative route of administration when p.o. administration cannot be used.  相似文献   

19.
REASONS FOR PERFORMING STUDY: Danofloxacin is a fluoroquinolone developed for veterinary medicine showing an excellent activity. However, danofloxacin pharmacokinetics profile have not been studied in horses previously. OBJECTIVE: To study the pharmacokinetics following i.v., i.m. and intragastric (i.g.) administration of 1.25 mg/kg bwt danofloxacin to 6 healthy horses. METHODS: A cross-over design was used in 3 phases (2 x 2 x 2), with 2 washout periods of 15 days (n = 6). Danofloxacin (18%) was administered by i.v. and i.m. routes at single doses of 1.25 mg/kg bwt. For i.g. administration an oral solution was prepared and administered via nasogastric tube. Danofloxacin concentrations were determined by HPLC assay with fluorescence detection. Tolerability at the the site of i.m. injection was monitored by creatine kinase (CK) activity. RESULTS: Danofloxacin plasma concentration vs. time data after i.v. and i.g. administration could best be described by a 2-compartment open model. The disposition of i.m. administered danofloxacin was best described by a one-compartment model. The terminal half-lives for i.v., i.m. and i.g. routes were 6.31, 5.36 and 4.74 h, respectively. Clearance value after i.v. dosing was 0.34 l/kg bwt/h. After i.m. administration, absolute bioavailability was mean +/- s.d. 88.48 +/- 11.10% and Cmax was 0.35 +/- 0.05 mg/l. After i.g. administration, absolute bioavailability was 22.36 +/- 6.84% and Cmax 0.21 +/- 0.07 mg/l. CK activity following i.m. dosing increased 3-fold over pre-injection levels 12 h after dosing and subsequently approached (but did not reach) normal values at 72 h post dose. CONCLUSIONS: Systemic danofloxacin exposure achieved in horses following i.m. administration was consistent with the predicted blood levels needed for a positive therapeutic outcome for many equine infections. Conversely, danofloxacin utility by the i.g. route was limited by low bioavailability. Tolerability associated with i.m. administration was high. POTENTIAL RELEVANCE: Pharmacokinetics, blood levels and good tolerability of i.v. and i.m. administration of danofloxacin in horses indicates that it is likely to be effective for treating sensitive bacterial infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号