首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphibians are an imperiled group of vertebrate animals that typically have biphasic life histories involving a shift from aquatic larval habitats to terrestrial adult habitats. Habitat loss is the greatest threat to amphibians and the importance of the spatial configuration of terrestrial and breeding habitats upon the landscape in determining amphibian persistence is poorly known. The information gap is particularly acute in tropical landscapes that simultaneously host the greatest and most imperiled amphibian fauna on Earth. We installed 125 artificial ponds at different distances from forest fragments embedded in an agricultural matrix in southeastern Brazil. Constructed ponds attracted 13 anuran species; ponds at the forest fragment-matrix transition hosted a greater abundance and higher species richness of frogs and toads than those installed either far from or well within forest fragments. Forest fragments larger than 70 ha in agricultural areas harbored more individuals than smaller fragments. Our results indicate that landscape configuration has an important influence on frog and toad distribution and abundance in tropical agricultural landscapes and we suggest guidelines for maintaining favorable configurations of aquatic and terrestrial habitats for conserving this rich and imperiled species suite.  相似文献   

2.
Contemporary landscape ecology continues to explore the causes and consequences of landscape heterogeneity across a range of scales, and demands for the scientific underpinnings of landscape planning and management still remains high. The spatial distribution of resources can be a key element in determining habitat quality, and that in turn is directly related to the level of heterogeneity in the system. In this sense, forest habitat mosaics may be more affected by lack of heterogeneity than by structural fragmentation. Nonetheless, increasing spatial heterogeneity at a given spatial scale can also decrease habitat patch size, with potential negative consequences for specialist species. Such dual effect may lead to hump-backed shape relationships between species diversity and heterogeneity, leading to three related assumptions: (i) at low levels of heterogeneity, an increase in heterogeneity favours local and regional species richness, (ii) there is an optimum heterogeneity level at which a maximum number of species is reached, (iii) further increase in spatial heterogeneity has a negative effect on local and regional species richness, due to increasing adverse effects of habitat fragmentation. In this study, we investigated the existence of a hump-shaped relationship between local plant species richness and increasing forest landscape heterogeneity on a complex mosaic in the French Alps. Forest landscape heterogeneity was quantified with five independent criteria. We found significant quadratic relationships between local forest species richness and two heterogeneity criteria indicators, showing a slight decrease of forest species richness at very high heterogeneity levels. Species richness–landscape heterogeneity relationships varied according to the heterogeneity metrics involved and the type of species richness considered. Our results support the assumption that intermediate levels of heterogeneity may support more species than very high levels of heterogeneity, although we were not able to conclude for a systematic negative effect of very high levels of heterogeneity on local plant species richness.  相似文献   

3.
The role of habitat heterogeneity as a key factor in determining species pools in habitat mosaics has been acknowledged, but we still know little on the relative importance of the different ecological processes acting within such complex landscapes. We compared species richness and distribution in forest fragments imbedded in shrub-lands to those in continuous forests or in continuous shrublands. We examined the consistency of our data with the predictions of two hypotheses: 1) the Habitat fragmentation hypothesis which states that fragmentation has negative effects on the species from the original continuous habitat; 2) the Habitat supplementation /complementation hypothesis which stipulates that the presence of a matrix habitat around the fragments will mitigate negative effects on the species from the original habitat (supplementation) or allow the presence of species that depend on the presence of both the fragment and matrix habitats (complementation). We show that: 1) species richness in forest fragments did not differ from species richness in segments of continuous forests of equal area; 2) the bird community of forest fragments got impoverished in some forest species but a higher proportion of species common in continuous forests were not affected by fragmentation; 3) fragment communities had a significant proportion of common species that were scarce in, or absent from both continuous forests and shrublands. While, a few forest species supported predictions from the fragmentation hypothesis, occurrence patterns observed in several other species were consistent with either the supplementation or the complementation hypotheses. Our results suggest that there is no single hypothesis that properly captures the consequences of a shift from continuous forests to a mosaic of forest fragments and shrublands and that different ecological mechanisms act in conjunction to determine species pools in habitat mosaics. Habitat heterogeneity at a local scale appears a key factor in maintaining bird diversity in fire driven Mediterranean landscapes.  相似文献   

4.

Context

Habitat loss and habitat fragmentation negatively affect amphibian populations. Roads impact amphibian species through barrier effects and traffic mortality. The landscape variable ‘accessible habitat’ considers the combined effects of habitat loss and roads on populations.

Objectives

The aim was to test whether accessible habitat was a better predictor of amphibian species richness than separate measures of road effects and habitat loss. I assessed how accessible habitat and local habitat variables determine species richness and community composition.

Methods

Frog and tadpole surveys were conducted at 52 wetlands in a peri-urban area of eastern Australia. Accessible habitat was delineated using a highway. Regressions were used to examine relationships between species richness and eleven landscape and local habitat variables. Redundancy analysis was used to examine relationships between community composition and accessible habitat and local habitat variables.

Results

Best-ranked models of species richness included both landscape and local habitat variables. There were positive relationships between species richness and accessible habitat and distance to the highway, and uncertain relationships with proportion cover of native vegetation and road density. There were negative relationships between species richness and concreted wetlands and wetland electrical conductivity. Four species were positively associated with accessible habitat, whereas all species were negatively associated with wetland type.

Conclusions

Barrier effects caused by the highway and habitat loss have negatively affected the amphibian community. Local habitat variables had strong relationships with species richness and community composition, highlighting the importance of both availability and quality of habitat for amphibian conservation near major roads.
  相似文献   

5.
Landscape effects mediate breeding bird abundance in midwestern forests   总被引:1,自引:0,他引:1  
We examine the influence of both local habitat and landscape variables on avian species abundance at forested study sites situated within fragmented and contiguous landscapes. The study was conducted over a six year period (1991–1996) at 10 study sites equally divided between the heavily forested Missouri Ozarks and forest fragments in central Missouri. We found greater species richness and diversity in the fragments, but there was a higher percentage of Neotropical migrants in the Ozarks. We found significant differences in the mean number of birds detected between the central Missouri fragments and the unfragmented Ozarks for 15 (63%) of 24 focal species. We used stepwise regression to determine which of 12 local vegetation variables and 4 landscape variables (forest cover, core area, edge density, and mean patch size) accounted for the greatest amount of variation in abundance for 24 bird species. Seven species (29%) were most sensitive to local vegetation variables, while 16 species (67%) responded most strongly to one of four landscape variables. Landscape variables are significant predictors of abundance for many bird species; resource managers should consider multiple measures of landscape sensitivity when making bird population management decisions.Order of first two authors decided by coin toss  相似文献   

6.
Acknowledgment that the matrix matters in conserving wildlife in human-modified landscapes is increasing. However, the complex interactions of habitat loss, habitat fragmentation, habitat condition and land use have confounded attempts to disentangle the relative importance of properties of the landscape mosaic, including the matrix. To this end, we controlled for the amount of remnant forest habitat and the level of fragmentation to examine mammal species richness in human-modified landscapes of varying levels of matrix development intensity and patch attributes. We postulated seven alternative models of various patch habitat, landscape and matrix influences on mammal species richness and then tested these models using generalized linear mixed-effects models within an information theoretic framework. Matrix attributes were the most important determinants of terrestrial mammal species richness; matrix development intensity had a strong negative effect and vegetation structural complexity of the matrix had a strong positive effect. Distance to the nearest remnant forest habitat was relatively unimportant. Matrix habitat attributes are potentially a more important indicator of isolation of remnant forest patches than measures of distance to the nearest patch. We conclude that a structurally complex matrix within a human-modified landscape can provide supplementary habitat resources and increase the probability of movement across the landscape, thereby increasing mammal species richness in modified landscapes.  相似文献   

7.
The landscape matrix is suggested to influence the effect of habitat fragmentation on species richness, but the generality of this prediction has not been tested. Here, we used data from 10 independent studies on butterfly species richness, where the matrix surrounding grassland patches was dominated by either forest or arable land to test if matrix land use influenced the response of species richness to patch area and connectivity. To account for the possibility that some of the observed species use the matrix as their main or complementary habitat, we analysed the effects on total species richness and on the richness of grassland specialist and non-specialist (generalists and specialists on other habitat types) butterflies separately. Specialists and non-specialists were defined separately for each dataset. Total species richness and the richness of grassland specialist butterflies were positively related to patch area and forest cover in the matrix, and negatively to patch isolation. The strength of the species-area relationship was modified by matrix land use and had a slope that decreased with increasing forest cover in the matrix. Potential mechanisms for the weaker effect of grassland fragmentation in forest-dominated landscapes are (1) that the forest matrix is more heterogeneous and contains more resources, (2) that small grassland patches in a matrix dominated by arable land suffer more from negative edge effects or (3) that the arable matrix constitutes a stronger barrier to dispersal between populations. Regardless of the mechanisms, our results show that there are general effects of matrix land use across landscapes and regions, and that landscape management that increases matrix quality can be a complement to habitat restoration and re-creation in fragmented landscapes.  相似文献   

8.
Matrix quality affects probability of persistence in habitat patches in landscape simulation models while empirical studies show that both urban and agricultural land uses affect forest birds. However, due to the fact that forest bird abundance and species richness can be strongly influenced by local habitat factors, it is difficult to analyze matrix effects without confounding effects from such factors. Given this, our objectives were to (1) relate human-dominated land uses to forest bird abundance and species richness without confounding effects from other factors; (2) determine the scale at which forest birds respond to the matrix; and (3) identify whether certain bird migratory strategies or habitat associations vary in richness or abundance as a function of urban and agriculture land uses. Birds were surveyed at a single point count site 100 m from the edge of 23 deciduous forest patches near Ottawa, Ontario. Land uses surrounding each patch were measured within increasingly large circles from 200 to 5000 m radius around the bird survey site. Regression results suggest that effects of urban and agricultural land uses on forest birds (1) are not uniformly positive or negative, (2) can occur at different spatial scales, and (3) differentially affect certain groups of species. In general, agriculture appeared to affect species at a broad spatial scale (within 5 km), while urban land use had an impact at both a narrower spatial scale (within 1.8 km) and at the broad scale. Neotropical and short distance migrant birds seemed to be the most sensitive to land use intensification within the matrix. Limiting urban land use within approximately 200–1800 m of forest patches would be beneficial for Neotropical migrant birds, which are species of growing conservation concern in temperate North America.  相似文献   

9.
Even among forest specialists, species-specific responses to anthropogenic forest fragmentation may vary considerably. Some appear to be confined to forest interiors, and perceive a fragmented landscape as a mosaic of suitable fragments and hostile matrix. Others, however, are able to make use of matrix habitats and perceive the landscape in shades of grey rather than black-and-white. We analysed data of 42 Chiroxiphia caudata (Blue Manakin), 10 Pyriglena leucoptera (White-shouldered Fire-eye) and 19 Sclerurus scansor (Rufous-breasted Leaftosser) radio-tracked in the Atlantic Rainforest of Brazil between 2003 and 2005. We illustrate how habitat preferences may determine how species respond to or perceive the landscape structure. We compared available with used habitat to develop a species-specific preference index for each of six habitat classes. All three species preferred old forest, but relative use of other classes differed significantly. S. scansor perceived great contrast between old forest and matrix, whereas the other two species perceived greater habitat continuity. For conservation planning, our study offers three important messages: (1) some forest specialist species are able to persist in highly fragmented landscapes; (2) some forest species may be able to make use of different anthropogenic habitat types to various degrees; whereas (3) others are restricted to the remaining forest fragments. Our study suggests species most confined to forest interiors to be considered as potential umbrella species for landscape-scale conservation planning.  相似文献   

10.
Landscape connectivity is a very recurrent theme in landscape ecology as it is considered pivotal for the long term conservation of any organism’s populations. Nevertheless, this complex concept is still surrounded by uncertainty and confusion, largely due to the separation between structural and functional connectivity. Amphibians are the most threatened vertebrates around the globe, in Europe mostly due to habitat alteration, and to their particular life cycle. Pond breeding amphibians are considered to be organised in metapopulations, enhancing the importance of landscape connectivity in this group of animals. We sampled the amphibian species present in two pond groups in Central Western Spain. We applied the graph theory framework to these two pond networks in order to determine the importance of each pond for the entire network connectivity. We related the pond importance for connectivity with the species richness present in each pond. We tested if connectivity (partially) determined the presence of the amphibian species sampled using logistic regression. The results show that the structural connectivity of the pond network impacts on the amphibian species richness pattern and that the importance of the pond for the connectivity of the network is an important factor for the presence of some species. Our results, hence, attest the importance of (structural) landscape connectivity determining the pattern of amphibian (functional) colonization in discrete ponds.  相似文献   

11.
We explored the ways in which environmental variation at multiple spatial scales influences the organization of ant species into local communities. Ground-dwelling ants were sampled in sandhill habitat at 33 locations throughout northern Florida, USA. Variance partitioning of local, landscape, and regional datasets using partial redundancy analysis indicates that ant community composition is significantly influenced by environmental variability across all scales of analysis. Habitat generalists appear to replace habitat specialists at sites with high proportions of matrix habitat in the surrounding landscape. Conversely, habitat specialists appear to replace habitat generalists at sites with more sandhill habitat in the surrounding landscape and greater amounts of bare ground locally. Local niche differentiation leading to species-sorting, combined with the effects of spatially structured dispersal dynamics at landscape scales, may explain this pattern of community structure. Regional influences on local ant communities were correlated with geographical and environmental gradients at distinct regional scales. Therefore, local ant communities appear to be simultaneously structured by different processes that occur at separate spatial scales: local, landscape, and regional scales defined by spatial extent. Our results illustrate the importance of considering multiscale influences on patterns of organization in ecological communities. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.

Context

The anthropocene is characterised by global landscape modification, and the structure of remnant habitats can explain different patterns of species richness. The most pervasive processes of degradation include habitat loss and fragmentation. However, a recovery of modified landscape is occurring in some areas.

Objectives

The main goal is to know how lichen and bryophyte epiphytic richness growing on Mediterranean forests is influenced not only by fragments characteristics but also by the structure of the landscape. We introduce a temporal dimension in order to evaluate if the historical landscape structure is relevant for current epiphytic communities.

Methods

40 well-preserved forest fragments were selected in a landscape with a large habitat loss over decades, but with a recovery of forest surface in the last 55 years. The most relevant fragment and landscape-scale attributes were considered. Some of the variables were measured in three different years to incorporate a temporal framework.

Results

The results showed that variables at fragment scale had a higher influence, whereas variables at the landscape scale were irrelevant. Among all the historical variables analyzed, only the shift in forest fragment size had influence on species richness.

Conclusions

Mediterranean forests had suffered fragmentation along centuries. Their epiphytic communities also suffer the hard conditions of Mediterranean climate. Our results indicate that Mediterranean epiphytic communities may be in a threshold since it they will never be similar to those communities existing previous fragmentation process even a recovery habitat occur or, they may require more time to response to this habitat recovery.
  相似文献   

13.
The effects of habitat fragmentation on species richness and composition have been extensively studied. However, little is known about how fragmentation affects functional diversity patterns. Fragmentation can indeed affect functional diversity directly (e.g. by promoting traits associated to long-distance dispersal when fragment isolation increases) or indirectly (e.g. by decreasing species richness, hence trait diversity, when fragment area decreases). Here, we used structural equation modeling to determine whether factors associated to forest fragmentation, namely area, habitat heterogeneity, spatial isolation and age have a direct effect on forest herb functional diversity. Using occurrence data from 243 forest fragments located in northern France and six plant life-history traits, we estimated species richness and calculated functional diversity in each of these 243 forest fragments. We found that species richness was the primary driver of functional diversity in these fragments, with a strong positive and direct relationship between species richness and functional diversity. Interestingly, both fragment isolation and age had a direct negative effect on functional diversity independent of their effects on species richness. Isolation selected life-history traits associated with long-distance dispersal, while age selected for life-history traits typical of forest habitat specialists. Isolated and/or older forest fragments are thus at greater risk of local species and functional extinctions, and hence making these forest fragments particularly vulnerable to future global changes.  相似文献   

14.
The rapid expansion of the world’s urban population is a major driver of contemporary landscape change and ecosystem modification. Urbanisation destroys, degrades and fragments native ecosystems, replacing them with a heterogeneous matrix of urban development, parks, roads, and isolated remnant fragments of varying size and quality. This presents a major challenge for biodiversity conservation within urban areas. To make spatially explicit decisions about urban biodiversity conservation actions, urban planners and managers need to be able to separate the relative influence of landscape composition and configuration from patch and local (site)-scale variables for a range of fauna species. We address this problem using a hierarchical landscape approach for native, terrestrial reptiles and small mammals living in a fragmented semi-urban landscape of Brisbane, Australia. Generalised linear modelling and hierarchical partitioning analysis were applied to quantify the relative influence of landscape composition and configuration, patch size and shape, and local habitat composition and structure on the species’ richness of mammal and reptile assemblages. Landscape structure (composition and configuration) and local-scale habitat structure variables were found to be most important for influencing reptile and mammal assemblages, although the relative importance of specific variables differed between reptile and mammal assemblages. These findings highlight the importance of considering landscape composition and configuration in addition to local habitat elements when planning and/or managing for the conservation of native, terrestrial fauna diversity in urban landscapes.  相似文献   

15.

Context

Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management.

Objectives

We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient.

Methods

We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics.

Results

Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats.

Conclusions

Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat.
  相似文献   

16.
The matrix is an important element of landscape mosaics that influences wildlife indirectly through its influence on habitat, and directly, if they live in or move through it. Therefore, to quantify and manage habitat quality for wildlife in modified landscapes, it is necessary to consider the characteristics of both patch and matrix elements of the whole landscape mosaic. To isolate matrix effects from the often simultaneous and confounding influence of patch and landscape characteristics, we identified nineteen 500 m radius landscapes in southeast Queensland, Australia with similar remnant forest patch attributes, habitat loss, and fragmentation, but exhibiting a marked gradient from rural through high-density suburban development of the matrix, quantified by a weighted road-length metric. We measured habitat disturbance, structure, and floristics in patch core, patch edge and matrix landscape elements to characterise how landscape habitat quality changes for small mammals. Correlation analyses identified that with increased matrix development intensity, human disturbance of core sites increased, predators and exotic plant species richness in matrix sites increased, and structural complexity (e.g. logs and stumps) in the matrix decreased. Ordination analyses showed landscape elements were most similar in habitat structure and floristics at low to moderate levels of matrix development, suggesting enhanced landscape habitat quality. Matrix development intensity was not, however, the greatest source of overall variation of habitat throughout landscapes. Many variables, such as landholder behaviour, complicate the relationship. For enhanced conservation outcomes the matrix needs to be managed to control disturbances and strategically plan for matrix habitat retention and restoration.  相似文献   

17.
Habitat fragmentation is a major cause for species loss, but its effect on invertebrates with low active dispersal power, like terrestrial gastropods, has rarely been studied. Such species can not cross a hostile habitat matrix, for which the predictions of island theory, such as positive relations between species richness and patch size, should apply. In order to test this prediction, we studied gastropod species diversity by assessing gastropod assemblage characteristics from 35 sites in 19 fragments of deciduous old-growth forests in the Lower Rhine Embayment, Germany. Assemblages differed between larger (≥700 ha) and smaller forests (<400 ha), those of large forests held a higher percentage of forest species. Although α-diversity was similar between the two forest size classes, small forests often comprised matrix species, resulting in a higher β-diversity. Edge effects on the species richness of matrix species were noticeable up to 250 m into the forest. Hierarchical partitioning revealed that distance to disturbances (external edge, internal edges like roads) explained most assemblage variables, whereas forest size and woodland cover within a 1 km radius from the sites explained only a few assemblage variables. Densities of two forest-associated species, Discus rotundatus and Arion fuscus, decreased with forest size. Yet, forest size was positively correlated with richness of typical forest species and densities of Limax cinereoniger. The latter species seems to need forests of >1,000 ha, i.e., well above the size of most fragments. In conclusion, the prediction is valid only for forest species. The response to fragmentation is species specific and seems to depend on habitat specialization and macroclimatic conditions. Jean-Pierre Maelfait: Deceased.  相似文献   

18.
Forests within and adjacent to cities are important habitats for native species and provide vital ecosystem services to cities and their residents. Herbaceous plants represent over 80% of all plant species in these forests, yet little is known about the long-term effects of management and landscape context on the understory of suburban forests. In this study, we used a 30-year dataset to fill this knowledge gap and evaluate the effect of prescribed burns on native forest herbs in suburban forest preserves of DuPage County, Illinois, USA. We also evaluated how the amount and configuration of forest habitat at multiple spatial scales affects native herb richness, gains, and losses in these forests over 30 years. We found that forests managed with prescribed burns increased in native herb richness over time, while unburned forests did not. Managed forests now have more native herb species than unburned forests. We also found that habitat amount in the surrounding landscape, but not the configuration of that habitat, had a positive effect on native herb richness and species gains over 30 years. Overall, we conclude that prescribed burns are effective in maintaining native forest herb richness in suburban forests. However, additional management actions such as seed augmentation may be required in areas with little surrounding forest herb habitat, as both overall richness and species gains over time are reduced in isolated forests.  相似文献   

19.
Many amphibian species rely on both aquatic and terrestrial habitats to complete their life cycles. Therefore, processes operating both within the aquatic breeding habitat, and in the surrounding uplands may influence species distributions and community composition. Moreover, changes in land use adjacent to breeding site may degrade aquatic habitats. To assess land use effects on pond-breeding amphibian assemblages, we investigated relationships between land use, breeding habitat conditions, and breeding amphibian use of constructed wetlands in urban environments of the Baltimore metropolitan area, USA. Forest and impervious surface associations with species richness and occurrence occurred at spatial scales ranging from 50 to 1,000 m, with strongest relationships at 500 m. Forest and impervious surface cover within 1,000 m of ponds were also related to water and sediment quality, which in turn were capable of explaining a proportion of the observed variation in species richness and occurrence. Taken together, our results suggest that forest and other land covers within relatively proximal distances to ponds (i.e., within 50–1,000 m) may be influencing species richness directly via the provisioning of upland habitat, and indirectly via influences on within pond habitat quality. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Traditional agricultural mosaic landscapes are likely to undergo dramatic changes through either intensification or abandonment of land use. Both developmental trends may negatively affect the vascular plant species richness of such landscapes. Therefore, sustainable land-use systems need to be developed to maintain and re-establish species richness at various spatial scales. To evaluate the sustainability of specific land-use systems, we need approaches for the effective assessment of the present species richness and models that can predict the effects on species richness as realistically as possible. In this context, we present a methodology to estimate and predict vascular plant species richness at the local and the regional scale. In our approach, the major determinants of vascular plant species richness within the study area are taken into consideration: These are according to Duelli's mosaic concept the number of habitat types and of habitat patches within area units. Furthermore, it is based on the relative frequencies of species within habitat types. Our approach comprises six steps: (i) the determination of present habitat patterns within an observation area, (ii) the creation of a land-use scenario with simulated habitat patterns, (iii) the determination of species frequencies within habitat types of this area, (iv) a grouping of habitat-specific species, (v) the estimation of the probabilities for all species (or habitat specialists) to occur, either in stepwise, exponentially enlarged landscape tracts (local scale), or in the entire observation area (regional scale), and (vi) the validation of the estimated species numbers. The approach will be exemplified using data from the municipal district of Erda, Lahn-Dill Highlands, Germany. The current species numbers to be expected on the basis of probability calculations were compared with those recorded on the basis of extensive field work. This comparison shows that, on the basis of our simple calculations, the current local plant species richness can be predicted well, with a slight underestimation. This revised version was published online in May 2005 with corrections to the Cover Date. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号