首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The degradation of the insecticide WL 41706, (±)-α-cyano-3-phenoxybenzyl 2,2,3,3-tetramethylcyclopropanecarboxylate, (I), in two soils from Spain and one from the UK has been studied in the laboratory. Samples of (I) labelled separately with 14C in the benzyl ring (uniform labelling) and at C(1) of the cyclopropyl ring were used. The insecticide underwent degradation by hydrolysis at the cyano group to form the amide and carboxylic acid analogues. However, the major degradative route was hydrolysis at the ester linkage leading initially to the formation of 3-phenoxy-benzoic acid and 2,2,3,3-tetramethylcyclopropanecarboxylic acid. When a sandy clay soil was treated with [benzyl?14C]-WL 41706 under balance conditions, 14CO2 was evolved at a steady rate and 16 % of the applied radiolabel was detected as 14CO2 over a 26 week period. The rate of degradation of I was most rapid on a moist sandy clay (loss of 50 % initial quantity in 4 weeks) but it was considerably slower on dry sandy clay and moist clay soils (> 16 weeks). Under flooded, anaerobic conditions the rate of hydrolysis of the insecticide was slower than under aerobic conditions and the 3-phenoxybenzoic acid and 2,2,3,3-tetramethylcyclopropanecarboxylic acid were found to accumulate over the 24 weeks of the experiment.  相似文献   

2.
The disposition of the pyrethroid insecticide cypermethrin, (RS)-a-cyano-3-phenoxybenzyl (1RS)-cis, trans-3-(2,2-dichlorovinly)-2, 2-dimethylcyclopropane-carboxylate, has been studied in male and female rats following a single toxic oral dose (200mg kg−1) of two radiolabelled forms ([14C-benzyl] and [14C-cyclopropyl]) of the insecticide. The bioaccumulation and elimination of 14C-benzyl-labelled cypermethrin, following repeated administration at a sub-toxic dose (2mg kg−1), has also been studied in male and female rats. Although, at the toxic dose, radioactivity from the two radiolabelled forms was rapidly eliminated in urine and faeces, the increased excretion in the faeces, over that for low doses, was evidence that absorption was incomplete. The major pathways of metabolism involved cleavage of the ester bond, with subsequent hydroxylation and glucuronidation of the cyclopropyl acid moieties, together with hydroxylation and sulphation of the 3-phenoxybenzyl moiety. The absence of sex- or dose-dependent changes was reflected by the constant proportions of these metabolites found in the urine. Constant levels of radioactivity in tissues were achieved rapidly, generally within the first week of repeated administration. Elimination was rapid on the cessation of dosing, although less rapid from the fat and skin. The material in the fat was mainly the cis-isomers of cypermethrin, which were eliminated with a mean half-life of 18.2 days, compared with 3.4 days for the trans-isomers.  相似文献   

3.
Preparation of 3-phenoxybenzyl chrysanthemates and their dihalovinyl analogues substituted with a cyano group at the 2-, 6-, (R)-α-, or (S)-α- positions is described. The (R)- and (S)- isomers of α-cyano-3-phenoxybenzyl esters of 2,2-difluoro-, -dichloro-, and -dibromo-vinyl analogues of cis- and trans- chrysanthemic acid are separated chromatographically, as are the separate pairs of enantiomers of fenvalerate, (RS)-α- cyano-3-phenoxybenzyl (RS)-2-(4-chlorophenyl)-3-methylbutyrate. An optically active ester of α-cyano-3-phenoxybenzyl alcohol (obtained using D -oxynitrilase) with 2,2,3,3-tetramethylcyclopropanecarboxylic acid is synthesised.  相似文献   

4.
The excretion and metabolism of cis + trans-[14C-benzyl] cypermethrin has been compared in quail, rat and mouse. Radioactivity was rapidly eliminated by quail dosed orally with [14C]cypermethrin (2 mg kg?1), as was the case in the rat and the mouse. When the birds were dosed intraperitoneally (IP) with the 14C-labelled pyrethroid, radioactivity was excreted more slowly than after oral dosing, and almost 20% of the IP dose of 14C remained in the tissues after 7 days. Both mammalian species excreted [14C]cypermethrin more rapidly than did the avian species after IP administration, and less than 6% of the dose remained in their tissues after several days. The biotransformation of the pyrethroid was more complex in the avian species (34 metabolites) than in the two mammals (some 10 metabolites in each species). In quail the predominant reactions were ester bond cleavage of cypermethrin together with either aromatic hydroxylation or amino acid conjugation of the 3-phenoxybenzyl moiety. The hydroxylated derivatives were eliminated mainly as sulphates. 3-Phenoxybenzoic acid was conjugated with a variety of amino acids including glycine, taurine, glutamic acid, serine, α-N-acetylornithine and the dipeptide glycylualine. The last two conjugations are unique to avian species. The major metabolite of cypermethrin in the rat was the sulphate conjugate of 3-(14-hydroxyphenoxy)benzoic acid, whereas in the mouse the major products were 3-phenoxybenzoic acid and its taurine conjugate. Thus, in the mammalian species where hydroxylation was maximal, amino acid conjugation was a minor metabolic route und vice versa. However, in the quail, aromatic hydroxylation and amino acid conjugation of the 3-phenoxybenzyl moiety of cypermethrin were both major reactions. The influence of the rates and sites of metabolism, and of the enzymology of amino acid conjugation, in determining this species difference are discussed. The rapid metabolism of cypermethrin to a variety of polar conjugates that are readily excreted, together with the low brain sensitivity of birds compared with mammals to its neurotoxic effects, explains the low acute toxicity of this pyrethoid to avian species.  相似文献   

5.
The metabolism of the pyrethroid insecticide WL85871, labelled in the alcohol moiety, has been studied in male and female Wistar rats at a dose of ca 2 mg kg?1. The compound was rapidly broken down and the radioactivity was mainly eliminated in the urine as the sulphate conjugate of 3-(4-hydroxyphenoxy)benzoic acid (40% of the dose). Some hydroxylation occurred before ester cleavage. Approximately 20% of the ingested compound was not absorbed and was eliminated unchanged in the faeces. There was no evidence for any racemisation of the chiral centres of WL85871 either in the intestine, the faeces or in fat. The small proportion of the dose stored in adipose tissue was eliminated with biphasic kinetics (t½ values, 2–3 days and 17–26 days). The t½ values for skin were, respectively, 2 days and 40 days. As the residue in fat depleted between 3 and 40 days, an increasing proportion (from 28% to 48%) was present as a lipophilic metabolite of WL85871, or of 3-phenoxybenzoic acid, probably a mixture of 3-phenoxybenzoyl diacyl glycerols.  相似文献   

6.
Metabolism in mice of the separated cis- and trans-isomers of the pyrethroid insecticide cypermethrin (NRDC 149), (RS)-α-cyano-3-phenoxybenzyl (1RS)-cis, trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, was investigated in each case with preparations that were 14C-labelled in the benzyl and cyclopropyl moieties. Radioactivity from the trans-isomer was mainly excreted in the urine and that from the cis-isomer in the faeces. Elimination of both isomers was rapid except for a small portion (approximately 2%) of the cis-isomer which was released from the fat with a half-life of approximately 13 days. Metabolism of cypermethrin occurred mainly by ester cleavage and elimination of the cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl- cyclopropanecarboxylic acid moieties as glucuronide conjugates. The α-cyano-3-phenoxybenzyl alcohol released by ester cleavage was mainly converted to 3-phenoxy-benzoic acid which was partly eliminated unchanged, partly conjugated with aminoacids (mainly taurine) and glucuronic acid, and partly oxidised to 3-(4-hydroxyphenoxy) benzoic acid which was excreted as the sulphate conjugate. Metabolites retaining the ester linkage were formed by hydroxylation at various sites in the molecule with more hydroxylation of the cis- than of the trans-isomer occurring.  相似文献   

7.
Cypermethrin, fenvalerate, permethrin, (S)-α-cyano-3-phenoxybenzyl (1R,cis)-3-(2, 2-dibromovinyl)-2, 2-dimethylcyclopropanecarboxylate (NRDC 161) and (R,S)-α-cyano-3-phenoxybenzyl 2, 2,3, 3-tetramethylcyclopropanecarboxylate (S-3206; WL 41706) have been tested against adult mosquitoes (Anopheles stephensi) and tsetse flies (Glossina austeni). They possess many of the necessary characteristics such as high intrinsic toxicity, low volatility, and high stability but vary considerably in the contact action of their spray residues.  相似文献   

8.
[14C]Flamprop-methyl administered orally to rats (3-4 mg kg?1 body weight) was excreted mostly via the faeces (78.7 and 61.6% in males and females, respectively). Elimination was rapid and 90% of the dose of 14C was excreted in faeces and urine 0-48 h after dosing. The distribution of 14C between faeces and urine was different in males and females. No expired [14C]carbon dioxide was detected and less than 2% of the dose remained in the animals 4 days after dosing. The predominant metabolic pathway was hydrolysis of the ester bond to afford the carboxylic acid which was excreted unchanged and as its glucuronide conjugate. Aromatic hydroxylation occurred at the para- and meta-positions of the N-benzoyl ring. N-(3)-Chloro- 4-fluorophenyl-N-(3,4-dihydroxybenzoyl)-DL -alaninate was also formed. This hydroxylated form of flamprop-methyl was partially O-methylated at the 3-hydroxy group. Flamprop-methyl was also metabolised and eliminated rapidly by dogs, mice and rabbits. The last of these three species afforded very little aromatic hydroxylation and also differed from the others in that the metabolites were eliminated mostly in the urine. Aromatic hydroxylation lay in the order: male rat = female rat > dog= mouse>rabbit (female).  相似文献   

9.
The metabolism of the pyrethroid insecticide cypermethrin has been studied in rats using three forms of 14C-labelling (benzyl-, cyclopropyl- and cyano-) and separate cis- and trans- isomers. The proportion of the dose absorbed from the intestines (50–70% at 2–3 mg kg?1) is rapidly metabolised and eliminated. The major reaction is cleavage of the ester bond to afford the constituent cis- and trans- acids which are conjugated with glucuronic acid and eliminated in the urine. The 3-phenoxybenzyl portion of the molecule is probably released as the α-hydroxynitrile, which is converted via the aldehyde into 3-phenoxybenzoic acid. This compound is then largely hydroxylated and eliminated as a sulphate conjugate. The cyanide ion is metabolised via predictable routes, for instance, as thiocyanate. Cypermethrin is hydroxylated to some extent before hydrolysis. Most of this hydroxylation occurs at the methyl group trans to the cyclopropane carboxyl group, and at the 4-position of the phenoxy group. cis- Cypermethrin is slightly more stable than the trans-isomer.  相似文献   

10.
The metabolism of benodanil (2-iodobenzanilide) was studied in rats following an oral dose of 150 mg benodanil kg?1 body weight. The major 24-h urinary metabolite was found to be the 4′-hydroxy derivative, both free (≈ 5%) and as the glucuronide (≈ 4%) and sulphate (≈ 4%) conjugates. Over a 6-day period, about 16% of the administered dose was excreted in the urine and about 80% in the faeces. After dosing with [14C]- benodanil, blood radioactivity levels were highest 30 min after dosing, with small broader peaks at 4 and 7 h, while biliary activity levels rose slowly to a maximum about 10–12 h after the dose, some 16% being excreted in 24 h as the glucuronide conjugate of the 4′-hydroxy derivative.  相似文献   

11.
Upon single oral administration to rats, the mono-, di- and tri-glucose conjugates of [14C]-3-phenoxybenzyl alcohol ( I ) or the mono-glucose conjugate of [14C]-3-phenoxybenzoic acid ( II ) were rapidly hydrolysed and extensively eliminated in the urine mostly as the sulphate conjugate of 3-(4-hydroxyphenoxy)benzoic acid ( X ). The faecal elimination was a minor route, whereas the biliary excretion was about 42% of the dose and the glucuronide conjugates of I , II and X were common major metabolites. The biliary glucuronides were cleaved in the small intestine to the respective aglycones, which were reabsorbed, metabolised further, and excreted in the urine as the sulphate conjugate of X . Although small amounts of the mono-, di-and tri-glucosides were found in the 0.5-h blood and liver samples following oral administration of the tri-glucoside of I , they were not detected in the urine, bile or faeces. Similarly the sulphate conjugate was one of the major urinary metabolites of germ-free rats, dosed with the 14C-glucosides via the oral or the intraperitoneal route, although they were excreted unchanged in certain amounts in the urine and faeces. The glucose conjugates were cleaved in vitro by gut microflora and in various rat tissues, including blood, liver, small intestine and small intestinal mucosa. The tissue enzymes showed a different substrate specificity in hydrolysis of the glucosides. However, they were not cleaved in gastric juice, bile, pancreatic juice or urine.  相似文献   

12.
When [14C]F3-fluorodifen (2,4′-dinitro-4-trifluoromethyl diphenylether), carbonyl-[14C]CDAA (N,N-diallyl-2-chloroacetamide), and carbonyl-14C-propachlor (2-chloro-N-isopropylacetanilide) were fed to rats, 57 to 86% of the 14C was excreted via the urine within 48 hr. Although very little radioactivity was excreted in the feces of CDAA-treated rats, 15–22% of the 14C was excreted in the feces of propachlor- of fluorodifentreated rats and an average of 8% of the 14C remained in these rats 48 hr after treatment. Oxidation of the 14C label to [14C]O2 was not a major process in the metabolism of these herbicides. The only major radioactive metabolite present in the 24-h urine of fluorodifen-treated rats, 2-nitro-4-trifluoromethylphenyl mercapturic acid, accounted for 41% of the administered dose of 14C. In the metabolism of CDAA, the corresponding mercapturic acid accounted for 76% of the dose; it was the only major metabolite present in the 24-h urine. In contrast, three major metabolites were detected in the 24-h urine of propachlortreated rats, and the mercapturic acid accounted for only 20% of the dose. The mercapturic acid of each herbicide was identified by mass spectrometry.  相似文献   

13.
The photodegradation of fenpropathrin [(RS)-α-cyano-3-phenoxybenzyl 2,2,3,3-tetramethylcyclopropanecarboxylate] ( I ), in water, on soil and on plant foliage, was investigated using 14C-preparations labelled separately at the cyano group, cyclopropyl-C1 or in the benzyl ring. On exposure to sunlight, I was photodecomposed with initial half-lives of >6 weeks in distilled water, 6.0 weeks in humic acid aqueous solution, 2.7 weeks in river water, 1.6 weeks in sea water and 0.5 of a day in 2% aqueous acetone. A triplet photosensitiser, acetone, together with naturally occurring substances in river and sea water, including humic acid, enhanced the photodegradation of I . On three kinds of soil, I was rapidly photodegraded with initial half-lives of 1–5 days, whereas it was fairly photostable on a mandarin orange leaf. The photoreactions involved were: decarboxylation, hydration of the cyano group to carboxamide, cleavage of the ester or the diphenyl ether linkage, hydrolysis of the carboxamide group to carboxyl, and hydroxylation at either or both of the gem dimethyl groups. The predominant reactions in water were decarboxylation, ester bond cleavage and photo-induced evolution of [14C] carbon dioxide from the [14C] cyano label; on soil, hydration or ester bond cleavage predominated. The hydration was also of importance in river and sea water. Decarboxylation did not occur on soil and plant foliage.  相似文献   

14.
Non-cyclopropane pyrethroid esters of different substituted 2-phenoxy-3-methylbutanoic acids have been synthesised using the three alcohols—3-phenoxybenzyl alcohol, α-cyano-3-phenoxybenzyl alcohol and 3, 4-methylene-dioxybenzyl alcohol. Among the 35 esters synthesised and tested against Culex quinquefasciatus Say, the Bancroftian filariasis vector, for both larvicidal and adulticidal activities, α-cyano-3-phenoxybenzyl 2-(4-fluorophenoxy)-3-methylbu-tanoate, with an LC50 value of 2.5 × 10?3 mg litre?1 for larvicidal activity, and α-cyano-3-phenoxybenzyl-2-(4-chlorophenoxy)-3-methylbutanoate, with an LD50 value of 30 times; 10?4 ug insect?1 for adulticidal activity, were found to be as effective as fenvalerate, a well-known non-cyclopropane pyrethroid ester. Structure-activity studies showed that the insecticidal activity is dependent on the nature and position of the substituent in the phenyl ring of the acid moiety and also on the type of alcohol moiety.  相似文献   

15.
Isolated rat hepatocytes were incubated for 4 hr with [phenyl-U-14C]2,4,5-trimethyl-N-phenyl-3-furancarboxamide ([14C]methfuroxam). 14C-Labeled metabolites were isolated by solvent extraction, column chromatography, and high-pressure liquid chromatography, and were then characterized by analysis of infrared and mass spectra. Metabolism of [14C]methfuroxam by isolated hepatocytes included: (1) hydroxylation of the 2-, 4-, and 5-methyl groups on the furan ring; (2) hydroxylation at the para position of the benzene ring; (3) combinations of 1 and 2; (4) the addition of a sulfur-containing adjunct to the methylfuran moiety; and (5) conjugation of 1–4. Rats given a single intragastric dose of [14C]methfuroxam excreted 56% of the 14C in the urine and 42% in the feces within 54 hr. Metabolism of [14C]methfuroxam by the intact rats included: (1) hydroxylation of the methylfuran moiety; (2) hydroxylation of the benzene ring; (3) the addition of S-methyl, methyl sulfoxide, and other sulfur-containing groups to methfuroxam; (4) combinations of 1–3; and (5) conjugation of 1–4.  相似文献   

16.
Carbon-14 d-trans-phenothrin or 3-phenoxybenzyl d-trans-chrysanthemumate labeled at the hydroxymethyl group in the alcoholic moiety was administered orally to male Sprague-Dawley rats at the rate of 200 mg/kg. The compound was rapidly absorbed from the gastrointestinal tract and distributed into various tissues.Radioactivity was rapidly eliminated (over 3 days) via the urine (ca. 60%) and feces (ca. 40%). No detectable radioactive carbon dioxide was expired. The urinary and fecal metabolites were separated and identified, the predominant one being 3-(4′-hydroxy) phenoxybenzoic acid and amounting to approximately 55% of the recovered radioactivity. 3-Phenoxybenzoic acid, free and conjugated with glycine, was also identified. In vitro studies using liver preparation from rats, mice, guinea pigs, rabbits, and dogs revealed that d-trans-phenothrin was hydrolyzed to 3-phenoxybenzyl alcohol, which was subsequently oxidized. The l-trans isomer was also easily hydrolzyed, whereas d-cis- and l-cis-phenothrin were resistant to hydrolytic attack at the ester linkage.  相似文献   

17.
The metabolism of cis-2,5-dimethylpyrrolidine-1-carboxanilide was studied in rats, rabbits, guinea-pigs and mice. The major metabolite in all species was cis-4′-hydroxy-2,5-dimethylpyrrolidine-1-carboxanilide, both free and as glucuronide and sulphate conjugates. About 95% of the compound was absorbed from the gut; over a 3-day period, about 50% of the administered dose was excreted in urine and about 27% in faeces.  相似文献   

18.
The metabolism of the carbamate insecticide bendiocarb (2,2-dimethylbenzo-1, 3-dioxol-4-yl methylcarbamate) has been investigated in male and female rats and in a male human volunteer using radiolabelled material. The compound was rapidly and extensively absorbed and completely metabolised following oral administration. In man, absorption was complete, >99% of the dose being excreted in the urine within 22 h. In the rat, > 86% of the radiolabel was excreted in the urine within the first 24 h. Faecal excretion from the rat was minor (3–8% of dose) and a small amount of the compound (1–3%) was metabolised and excreted as [14C]carbon dioxide. The major metabolic pathway in both species involved cleavage of the carbamate ester group to yield the phenol,2,2-dimethylbenzo-1, 3-dioxol-4-ol (I). This metabolite, occurring as sulphate and glucuronide conjugates, accounted for more than 95% of the dose excreted by the human volunteer. In man, small amounts of conjugates of 2, 2-dimethylbenzo-1, 3-dioxol-4-yl N-(hydroxymethyl)carbamate (II) were also found in early samples. In the rat, the metabolism was more complex with the formation of small amounts of conjugates of II and several minor metabolites, thought to be ring-hydroxylated derivatives of bendiocarb and I.  相似文献   

19.
A rat, given a single oral dose of [14C] cymoxanil, 1-(2-cyano-2-methoxyimino-[2-14C]-acetyl)-3-ethylurea, eliminated 91% of the radioactivity within 72 h. The urine contained 71%, the faeces 11%, and the expired air about 7% of the radiolabel; no 14C residue was found in the internal organs. Greater than 70% of the radioactivity in the urine was identified. The major metabolite was characterised as glycine, both free and conjugated, as hippuric acid and phenylaceturic acid [N-(phenylacetyl)-glycine], and probably in the form of polypeptides of low molecular weight. The other metabolites identified included 2-cyano-2-methoxyiminoacetic acid, 2-cyano-2-hydroxyiminoacetic acid and 1-ethylimidazolidine-2, 4, 5-trione. The minor metabolites included succinic acid and 2-oxoglutaric acid which indicated reincorporation of metabolic 14C. Cymoxanil, as such, was not detected in the urine.  相似文献   

20.
The metabolism of the pyrethroid insecticide fenvalerate [(RS)-α-cyano-3-phenoxybenzyl (RS)-2-(4-chlorophenyl)-3-methylbutyrate] ( I ), and of its most insecticidal (αS,2S) isomer ( II ), has been examined in cabbage plants grown and treated under laboratory conditions with [14C]chlorophenyl- and [ring-14C]benzyllabelled preparations of the two compounds. Both insecticides disappeared from the treated leaves with similar half-lives of approximately 12–14 days; they underwent ester cleavage to a significant extent, together with some hydroxylation at the 2- or 4-position of the phenoxy ring, and hydrolysis of the nitrile group to amide and carboxyl groups. Most of the carboxylic acids and phenols thus produced occurred as glycoside conjugates. In separate experiments, the uptake and metabolism of 2-(4-chlorophenyl)-3-methylbutyric acid ( X ), the acidic half of the molecule, were examined in the laboratory, using abscised leaves of kidney bean, cabbage, cotton, cucumber and tomato plants. The acid X was found to be readily converted, mainly into glucose and 6-O-malonylglucose esters in kidney bean, cabbage and cucumber plants, into glucosylxylose, sophorose and gentiobiose esters in cotton, and into two types of triglucose esters with differing isomerism in tomato. One of the acetyl derivatives of the trisaccharide conjugates was identical with the synthetic deca-acetyl derivative of the [1 → 6]-triglucose ester.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号