首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many countries. Forest SOC and FFC stocks are influenced by tree species. Therefore, quantification of the effect of tree species on carbon stocks combined with spatial information on tree species distribution could improve insight into the spatial distribution of forest carbon stocks.We present a study on the effect of tree species on FFC and SOC stock for a forest in the Netherlands and evaluate how this information could be used for inventory improvement. We assessed FFC and SOC stocks in stands of beech (Fagus sylvatica), Douglas fir (Pseudotsuga menziesii), Scots pine (Pinus sylvestris), oak (Quercus robur) and larch (Larix kaempferi).FFC and SOC stocks differed between a number of species. FFC stocks varied between 11.1 Mg C ha−1 (beech) and 29.6 Mg C ha−1 (larch). SOC stocks varied between 53.3 Mg C ha−1 (beech) and 97.1 Mg C ha−1 (larch). At managed locations, carbon stocks were lower than at unmanaged locations. The Dutch carbon inventory currently overestimates FFC stocks. Differences in carbon stocks between conifer and broadleaf forests were significant enough to consider them relevant for the Dutch system for carbon inventory.  相似文献   

2.
Microbial communities play a pivotal role in soil nutrient cycling, which is affected by nitrogen loading on soil fungi and particularly mycorrhizal fungi. In this experiment, we evaluated the effects of allochthonous nitrogen addition on soil bacteria and fungi in two geographically distinct but structurally similar scrub oak forests, one in Florida (FL) and one in New Jersey (NJ). We applied allochthonous nitrogen as aqueous NH4NO3 in three concentrations (0 kg ha−1 yr−1 (deionized water control), 35 kg ha−1 yr−1 and 70 kg ha−1 yr−1) via monthly treatments over the course of 1 yr. We applied treatments to replicated 1 m2 plots, each at the base of a reference scrub oak tree (Quercus myrtifolia in FL and Q. ilicifolia in NJ). We measured microbial community response by monitoring: bacterial and fungal biomass using substrate induced respiration, and several indicators of community composition, including colony and ectomycorrhizal morphotyping and molecular profiling using terminal restriction fragment length polymorphism (TRFLP). Bacterial colony type richness responded differently to nitrogen treatment in the different sites, but ectomycorrhizal morphotype richness was not affected by nitrogen or location. Both experimental sites were dominated by fungi, and FL consistently supported more bacterial and fungal biomass than NJ. Bacterial biomass responded to nitrogen addition, but only in FL. Fungal biomass did not respond significantly to nitrogen addition at either experimental site. The composition of the bacterial community differed between nitrogen treatments and experimental sites, while the composition of the fungal community did not. Our results imply that bacterial communities may be more sensitive than fungi to intense pulses of nitrogen in sandy soils.  相似文献   

3.
Biomass of a mature man-made forest in West Java, Indonesia, was estimated to evaluate the carbon sequestration potential of plantation forest in the humid tropics. Twenty plots, each 0.25 ha in area and containing one to six planted species over 40 years of age and with closed canopies, were selected. Trunk dry mass was estimated from trunk diameter, tree height, and bulk density. Maximum trunk diameter (122 cm) was observed in a 46-year-old Khaya grandifoliola C. DC. tree, and the tallest tree (51 m) was a 46-year-old Shorea selanica (DC.) Blume. The largest trunk biomass (911 Mg ha−1) was achieved in the plot composed of two Khaya spp. Among the plots composed of indigeneous Dipterocarpaceae species, the largest trunk biomass was 635 Mg ha−1. These trunk biomasses were larger than those reported from primary rainforests in Southeast Asia (e.g., 403 Mg ha−1 in East Kalimantan, 522 and 368 Mg ha−1 in Peninsular Malaysia). The large biomass in this forest suggests that, given favorable conditions, man-made forests can accumulate the quantities of atmospheric carbon that were lost by the logging of primary forests in the humid tropics.  相似文献   

4.
This study quantified the mass and inputs of coarse woody debris (CWD) in two old-growth lucidophyllous forests in southwestern Japan: in a steep slope area at Aya and in a flattish bottomland at Okuchi. CWD mass averaged 36.85 Mg ha−1 with eightfold variations at Aya, and 20.77 Mg ha−1 with more than 40-fold variations at Okuchi. CWD inputs estimated from long-term data on tree mortality averaged 36.76 Mg ha−1 over 16 years at Aya and 44.11 Mg ha−1 over 11 years at Okuchi. In both plots, fallen logs were the major form of CWD mass: 74.4% at Aya and 60.2% at Okuchi. About 19% of CWD was snapped and 7% was uprooted at Aya, and about 34% was snapped and 5.4% was uprooted at Okuchi. The CWD mass differed markedly with topographic conditions in both plots, increasing from valleys up to ridges at Aya and from forest down to a stream at Okuchi. Canopy gaps enhanced CWD mass and inputs in both plots: CWD input under gaps was two to three times that beneath closed canopy. These results imply that typhoons would increase CWD mass and inputs on upper slopes on account of the high aboveground biomass stocks and existence of large-diameter trees.  相似文献   

5.
We quantified the effect of water and nutrient availability on aboveground biomass and nitrogen accumulation and partitioning in four species from the southeastern United States, loblolly pine (Pinus taeda), slash pine (Pinus elliottii), sweetgum (Liquidambar styraciflua), and sycamore (Platanus occidentalis). The 6-year-old stands received five levels of resource input (control, irrigation with 3.05 cm water week−1, irrigation + 57 kg N ha−1 year−1, irrigation + 85 kg N ha−1 year−1, and irrigation + 114 kg N ha−1 year−1). Irrigation significantly increased foliage, stem, and branch biomass for sweetgum and sycamore, culminating in 103% and 238% increases in total aboveground biomass. Fertilization significantly increased aboveground components for all species resulting in 49, 58, 281, and 132% increases in total aboveground biomass for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Standing total aboveground biomass of the fertilized treatments reached 79, 59, 48, and 54 Mg ha−1 for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Fertilization increased foliar nitrogen concentration for loblolly pine, sweetgum, and sycamore foliage. Irrigation increased total stand nitrogen content by 6, 14, 93, and 161% for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Fertilization increased total nitrogen content by 62, 53, 172, and 69% with maximum nitrogen contents of 267, 212, 237, and 203 kg ha−1 for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Growth efficiency (stem growth per unit of leaf biomass) and nitrogen use efficiency (stem growth per unit of foliar nitrogen content) increased for the sycamore and sweetgum, but not the loblolly or slash pine.  相似文献   

6.
Forest ecosystems play a significant role in sequestering carbon (C) in biomass and soils. Plantations established in subtropical China since the 1980s, mainly of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) in monocultures, have proved to be major C sinks. However, information is lacking about whether mixing Chinese fir with broadleaved tree species will increase stand growth and C sequestration. We address this question by comparing a pure Chinese fir plantation and two mixed plantations established in 1990 at Huitong Experimental Station of Forest Ecology, Hunan Province, China. The mixed plantations include Chinese fir and either Kalopanax septemlobus (Thunb.) Koidz or Alnus cremastogyne Burk., planted at 4:1 ratios. We found that total C storage was 123, 131 and 142 Mg ha−1 in the pure plantation, mixed plantation with K. septemlobus, and mixed plantation with A. cremastogyne, respectively. The mixed plantation with A. cremastogyne increased C storage in biomass relative to the pure Chinese fir plantation (P < 0.05). No significant difference was detected between mixed plantations. Soil C storage did not differ among these plantations, ranging from 67.9 ± 7.1 to 73.3 ± 9.1 Mg ha−1, which accounted for about 55% of the total C pools. Our results indicated that as the mixture of Chinese fir and broadleaved species will increase both biomass C and soil C storage over pure Chinese fir, and will do it, within 15 years of planting.  相似文献   

7.
Allometric equations were developed and applied to forest inventory data to estimate biomass and carbon stocks for temperate species and forests of Durango and Chihuahua and for tropical dry forests of Sinaloa, Mexico. A total of 872 trees were harvested and dissected into their component parts: leaves and branches, boles, and coarse roots. Coarse roots of 40 temperate trees ranging in diameter at breast height (DBH) from 6.0 to 52.9 cm were excavated in their entirety (i.e., >0.5 cm diameter). The species sampled (number of trees) in tropical dry forests (39) were Lysiloma divaricata (Jacq) Macbr. (10), Haematoxylon brasiletto Karst. (10), Cochlospermum vitifolium (Wild.) (5), Ceiba acuminata (S. Watson) Rose (5), Bursera penicillata (B. inopinnata) (5), and Jatropha angustifolia Mull. Arg. (4) and in temperate forests (833) were Quercus spp. (118) (Q. rugosa Neé, 15, Quercus sideroxylla Humb. & Bonpl, 51, Quercus spp., 52), Pinus herrerae Martinez 1940 (19), Pinus oocarpa Schiede ex Schlectendal 1838 (31), Pinus engelmannii Carriere 1854 (7), Psudotsuga menziesii (Mirb.) Franco (19), Pinus leiophylla Schiede ex Schlectendal et Chamisso 1831 (27), Pinus teocote Schiede ex Schlectendal et Chamisso (55), Pinus ayacahuite Ehrenb. ex Schltdl. (58), Pinus cooperi Blanco (48), Pinus durangensis Martinez 1942 (385), and Pinus arizonica Engelmann 1879 (66). Allometric equations having only DBH as an independent variable were developed for each component of each species. Since Pinus herrerae, Pinus engelmannii, Pinus oocarpa and Pseudotsuga menziensii had a small number of trees, an individual allometric equation was developed for these species. We used non-linear regression to fit parameters of the typical allometric power equation. The resulting 31 equations (10 species or groups of species, three biomass components; bole, branch and leaves, and total aerial; and the generalized equation for coarse roots) fit the data well and enable the user to predict biomass by component for each of the 10 different groups of species or each of six temperate species. A single allometric equation that incorporates the basic specific gravity for aboveground biomass of all temperate tree species also fit the data well, and this equation provides both the detail and the accuracy supplied by species-specific, plant-part-specific equations. Biomass equations coupled with forest inventory data for temperate (637 circular, 1/10 ha plots) and tropical dry forests (166 20 m × 20 m-quadrats) of northwestern Mexico predict a mean (confidence intervals) of 130 Mg ha−1 (4.2 Mg ha−1) and 73 Mg ha−1 (7.1 Mg ha−1) for total tree and total aboveground biomass, respectively. Large sample sizes and the economic and ecological importance of the species studied make this data set uniquely useful for biomass estimations and for understanding the inherent heterogeneity of tree structure in dynamic tropical and temperate environments of northwestern Mexico.  相似文献   

8.
The sustainability of plantation forests is closely dependent on soil nitrogen availability in short-rotation forests established on low-fertility soils. Planting an understorey of nitrogen-fixing trees might be an attractive option for maintaining the N fertility of soils. The development of mono-specific stands of Acacia mangium (100A:0E) and Eucalyptus grandis (0A:100E) was compared with mixed-species plantations, where A. mangium was planted in a mixture at a density of 50% of that of E. grandis (50A:100E). N2 fixation by A. mangium was quantified in 100A:0E and 50A:100E at age 18 and 30 months by the 15N natural abundance method and in 50A:100E at age 30 months by the 15N dilution method. The consistency of results obtained by isotopic methods was checked against observations of nodulation, Specific Acetylene Reduction Activity (SARA), as well as the dynamics of N accumulation within both species. The different tree components (leaves, branches, stems, stumps, coarse roots, medium-sized roots and fine roots) were sampled on 5–10 trees per species for each age. Litter fall was assessed up to 30 months after planting and used to estimate fine root mortality. Higher N concentrations in A. mangium tree components than in E. grandis might be a result of N2 fixation. However, no evidence of N transfer from A. mangium to E. grandis was found. SARA values were not significantly different in 100A:0E and 50A:100E but the biomass of nodules was 20–30 times higher in 100A:0E than in 50A:100E. At age 18 months, higher δ15N values found in A. mangium tree components than in E. grandis components prevented reliable estimations of the percentage of N derived from atmospheric fixation (%Ndfa). At age 30 months, %Ndfa estimated by natural abundance and by 15N dilution amounted to 10–20 and 60%, respectively. The amount of N derived from N2 fixation in the standing biomass was estimated at 62 kg N ha−1 in 100A:0E and 3 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 16 kg N ha−1 in 50A:100E by the 15N dilution method. The total amount of atmospheric N2 fixed since planting (including fine root mortality and litter fall) was estimated at 66 kg N ha−1 in 100A:0E and 7 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 31 kg N ha−1 in 50A:100E by the 15N dilution method. The most reliable estimation of N2 fixation was likely to be achieved using the 15N dilution method and sampling the whole plant.  相似文献   

9.
Hurricane disturbance has the potential to markedly affect coastal forest structure and ecosystem processes. This study focused on the impacts of Hurricane Katrina in Louisiana's Pearl River basin, which lies just west of Katrina's final landfall at the Louisiana–Mississippi border. Prior to landfall, composition and structure of bottomland hardwood forests in this region were studied with permanent forest inventory plots sampled in 1989, 1998, 2005 and following the storm in 2006. This enabled a direct comparison of forest structure and dynamics before and after the disturbance, including species-specific tree mortality and damage rates, biomass production, and differences among forest types having varied hydrologic regimes. Background tree mortality rate before Hurricane Katrina was 1.9%, while average annual mortality was 20.5% for the census interval including the disturbance. Change in live tree biomass estimated from allometric models demonstrated a shift from an average annual production of 3.5 Mg ha−1 before the disturbance, to an average loss of 77.6 Mg ha−1 from the storm. Damage associated with Hurricane Katrina varied significantly with tree species but not tree size. Flooded cypress-tupelo swamp forests sustained the least damage and frequently flooded bottomland hardwood forests sustained the highest damage. Hurricane disturbance influenced the structure and composition of these coastal forests through species-specific differences in damage and mortality rates, and varied impacts dependent on forest flooding regime.  相似文献   

10.
Nitrogen fertilization increased largely over the last decade in tropical eucalypt plantations but the behaviour of belowground tree components has received little attention. Sequential soil coring and ingrowth core methods were used in a randomized block experiment, from 18 to 32 months after planting Eucalyptus grandis, in Brazil, in order to estimate annual fine root production and turnover under contrasting N fertilization regimes (120 kg N ha−1 vs. 0 kg N ha−1). The response of growth in tree height and basal area to N fertilizer application decreased with stand age and was no longer significant at 36 months of age. The ingrowth core method provided only qualitative information about the seasonal course of fine root production and turnover. Mean fine root biomasses (diameter <2 mm) in the 0–30 cm layer measured by monthly coring amounted to 0.91 and 0.84 t ha−1 in the 0 N and the 120 N treatments, respectively. Fine root production was significantly higher in the 0 N treatment (1.66 t ha−1 year−1) than in the 120 N treatment (1.12 t ha−1 year−1), probably as a result of the greater tree growth in the control treatment throughout the sampling period. Fine root turnover was 1.8 and 1.3 year−1 in the 0 N and the 120 N treatments, respectively. However, large fine root biomass (diameter <1 mm) was found down to a depth of 3 m one year after planting: 1.67 and 1.61 t ha−1 in the 0 N and the 120 N treatments, respectively. Fine root turnover might not be insubstantial in deep soil layers where large changes in soil water content were observed.  相似文献   

11.
Efforts are needed in order to increase confidence for carbon accounts in the land use sector, especially in tropical forest ecosystems that often need to turn to default values given the lack of precise and reliable site specific data to quantify their carbon sequestration and storage capacity. The aim of this study was then to estimate biomass and carbon accumulation in young secondary forests, from 4 and up to 20 years of age, as well as its distribution among the different pools (tree including roots, herbaceous understory, dead wood, litter and soil), in humid tropical forests of Costa Rica. Carbon fraction for the different pools and tree components (stem, branches, leaves and roots) was estimated and varies between 37.3% (±3.3) and 50.3% (±2.9). Average carbon content in the soil was 4.1% (±2.1). Average forest plant biomass was 82.2 (±47.9) Mg ha−1 and the mean annual increment for carbon in the biomass was 4.2 Mg ha−1 yr−1. Approximately 65.2% of total biomass was found in the aboveground tree components, while 14.2% was found in structural roots and the rest in the herbaceous vegetation and necromass. Carbon in the soil increased by 1.1 Mg ha−1 yr−1. Total stored carbon in the forest was 180.4 Mg ha−1 at the age of 20 years. In these forests, most of the carbon (51-83%) was stored in the soil. Models selected to estimate biomass and carbon in trees as predicted by basal area had R2 adjustments above 95%. Results from this study were then compared with those obtained for a variety of secondary and primary forests in different Latin-American tropical ecosystems and in tree plantations in the same study area.  相似文献   

12.
Fine root biomass, rates of dry matter production and nutrients dynamics were estimated for 1 year in three high elevation forests of the Indian central Himalaya. Fine root biomass and productivity were higher in closed canopied cappadocian maple forest (9.92 Mg ha−1 and 6.34 Mg ha−1 year−1, respectively), followed by Himalayan birch forest (6.35 Mg ha−1 and 4.44 Mg ha−1 year−1) and Bell rhododendron forest (6.23 Mg ha−1 and 2.94 Mg ha−1 year−1). Both fine root biomass and productivity declined with an increase in elevation. Across the sites, fine root biomass was maximal in fall and minimal in summer. In all sites, maximum nutrient concentration in fine roots was in the rainy season and minimum in winter. Fine root biomass per unit basal area was positively related with elevation, Bell rhododendron forest having the largest fine root biomass per unit of basal area (0.53 Mg m−2) and cappadocian maple the least (0.18 Mg m−2). The production efficiency of fine roots per unit of leaf biomass also increased with elevation and ranged from 1.13 g g−1 leaf mass year−1 in cappadocian maple forest to 1.28 g g−1 leaf mass year−1 in Bell rhododendron forest. Present fine root turnover estimates showed a decline towards higher elevations (0.72 year−1 in cappadocian maple and 0.58 year−1 in Bell rhododendron forest) and are higher than global estimates (0.52).  相似文献   

13.
This paper estimates the difference in stand biomass due to shorter and lighter trees in southwest (SW) and southern Amazonia (SA) compared to trees in dense forests in central Amazonia (CA). Forest biomass values used to estimate carbon emissions from deforestation throughout, Brazilian Amazonia will be affected by any differences between CA forests and those in the “arc of deforestation” where clearing activity is concentrated along the southern edge of the Amazon forest. At 12 sites (in the Brazilian states of Amazonas, Acre, Mato Grosso and Pará) 763 trees were felled and measurements were made of total height and of stem diameter. In CA dense forest, trees are taller at any given diameter than those in SW bamboo-dominated open, SW bamboo-free dense forest and SA open forests. Compared to CA, the three forest types in the arc of deforestation occur on more fertile soils, experience a longer dry season and/or are disturbed by climbing bamboos that cause frequent crown damage. Observed relationships between diameter and height were consistent with the argument that allometric scaling exponents vary in forests on different substrates or with different levels of natural disturbance. Using biomass equations based only on diameter, the reductions in stand biomass due to shorter tree height alone were 11.0, 6.2 and 3.6%, respectively, in the three forest types in the arc of deforestation. A prior study had shown these forest types to have less dense wood than CA dense forest. When tree height and wood density effects were considered jointly, total downward corrections to estimates of stand biomass were 39, 22 and 16%, respectively. Downward corrections to biomass in these forests were 76 Mg ha−1 (∼21.5 Mg ha−1 from the height effect alone), 65 Mg ha−1 (18.5 Mg ha−1 from height), and 45 Mg. ha−1 (10.3 Mg ha−1 from height). Hence, biomass stock and carbon emissions are overestimated when allometric relationships from dense forest are applied to SW or SA forest types. Biomass and emissions estimates in Brazil's National Communication under the United Nations Framework Convention on Climate Change require downward corrections for both wood density and tree height.  相似文献   

14.
We measured the aboveground biomass, biomass increment and litterfall production of a 140-year-old, abandoned Cryptomeria japonica plantation in order to infer the effects of topography on biomass production. The plantation was unsuccessful and the naturally regenerated broad-leaved trees contributed 93.4% (374.2 Mg ha−1) of the total aboveground biomass (400.2 Mg ha−1). Comparing between different slope positions, aboveground biomass decreased downslope corresponding to the decrease in broad-leaved tree biomass. The biomass of C. japonica did not vary with slope position. Biomass increment and litterfall production of the broad-leaved trees also decreased downslope. However, litterfall production per unit biomass and aboveground net primary production per unit biomass increased downslope. Results of a path analysis showed that biomass increment of C. japonica decreased with increasing topographical convexity, whereas biomass and litterfall production of broad-leaved tree increased. Litterfall production of broad-leaved tree decreased with increasing biomass of C. japonica, suggesting that, despite their small biomass, the presence of residual C. japonica may have negative effects on the distribution and productivity of the broad-leaved trees. Our results indicated that total aboveground biomass of the study site was comparable to that of old-growth C. japonica plantations. We inferred that the variation in aboveground biomass of the broad-leaved trees was largely determined by the topography, while their productivity was affected by interactions with planted C. japonica.  相似文献   

15.
Tropical forests are large reservoirs of biomass and there is a need for information on existing carbon stocks in these ecosystems and especially the effects of logging on these stocks. Reliable estimates of aboveground biomass stocks within the Atlantic Forest are rarely available. Past human disturbance is an important factor affecting forest structure variation and biomass accumulation among tropical forest ecosystems. To support the efforts of improving the quality of estimations of the current and future biomass carbon storage capacity of this disturbed forest region we tested a non-experimental small scale approach to compare the aboveground tree biomass (AGB) of forest sites. Three sites with known disturbance histories have been investigated: complete cut down, selective logging and conservation since 70 years. The woody plant community (dbh ≥ 10 cm) was censused and canopy openness in conjunction with leaf area index has been obtained by hemispherical photographs at each site. Estimates of aboveground tree biomass have been carried out using an allometric equation for moist tropical forests already applied for the study area. Additionally, a FAO standard equation has been employed for crosschecking our results. We identified significant differences in recent AGB of the three compared forest sites. With 313 (±48 Mg ha−1) the highest AGB-values have been found in the preserved forest area within a National Park, followed by 297 (±83) Mg ha−1 at the former clear cut site. Lowest AGB has been calculated for the area with past selective logging: 204 (±38) Mg ha−1. Values calculated with the FAO standard equation showed the same trend but at a lower AGB level. Our results based an a small scale approach suggest that biomass productivity can recover in a forest which was completely cleared 60 years ago to reach AGB values up to a level that almost represents the situation in a preserved forest. Selective logging may slow down AGB accumulation and the effect is measurable after several decades.  相似文献   

16.
Subtropical evergreen broad-leaved forest is the most widely distributed land-cover type in eastern China. As the rate of land-use change accelerates worldwide, it is becoming increasingly important to quantify ecosystem biomass and carbon (C) and nitrogen (N) pools. Above and below-ground biomass and ecosystem pools of N and C in a subtropical secondary forest were investigated at Laoshan Mountain Natural Reserve, eastern China. Total biomass was 142.9 Mg ha−1 for a young stand (18 years) and 421.9 Mg ha−1 for a premature stand (ca. 60 years); of this, root biomass was from 26.9 (18.8% of the total) to 100.3 Mg ha−1 (23.8%). Total biomass C and N pools were, respectively, 71.4 Mg ha−1 and 641.6 kg ha−1 in the young stand, and 217.0 Mg ha−1 and 1387.4 kg ha−1 in the premature stand. The tree layer comprised 91.8 and 89.4% of the total biomass C and N pools in the young stand, and 98.0 and 95.6% in the premature stand. Total ecosystem C and N pools were, respectively, 101.4 and 4.6 Mg ha−1 for the young stand, and 260.2 and 6.6 Mg ha−1 for the premature stand. Soil C comprised 23.8–29.6% of total ecosystem C whereas soil N comprised 76.9–84.4% of the total. Our results suggest that a very high percentage of N in this subtropical forest ecosystem is stored in the mineral soil, whereas the proportion of organic C in the soil pool is more variable. The subtropical forest in eastern China seems to rapidly accumulate biomass during secondary succession, which makes it a potentially rapid accumulator of, and large sink for, atmospheric C.  相似文献   

17.
Four forest stands each of twenty major forest types in sub-tropical to temperate zones (350 m asl–3100 m asl) of Garhwal Himalaya were studied. The aim of the study was to assess the stem density, tree diversity, biomass and carbon stocks in these forests and make recommendations for forest management based on priorities for biodiversity protection and carbon sequestration. Stem density ranged between 295 and 850 N ha−1, while total biomass ranged from 129 to 533 Mg ha−1. Total carbon storage ranged between 59 and 245 Mg ha−1. The range of Shannon–Wiener diversity index was between 0.28 and 1.75. Most of the conifer-dominated forest types had higher carbon storage than broadleaf-dominated forest types. Protecting conifer-dominated stands, especially those dominated by Abies pindrow and Cedrus deodara, would have the largest impact, per unit area, on reducing carbon emissions from deforestation.  相似文献   

18.
Data on the biomass and productivity of southeast Asian tropical forests are rare, making it difficult to evaluate the role of these forest ecosystems in the global carbon cycle and the effects of increasing deforestation rates in this region. In particular, more precise information on size and dynamics of the root system is needed. In six natural forest stands at pre-montane elevation (c. 1000 m a.s.l.) on Sulawesi (Indonesia), we determined above-ground biomass and the distribution of fine (d < 2 mm) and coarse roots (d > 2 mm), estimated above- and below-ground net production, and compared the results to literature data from other pre-montane paleo- and neotropical forests. The mean total biomass of the stands was 303 Mg ha−1 (or 128 Mg C ha−1), with the largest biomass fraction being recorded for the above-ground components (286 Mg ha−1) and 11.2 and 5.6 Mg ha−1 of coarse and fine root biomass (down to 300 cm in the soil profile), resulting in a remarkably high shoot:root ratio of c. 17. Fine root density in the soil profile showed an exponential decrease with soil depth that was closely related to the concentrations of base cations, soil pH and in particular of total P and N. The above-ground biomass of these stands was found to be much higher than that of pre-montane forests in the Neotropics, on average, but lower compared to other pre-montane forests in the Paleotropics, in particular when compared with dipterocarp forests in Malesia. The total above- and below-ground net primary production was estimated at 15.2 Mg ha−1 yr−1 (or 6.7 Mg C ha−1 yr−1) with 14% of this stand total being invested below-ground and 86% representing above-ground net primary production. Leaf production was found to exceed net primary production of stem wood. The estimated above-ground production was high in relation to the mean calculated for pre-montane forests on a global scale, but it was markedly lower compared to data on dipterocarp forests in South-east Asia. We conclude that the studied forest plots on Sulawesi follow the general trend of higher biomasses and productivity found for paleotropical pre-montane forest compared to neotropical ones. However, biomass stocks and productivity appear to be lower in these Fagaceae-rich forests on Sulawesi than in dipterocarp forests of Malesia.  相似文献   

19.
We produced a map of the biomass density and pools, at the county scale of resolution, of all forests of the eastern US using new approaches for converting inventoried wood volume to estimates of above and belowground biomass. Maps provide a visual representation of the pattern of forest biomass densities and pools over space that are useful for forest managers and decision makers, and as databases for verification of vegetation models. We estimated biomass density and pools at the county level from the USDA Forest Service, Forest Inventory and Analysis database on growing stock volume by forest type and stand size-class, and mapped the results in a geographic information system. We converted stand volume to aboveground biomass with regression equations for biomass expansion factors (BEF; ratio of aboveground biomass density of all living trees to merchantable volume) versus stand volume. Belowground biomass was estimated as a function of aboveground biomass with regression equations. Total biomass density for hardwood forests ranged from 36 to 344 Mg ha−1, with an area-weighted mean of 159 Mg ha−1. About 50% of all counties had hardwood forests with biomass densities between 125 and 175 Mg ha−1. For softwood forests, biomass density ranged from 2 to 346 Mg ha−1, with an area-weighted mean of 110 Mg ha−1. Biomass densities were generally lower for softwoods than for hardwoods; ca. 40% of all counties had softwood forests with biomass densities between 75 and 125 Mg ha−1. Highest amounts of forest biomass were located in the Northern Lake states, mountain areas of the Mid-Atlantic states, and parts of New England, and lowest amounts in the Midwest states. The total biomass for all eastern forests for the late 1980s was estimated at 20.5 Pg, 80% of which was in hardwood forests.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号