首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 971 毫秒
1.
利用1980—2016年四子王旗气象局降雪日数和降雪量资料,分析四子王旗降雪变化特征。结果表明,近37年四子王旗年平均降雪量为11.3 mm,气候倾向率为0.006 mm/10年,呈逐年增加趋势;年平均降雪日数和小雪日数均呈逐年增加趋势,中雪和大雪日数较少,四子王旗降雪以小雪天气为主;四子王旗降雪对越冬作物小麦和油菜影响有利有弊,对大棚蔬菜生长不利,且影响畜牧业工作的开展。  相似文献   

2.
冬天,北方下雪很常见。从降雪量的大小分为小雪、中雪、大雪、暴雪。雪由白色不透明的冰晶和凝结核组成。在不太冷的天气里,雪晶常聚合成团,状如棉絮,叫做雪花。在气温高于0℃时,雪晶和雪花开始溶化。半溶化的叫湿雪,全溶化的成雨。雨和雪同时下落的叫雨夹雪。雨一阵阵地降落下来,叫做阵雨,雪也有阵性降雪。  相似文献   

3.
冬天,北方下雪很常见.从降雪量的大小分为小雪、中雪、大雪、暴雪.雪由白色不透明的冰晶和凝结核组成.在不太冷的天气里,雪晶常聚合成团,状如棉絮,叫做雪花.在气温高于0℃时,雪晶和雪花开始溶化.半溶化的叫湿雪,全溶化的成雨.雨和雪同时下落的叫雨夹雪.雨一阵阵地降落下来,叫做阵雨,雪也有阵性降雪.  相似文献   

4.
利用祁连山区8个站1961—2014年逐日降水量资料,采用线性趋势分析及R/S方法等方法,分析祁连山地区冬半年降水量、降水日数及降水强度的变化特征和未来变化趋势。结果表明,祁连山地区随着降水量级的增加,降水日数呈减小趋势,降水量从小雪到中雪减小,中雪到大到暴雪增加,而降水强度表现为增强趋势;近54年祁连山地区冬半年总降水量和平均降水强度均呈波动增加趋势,总降水日数呈减少趋势。近54年祁连山地区冬半年小雪和大到暴雪的降水日数和降水量均呈减少趋势,中雪呈增加趋势,小雪平均降水强度均呈波动增加趋势,中雪和大到暴雪的平均降水强度表现为减小趋势;祁连山地区小雪、中雪和大到暴雪多年平均降水日数和降水量大值区均在门源站,降水强度小雪的大值区在德令哈,中雪和大到暴雪的大值区均在茶卡;野牛沟站的小雪降水日数(减小)和降水量(增加)、大到暴雪的降水强度(减小)的变化趋势显著。祁连山冬半年未来不同等级降水量、降水日数和降水强度变化情况与过去54年的变化趋势相同,短时期内不会发生逆转。  相似文献   

5.
李瑞波 《中国农资》2013,(49):19-19
<正>东北、内蒙古:东北地区西部和南部、内蒙古大部气温偏高,日照条件较好,利于设施农业和畜牧业生产。东北地区中东部气温偏低1-4℃,吉林中南部降雪天数达4-6天,部分地区出现中雪、局地暴雪,不利于设施农业生产。西北、华北、黄淮:气温接近常年或偏高,大部麦区墒情适宜,利于冬小麦越冬和分蘖生长;陕西关中、山西西南部、河北中南部、黄淮北部冬小麦仍处于缓慢生长阶段,越冬期比常年同期偏晚。陕西关中东部、山西南部、河北中南  相似文献   

6.
为藏北强降雪天气的预报提供科学依据,利用1988-2018年西藏藏北11个观测站逐日降水资料,采用小波分析和 M-K 突变检验等方法,研究其强降雪天气的气候变化特征。结果表明:1988-2018年藏北强降雪天气次数整体呈减少趋势,1997年强降雪天气次数最多,出现27次,2011年出现次数最少,仅5次;强降雪天气主要出现在每年10月至翌年5月;藏北的强降雪天气主要以大雪和暴雪天气为主,其中大雪天气占62%,暴雪天气>30%;中东部各站强降雪天气初日最早出现在9月上旬,偏西的各站较东部各站偏晚20 d;强降雪终日主要集中在5月和6月下旬;藏北强降雪天气的雪量和空间分布区域性差异很明显,呈西部少东部多的变化趋势;强降雪天气的次数存在准3 a、6a、和20 a的周期变化,准6 a的周期变化一直存在;藏北强降雪天气环流主要分为南部印度低压型、西风槽型、低涡-切变型和伊朗高压型。  相似文献   

7.
2015年2月22~ 23日黑河市发生历史罕见入冬以来第一场大雪、暴雪天气,给通信、交通运输和人们日常生活带来很大不便.在此从天气系统、卫星云图、物理量等方面,对这次大雪、暴雪天气过程进行了综合分析.结果表明,此次降雪过程主要是由蒙古低涡发展造成,低涡在黑河地区得到加强,不断有冷空气南下,西南暖气流北上输送,带来充足的水汽条件;低层为高湿度区,同时低层辐合、高层辐散,在该地区形成强大的上升气流和位势不稳定能量;由于低涡的东部地区中低层阻高的稳定,低涡在黑河地区维持时间较长,降雪时间长,从而形成了这次大范围的暴雪天气过程.  相似文献   

8.
一次东北冷涡暴雪过程分析   总被引:1,自引:0,他引:1  
利用NCEP再分析资料和实况资料,对2013年11月16—20日东北冷涡暴雪过程进行分析。结果表明,暴雪发生在对流层低层辐合线附近,对流层低层有暖脊、中层有冷槽。暴雪区水汽主要来源于东北地区东部海上,对流层低层水汽通量在2 g/(cm·hPa·s)以上。东北冷涡发展期,斜压性特征明显,有利于降雪增强;冷涡成熟期、减弱期,显示出正压的特征,降雪减弱。等θse线陡立密集区对流稳定度小,有利于特大暴雪发生。  相似文献   

9.
大兴安岭北部兴安落叶松林雪水文特征   总被引:2,自引:0,他引:2  
目的研究大兴安岭北部地区兴安落叶松林雪水文特征,为今后积雪蒸发测定和区域水资源调控提供更为科学的数据支撑和理论基础。方法对观测期内16场降雪的大气降雪量以及对林内积雪深度、积雪密度以及雪水当量进行了周期性观测与统计分析。结果(1) 随着降雪级别的减少,兴安落叶松林的截留率呈现逐渐增加的趋势,分别为6.50%(暴雪)、9.04%(大雪)、9.8%(中雪)、15.7%(小雪)。可见,兴安落叶松林降雪截留最大截留率出现在小雪,暴雪时截留率则最小。(2)兴安落叶松林内积雪深度和林外相比差异不大,其中落叶松林林内积雪深度最深为68.6cm,林外空地积雪深度最深为74.8cm。(3)林内和林外的积雪密度在观测初期会随降雪的输入而降低,无降雪期有相应升高。融雪期随着气温的升高,雪密度减少速度会加快。在4月24—29日达到最大值,减少量分别为0.07和0.11g/cm3。(4)雪水当量速率减少量在4月24—29日达到最大值,分别为30.2和46.4mm。结论和林外空地相比,兴安落叶松林对积雪深度、积雪密度及雪水当量影响不大,说明兴安落叶松林在雪水文过程中对积雪特征影响尽管存在,但并不明显。该区雪蒸发日变化呈单峰曲线变化规律,积雪期的日蒸发量和蒸发速率均值分别为0.04mm和0.2×10-3mm/h,日蒸发量波动幅度在0.02~0.14mm之间,在融雪期间,日蒸发量和蒸发速率的均值分别为0.38mm和1.51×10-3mm/h,采用灰色关联度对各因子进行分析,得出净辐射是影响兴安落叶松林内积雪蒸发的主要因素。   相似文献   

10.
统计抚顺1976~2008年33年暴雪天气,分析了暴雪气候规律、暴雪出现环流形势特征,总结暴雪对农业影响。结果表明,抚顺地区33年暴雪总趋势增加,年平均暴雪日数为1d,出现暴雪最多年份为1976和2000年,年暴雪日为4日。暴雪月分布特点是出现在每年1~4月和11~12月份。11月份出现次数最多,2月份出现次数最少。地理分布特点新宾站最多,清原站最少。暴雪环流特征500hPa为两槽一脊型、一槽一脊型和冷涡型。过程前一天850hPa抚顺地区位于暖温度脊控制,地面影响系统为黄河倒槽。暴雪天气对农业及各行各业带来严重影响。对农业的影响主要有设施农业、水库蓄水、土壤墒情、水果、蔬菜、森林防火、作物病虫害、家禽饲养。  相似文献   

11.
对博克图地区近30年(1981———2010年)积雪变化特征进行分析发现,博克图年平均积雪日数为139.5 d,年平均降雪日数为83.5 d,最大积雪深度为35 cm,出现在1998年11月15日。降雪主要出现在春季、秋季和冬季,年平均月降雪日数最多为1月份,全年降雪日数在56~129 d,降雪日数以15.504 d/10 a的速度递减。  相似文献   

12.
齐义君  李延江  葛红萍  周耘翁 《安徽农业科学》2012,(19):10209-10215,10344
利用Micaps、物理量场剖面及海岛自动站等同步资料,对2009年11月8~12日发生在河北区域性大暴雪高影响天气过程进行诊断分析。结果表明,大暴雪成因为3个不同时空尺度系统影响所致:8日降雨与强锋区弱切变南压及前期大雾抬升有关;9~10日暴雪是在天气尺度锋区的特定环流背景下,不同层面的温、湿场的"三支"气流辐合区恰好覆盖河北东部;11~12日中-大雪为环流快速调整后新生低槽东移所致;物理量诊断分析表明,9~10日石家庄地区强降雪时段850 hPa以下为下沉气流即升压降雪,渤海至太行山区偏东风和比湿大值区从8日持续到10日;11~12日新一轮低值系统垂直速度大值区中心为-10.0 hPa/h,12 h后倾45°,中心值为-7.0hPa/h,明显系统降雪时比湿中心高度达600 hPa,移到河北东部降雪时高度回落至700 hPa,与850 hPa的高比湿区形成上下叠加的形式,并随着系统快速东移入海,到20:00河套冷空气已进入太行山区西部降雪逐渐停止,低值系统迅速东移至华北东部出现中-大雪天气。华北东部降雪前渤海大于16 m/s偏东风维持时间大于18 h,950 hPa以下渤海中心区域主导风向水汽输送对强降雪落区动态变化具有指示意义;相对不同地区衍生的灾害性天气与持续降雪、持续低温及地形有关。  相似文献   

13.
李炳文  李军  王庆华  杨昆 《安徽农业科学》2012,40(4):2273-2274,2285
[目的]分析山东半岛一次冷流降雪过程。[方法]利用常规天气观测资料、NCEP/NCAR 1°×1°网格点逐6 h再分析资料,采用天气学原理和天气动力学诊断分析方法,对2008年12月4~6日山东半岛冷流降雪进行分析和总结。[结果]造成此次山东半岛冷流降雪的大尺度环流形式为冷涡深槽;850 hPa西北风风力增强时,山东半岛冷流降雪将加强;暴雪发生时,925~750 hPa相对湿度90%,90%相对湿度线所围成的面积大小与强降雪时段有较好的对应,相对湿度线的变化反映了海面暖湿水汽往高处输送的变化,海平面暖湿水汽往高空输送越多,越有利于山东半岛冬季冷流降雪的形成;冷流降雪具有明显的时空分布特征,并与垂直上升运动区相对应。[结论]该研究为山东半岛冷流降雪的短时和临近预报准确率的提高提供了一定的参考。  相似文献   

14.
2007年3月盘锦市罕见暴雪的“暖冬”背景及极值估算   总被引:3,自引:2,他引:1  
利用盘锦市1958~2007年降雪极值资料,运用耿贝尔极值分布理论对2007年3月4日盘锦市罕见暴雪天气进行了统计学分析。结果表明,用Gumbel分布拟合估算极端降雪再现周期较为合理,盘锦市该次暴雪极值的重现期为416年。  相似文献   

15.
利用常规观测资料、卫星云图等资料,运用天气学分析和物理量场诊断分析,对2007年3月3~5日东北特大暴风雪过程进行分析。结果表明,此次过程的主要影响系统是南方气旋东移北上和500 hPa南北两支高空槽的合并。强暴雪形成的动力机制是高层辐散与低层辐合相配置导致的强上升运动,以及中低层深厚的正涡度的产生和维持。水汽来源是由700 hPa偏南低空急流携带东海和南海2个源地的充沛水汽抵达东北地区。强降水落区与850 hPa正涡度和200 hPa正散度大值区相一致,同时温度平流的强弱及冷暖过渡带位置能够很好地反映降水的强度及落区。  相似文献   

16.
利用高空地面观测资料、欧洲数值预报,结合CINRAD/SB多普勒天气雷达产品,对2016年11月21-22日发生在三门峡市的大暴雪天气过程的形成机制和过程特征进行了总结分析,结果表明:500 hPa低槽、700 hPa低槽带切变线配合地面强冷空气是产生三门峡市大暴雪天气的有利天气形势配置;11月份暖湿气流比较强盛,雪中的液态水含量较多,易出现暴雪或大暴雪.雷达资料显示,源源不断的30 dBz强回波的维持以及"列车效应"是产生大暴雪的重要原因.11月份,当雷达回波顶高达到 11 km时,三门峡市出现打雷现象,这是冬季极其少见的.  相似文献   

17.
江淮流域一次急流暴雪的成因分析   总被引:1,自引:1,他引:0  
采用NCEP/NCAR再分析资料和常规天气学资料,对2008年1月27~28日江淮流域出现的急流暴雪过程进行分析。结果表明,低空西南急流是影响大暴雪的主要系统,急流的加强北抬导致江淮流域动力辐合和水汽辐合的加大,有利于降雪强度的加大。降雪强度的增加与低空急流出口处正涡度的增长关系密切,高空正涡度厚度的增加对暴雪增幅期的预报有一定的指示意义,高空抽吸作用也是降雪加强的动力学机制。高低空垂直螺旋度绝对值高值区和低空水汽通量高值区的叠加区域与暴雪落区关系密切。  相似文献   

18.
辛艳辉  王宪彬 《安徽农业科学》2012,40(32):15812-15815,15887
利用常规观测资料和NCEP 1°×1°逐6 h再分析资料,对辽宁省2009年2月12~13日和2010年3月14~15日2次区域性暴雪过程的环流特征和物理量场进行对比分析。结果表明,冬季乌拉尔山阻高的稳定维持,有利于中纬度高空槽的生成,它的东移与辽宁降雪密切相关;2次过程在50°~60°N建立的低涡以及东北西南向的大槽是产生辽宁区域性暴雪的主要影响系统。物理量场如螺旋度、涡度、温度平流和水汽通量散度等为暴雪落区和持续时间的预报有很好的指示意义。  相似文献   

19.
利用NCEP逐日4次再分析资料和常规观测资料,对2009年2月12~13日发生在辽宁的雨转暴雪过程的成因进行了探讨,着重讨论和分析了强雨雪发生所需具备的低空急流条件、温度条件以及水汽与动力的耦合机制。结果表明,低空急流为该次过程提供了充足的水汽供应;低空辐合和高空辐散导致强烈的上升运动,为暴雪的产生提供了动力条件;底层冷空气的楔入是快速雨转雪的主要原因;强降水落区与湿位涡有很好的对应关系。  相似文献   

20.
周雪松  杨成芳  张少林 《安徽农业科学》2011,39(31):19419-19422
[目的]研究地形对冷流暴雪影响的可能机制。[方法]应用中尺度数值模式(WRF)对一次山东半岛冷流暴雪天气过程进行数值模拟和地形敏感性对比试验,并从水汽、热力场等方面深入分析了冷流暴雪中地形对暴雪落区、强度造成影响的可能原因。[结果]山东半岛山脉地形对冷流暴雪落区、强度影响较大,使其强度明显增大,降雪中心明显北移;而造成影响的主要原因在于地形造成对流层低层风场辐合和垂直运动增强,从而明显改变了冷流暴雪过程中水汽、雪水含量等在空间上的分布,继而影响整个暴雪过程。[结论]山东半岛山脉地形是冷流暴雪天气过程预报分析中需要着重考虑的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号