首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deer expansion is a growing concern for forest ecosystem management. In Japan, upward expansion to subalpine and alpine areas has reached alarming proportions in recent years. We examined bark stripping by sika deer along an altitudinal gradient in the subalpine coniferous forest at three altitude ranges (1800-2000 m, 2000-2200 m, and 2200-2400 m) on the southern slope of Mt. Fuji. We tested differences in densities and diameter at breast height (DBH) of trees and those with bark-stripped stems of all tree species among the three altitude ranges. Then, we compared the relative densities of deer, based on pellet counts, to determine the impact of deer in relation to deer use and forest stand patterns across the altitudinal range studied. The results of the study show that differences in bark stripping by sika deer depended largely on the elevation and the species. Larger stems were sparsely distributed in the lowest elevation zone between 1800 and 2000 m. The relative density of deer was highest in the areas exhibiting high bark-stripping intensity on small regenerating trees of the dominant coniferous species, Abies veitchii, and on broadleaf species. In the highest elevation zone between 2200 and 2400 m, smaller stems were densely distributed, and the relative deer density was lowest where the bark-stripping intensity on small stems was lower for all three species studied. The damage to subalpine tree stems corresponded to the availability of palatable tree species with a small diameter, as reflected by the successional stage along the elevational gradient of subalpine forest on Mt. Fuji. These results suggest that the continuous impact of bark stripping on the dominant tree species might cause severe changes in forest succession.  相似文献   

2.
《林业研究》2020,31(4)
Assisted migration has been proposed as a strategy for adaptive management of forest species in response to expected effects of climate change,but it is controversial for several reasons.Tropical dry forests are among the most threatened ecosystems in the world.In Mexico,historically,land-use change and deforestation have been decreasing forest cover,and climate change is shifting the potential distribution of different forest types,exacerbating the risk of local extinctions.Assisted altitudinal migration could be a feasible strategy for reducing local extinctions in response to climate change and lack of landscape connectivity.Our objective was to evaluate survival and growth of Albizia plurijuga and Ceiba aesculifolia,two tropical deciduous forests species in Mexico.We transplanted 4-month-old seedlings to experimental raised beds at three altitudes(2100,2400 and 2700 m a.s.l.),exceeding their upper regional limit of distribution(2000 m a.s.l.).We also tested seed germination at each altitude.We monitored the experiment for 10 months.For both species,as altitude increased and cold weather was more prevalent,plant performance declined.Within species,differences in individual growth were significant among altitudes.Overall survival was 18.5% for A.plurijuga and 24.5% for C.aesculifolia.Both species had higher survival and better growth at lower altitude,and no seedling emergence at any altitude.We conclude that assisted migration can be implemented for each species by an upward attitudinal shift within,and not exceeding,400 m beyond their present upper altitudinal limit of distribution.Our results indicate that for many species that show altitudinal gradients at regional scales,unless current climate conditions change,the potential to establish outside their range is minimal.  相似文献   

3.
Forest gap models are important tools for assessing the impact of global climate change on forest dynamics of tree species composition and size structure. In this study, the FAREAST gap model was used to examine the response of forest dynamics on Gongga Mountain, which is located on the southeastern fringe of the Tibetan Plateau, under three climate change scenarios. The simulated results showed that the climax community of the deglaciation slash would be mixed species of Picea brachytyla, Tsuga chinensis, and Pinus densata under climate change scenarios, as opposed to the pure Abies fabri forest under the current climate. Climate change also drove replacement of Populus purdomiis by Betula utilis, which became the most abundant pioneer tree species on the deglaciation slash. Under scenarios of climate change, three responses of the four typical forests distributed between 2200 and 3580 m above sea level are observed, such as dieback of today’s forest at 2200 and 3150 m, gradual change of the species composition at 2780 m, and afforestation at 3580 m. It is worth noting that the scenarios of climatic change are of inherent uncertainty, in the same way as the formulation of the ecological factors used in the models. It is suggested that simulations not be interpreted as predictions of the future development of the forest, but as a means of assessing their sensitivity to climate change. It is concluded that mountainous forests are quite sensitive to climate change.  相似文献   

4.
In the light of putatively increasing liana abundances in present-day tropical forests and a persistent lack of understanding of liana abundance patterns and the responsible factors, we attempt to identify the key factors controlling liana abundance along an altitudinal transect in NE Ecuador. At four elevational levels (500, 1000, 1500, and 2000 m), each represented by 10 plots of 400 m2, the abundance and diameters of all lianas (dbh ≥ 1 cm) and trees (dbh ≥ 10 cm) were recorded in old-growth forest stands in the Sumaco Biosphere Reserve (SBR). Results were analysed with available data on soil chemical properties and canopy structure.  相似文献   

5.
Altitudinal gradient incorporates multiple resource gradients, which vary continuously in different fashions. It is important to study the mountain floristic patterns along altitudinal gradients, which reveal the regular pattern of the flora along the environmental gradients, the changing trend of biodiversity patterns along the altitudinal gradient, and relevance of biological fitness. To explore the compositional characteristics and ecological significance of floristic patterns along altitudinal gradient in China National Nature Reserve of Dawei Mountain in the southeast of Yunnan Province, field investigations have been made to the flora along the two routes of the southwest slope and the northeast slope of the said reserve, including a vertical vegetation transect. Meanwhile, further investigations have also been made to the flora of Dawei Mountain, which has been accounted for in the literature, as Flora Yunnan, The Seed Plant in Yunnan, and so on. The structural characteristics of the flora and the altitudinal distribution pattern of its floristic components were analyzed. By applying systematic cluster analysis, the altitudinal position of the dividing line of floristic changes along altitudinal gradient was detected, and the effects of the montane climate on the vertical variation of floristic composition were studied. Conclusions were put forward. This paper can be summarized as follows: (1) The obvious boundary that differentiates tropical floristic elements is located at the altitude of approximately 1,500 m; it is reasonable to stipulate the boundary line between tropical rain forests and the evergreen broad-leaved forests. (2) The vertical vegetation spectrum made by cluster analysis shows that humid rain forests are below 700 m a.s.l, montane rain forests are between 700 and 1,500 m, monsoon evergreen broad-leaved forests are between 1,300 and 1,800 m, and montane mossy evergreen broad-leaved forests are above 1,800 m a.s.l. Nonrepresentative montane mossy dwarf forests (above 2,100 m) in the area are distributed in windward sides and in barren land on the mountain slopes. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(6): 894–900 [译自: 植物生态学报]  相似文献   

6.
关帝山次生林区典型植物群落物种多样性垂直分布研究   总被引:6,自引:0,他引:6  
高俊峰  张芸香 《林业研究》2006,17(2):111-115
为了分析和探讨海拔对植物多样性的影响,沿海拔梯度(1600–2600m),设定14个样地,对每个样地内对植物物种进行调查。结果表明:随海拔升高,群落优势种变化依次为:辽东栎、油松、白桦、红桦、华北落叶松和云杉。群落内乔木树种的平均树高和胸径表现为先增大后减小,最大树高和胸径表现为单峰变化。群落内不同生活型树种(针叶树和阔叶树)的最大树高表现为先增大后减小.阔叶树最大胸径无明显变化规律,针叶树最大胸径不断减小。中海拔群落内,针叶树种的最大树高和胸径高于阔叶树种。群落的Shannon-wiener指数和Margalef指数均表现为单峰变化,中海拔群落(1900–2200m)植物多样性最高,高于低海拔群落(1600–1900m)和高海拔群落(2200–2600m)。Shannon-wiener指数和Margalef指数反映出的植物α多样性变化与海拔高度显著相关。在研究地区,植物多样性变化与群落所处的海拔显著相关,此外,还与群落结构、物种组成、树种特性和人为干扰有关。图8表3参13。  相似文献   

7.
To test whether the altitudinal limit of tree growth is determined by carbons shortage or by a limitation in growth we investigated non structural carbohydrates and their components starch and total soluble sugars in Pinus cembra trees along an elevational gradient in the timberline ecotone of the Central Austrian Alps. NSC contents in needles, branches, stems, and coarse roots were measured throughout an entire growing season. At the tissue level NSC contents were not significantly more abundant in treeline trees as compared to trees at lower elevations. Along our 425 m elevational transect from the closed forest to the treeline we failed to find a stable elevational trend in the total NSC pool of entire trees and observed within season increases in the tree's NSC pool that can be attributed to an altitudinal increase in leaf mass as needles contained the largest NSC fraction of the whole tree NSC pool. Furthermore, whole tree NSC contents were positively correlated with net photosynthetic capacity. Although our observed NSC characteristics do not support the hypothesis that tree life at their upper elevational limit is determined by an insufficient carbon balance we found no consistent confirmation for the sink limitation hypothesis.  相似文献   

8.
The ecological consequences of climate change for large tropical forests such as the Amazon are likely to be profound. Amazonian forests strongly influence regional and global climates and therefore any changes in forest structure, such as deforestation or die-back, may create positive feedback on externally forced climate change. Monitoring, modelling and managing the impacts of anthropogenic climate change on forest dynamics is therefore an important objective of forest researchers, and one that requires long-term data on changes at the level of community, populations and phenotypes. In this paper we provide the most comprehensive study yet on the seasonal dynamics of various leaf traits: leaf area index (LAI), leaf mortality (LM), leaf biomass (LB), leaf growth rate (LG), and leaf residence time (TR) from 50 experimental plots in a forest site at Belterra, Pará State, Brazil. From this study we estimate annual mean leaf area index (LAI) to be 5.07 m2 m−2 and annual mean leaf dry biomass to be 0.621 kg m−2. The typical leaf grew at 0.049 kg m−2 month−1 and remained on the tree for 12.7 months. We compare these results to other similar studies and critically discuss the factors driving leaf demographics in Amazonia.  相似文献   

9.
Against a background of increasing human populations in developing countries, and global climate change, conservation of tropical forests remains one of the most important ecological challenges of our time. One of the biggest difficulties for ecologically sustainable management of tropical forests is obtaining reliable growth data for trees, which is a prerequisite for determining harvesting volumes and cutting cycles. GOL is the first concept for sustainable management of tropical timber resources in Amazonian floodplain forests (várzea) based on species-specific management criteria, such as minimum logging diameters (MLDs) and cutting cycles. From timber species with varying wood densities of different successional stages, volume stocks have been estimated in 1-ha plots and 12 growth models have been developed based on tree rings, which are annually formed as a consequence of the regular, long-term flooding. The MLDs of timber species vary between 47 and 70 cm and the estimated cutting cycles differ the 10-fold, from 3 to 32 years. These enormous differences in the growth rates between tropical timber species are not considered in current management practices, which apply only one diameter cutting limit and one cutting cycle to harvest many tree species. This practice risks the overexploitation of slow-growing timber species, while the fast-growing timber species with low wood densities cannot be efficiently used. Based on the timber stocks and lifetime growth rates, the GOL concept has been created as an aid to improve forest management in the Central Amazonian várzea. The model is unique for tropical silviculture.  相似文献   

10.

Context   

Turkish red pine (Pinus brutia Ten.) is widespread in the eastern Mediterranean Basin. In the late 1970s, four common gardens were established along steep altitudinal transects extending from the coast to about 1,200 m in the Taurus Mountains (Antalya, Turkey).  相似文献   

11.
Postfire vegetation development among 8–185-year-old stand was assessed based on 100 relevés from the northern boreal-cordilleran ecoclimatic region (61–63°N) in the central Yukon Territory, Canada. Vegetation sampling included only stands thought to have originated from postfire Populus tremuloides Michx. regeneration that occurred on well drained and low gradient sites. Seven vegetation types were recognized based on cluster analysis and Kruskal–Wallis testing. Relevé ordination using Detrended Correspondence Analysis (70% explained variance) indicated six of the vegetation types represented a secondary successional chronosequence, based on their juxtaposition and a strong correlation of the primary axis with stand age (r = 0.89, P < 0.001). No correlation (P > 0.05) occurred between stand location and age. The youngest vegetation (8–11 years) had a moderate cover of P. tremuloides and Salix spp. up to 5 m tall, with a ground cover of Ceratodon purpureus (Hedw.) Brid. and Bryum caespiticium Hedw. This vegetation was expected to result in P. tremuloides, mixed P. tremuloides and Picea glauca (Moench) Voss, and P. glauca/Hylocomium splendens forest stands with increasing age, respectively. P. tremuloides//Calamagrostis purpurascensArctostaphylos uva-ursi stands formed the mid-seral vegetation. Along the chronosequence, total tree, P. tremuloides, shrub, and herb cover peaked 50–70 years after stand initiation; P. glauca cover, total and nonvascular species richness, and dominance concentration gradually increased (P < 0.001); vascular plant richness decreased; bryophytes had a U-shaped abundance pattern; and total plant cover was constant through time (125%). Richness totalled 113 species with averages of 13–18 per relevé. Coarse woody debris was most abundant (maxima 100–223 m3/ha) during the first 20 years of stand development then declined to <50 m3/ha. Successionally, a stem exclusion stage occurred (years 8–18), but with a delayed peak of 2–4 years and reduced densities (1.47 stems/m2) relative to southern boreal stands. No understory suppression, and therefore, no reinitiation stage occurred. Following stem exclusion, an accelerated canopy transition stage occurred relative to southern boreal forests due to early establishment rather than better height-growth rate of P. glauca relative to P. tremuloides. P. glauca tended to equal the cover of P. tremuloides 95–100 years after stand initiation. The oldest vegetation type in the chronosequence more closely resembled old-growth than a gap dynamic stage of development, possibly because of its youthful average age of 125 years. A modification was proposed for the canopy transition stage (Chen–Popadiouk stand development model) to account for the “forced” replacement of P. tremuloides by P. glauca. Differences in stand development were attributed to the cold northern climate.  相似文献   

12.
Live aboveground biomass (AGB) is an important source of uncertainty in the carbon balance from the tropical regions in part due scarcity of reliable estimates of live AGB and its variation across landscapes and forest types. Studies of forest structure and biomass stocks of Neotropical forests are biased toward Amazonian and Central American sites. In particular, standardized estimates of aboveground biomass stocks for the Brazilian Atlantic forest are rarely available. Notwithstanding the role of environmental variables that control the distribution and abundance of biomass in tropical lowland forests has been the subject of considerable research, the effect of short, steep elevational gradients on tropical forest structure and carbon dynamics is not well known. In order to evaluate forest structure and live AGB variation along an elevational gradient (0–1100 m a.s.l.) of coastal Atlantic Forest in SE Brazil, we carried out a standard census of woody stems ≥4.8 cm dbh in 13 1-ha permanent plots established on four different sites in 2006–2007. Live AGB ranged from 166.3 Mg ha−1 (bootstrapped 95% CI: 144.4,187.0) to 283.2 Mg ha−1 (bootstrapped 95% CI: 253.0,325.2) and increased with elevation. We found that local-scale topographic variation associated with elevation influences the distribution of trees >50 cm dbh and total live AGB. Across all elevations, we found more stems (64–75%) with limited crown illumination but the largest proportion of the live AGB (68–85%) was stored in stems with highly illuminated or fully exposed crowns. Topography, disturbance and associated changes in light and nutrient supply probably control biomass distribution along this short but representative elevational gradient. Our findings also showed that intact Atlantic forest sites stored substantial amounts of carbon aboveground. The live tree AGB of the stands was found to be lower than Central Amazonian forests, but within the range of Neotropical forests, in particular when compared to Central American forests. Our comparative data suggests that differences in live tree AGB among Neotropical forests are probably related to the heterogeneous distribution of large and medium-sized diameter trees within forests and how the live biomass is partitioned among those size classes, in accordance with general trends found by previous studies. In addition, the elevational variation in live AGB stocks suggests a large spatial variability over coastal Atlantic forests in Brazil, clearly indicating that it is important to consider regional differences in biomass stocks for evaluating the role of this threatened tropical biome in the global carbon cycle.  相似文献   

13.
To test whether the altitudinal distribution of trees is determined by a carbon shortage or an insufficient sugar fraction (sugar:starch ratio) in treeline trees, we studied the status of nonstructural carbohydrates (NSC) and their components (total soluble sugars and starch) in Abies fabri (Mast.) Craib and Picea balfouriana var. hirtella Rehd. et Wils. trees along three elevational gradients, ranging from lower elevations to the alpine treeline, on the eastern edge of the Tibetan Plateau. For comparison, we investigated a low-altitude species (Tsuga yunnanensis (Franch.) Pritz.) which served as a warm-climate reference because it is distributed in closed montane forests below 3100 m a.s.l. in the study area. The carbon status of T. yunnanensis responded to altitude differently from that of the treeline species. At the species level, total NSC was not consistently more abundant in treeline trees than in trees of the same species growing at lower elevations. Thus there was no consistent evidence for carbon limitation of growth in treeline trees. For the three treeline species studied (P. balfouriana and A. fabri in the Kang-Ding Valley and A. fabri in the Mo-Xi Valley), winter NSC concentrations in treeline trees were significantly lower than in lower-elevation trees of the same species, suggesting that, in winter, carbon is limited in treeline trees. However, in no case was there total overwinter depletion of NSC or its components in treeline trees. Treeline and low-altitude species had similar sugar:starch ratios of about three at their upper-elevational limits in April. We conclude that survival and growth of trees at the elevational or latitudinal climate limit depend not only on NSC concentration in perennial tissues, but also on the maintenance of an overwintering sugar:starch ratio greater than three.  相似文献   

14.
A century of fire suppression culminated in wildfire on 28 October 2003 that stand-replaced nearly an entire 4000 ha “sky island” of mixed conifer forest (MCF) on Cuyamaca Mountain in the Peninsular Range of southern California. We studied the fire affected Cuyamaca Rancho State Park (CRSP), which represents a microcosm of the MCF covering approximately 5.5 × 106 ha (14%) of California, to evaluate how fire suppression unintentionally destabilizes this ecosystem. We document significant changes in forest composition, tree density, and stem diameter class distribution over a 75-year period at CRSP by replicating ground-based measurements sampled in 1932 for the Weislander Vegetation Type Map (VTM) survey. Average conifer density more than doubled, from 271 ± 82 trees ha−1 (standard error) to 716 ± 79 ha−1. Repeat aerial photographs for 1928 and 1995 also show significant increase in canopy cover from 47 ± 2% to 89 ± 1%. Changes comprise mostly ingrowth of shade-tolerant Calocedrus decurrens [Torr.] Floren. in the smallest stem diameter class (10–29.9 cm dbh). The 1932 density of overstory conifer trees (>60 cm dbh) and 1928 canopy cover at CRSP were similar to modern MCF in the Sierra San Pedro Mártir (SSPM), 200 km S in Baja California, Mexico, where fire suppression had not been practiced, verifying that the historical data from the early twentieth century represent a valid “baseline” for evaluating changes in forest structure. Forest successions after modern crown fires in southern California demonstrate that MCF is replaced by oak woodlands and shrubs. Post-fire regeneration in severely burned stands at CRSP includes abundant basal sprouting of Quercus chrysolepis Liebm. and Quercus kelloggii Newb., but only few seedlings of Abies concolor [Gord. and Glend.] Lindl (average 16 ± 14 ha−1), while whole stands of C. decurrens, Pinus lambertiana Dougl., and Pinus ponderosa Laws. were extirpated. Prescribed burning failed to mitigate the crown fire hazard in MCF at CRSP because the low-intensity surface fires were small relative to the overall forest area, and did not thin the dense understory of sapling and pole-size trees. We propose that larger, more intense prescribed understory burns are needed to conserve California's MCF.  相似文献   

15.
Logging is an integral component of most conceptual models that relate human land-use and climate change to tropical deforestation via positive-feedbacks involving fire. Given that grass invasions can substantially alter fire regimes, we studied grass distributions in a tropical dry forest 1–5 yr after selective logging, and experimentally tested the effect of forest fire on populations of invasive grasses. In unlogged forests and in microhabitats created by selective logging we found a total of four alien and 16 native grass species. Grasses covered 2% of unlogged and 4% of logged forest, with grass cover in logged forest concentrated in areas directly disturbed by logging; log landings and roads had relatively greater grass cover (37% and 17%, respectively) than did skid trails (10%) and felling gaps (8%). Total grass cover and grass species richness increased with canopy openness and were greatest in sites most severely disturbed by logging. The grass flora of these disturbed areas was composed mostly of native ruderal species (e.g., Digitaria insularis, Leptochloa virgata), a native bamboo (Guadua paniculata), and Urochloa (Panicum) maxima, a caespitose C4 pasture grass introduced from Africa. Urochloa maxima formed monodominant stands (up to 91% cover and 2–3 m tall) and grew on 69% of log landings and 38% of roads. To better understand the potentially synergistic effects of logging and fire on the early stages of grass invasion, we tested the effect of a 12-ha experimental fire on U. maxima populations in a selectively logged forest. Three years after the fire, the area covered by alien grass in burned forest increased fourfold from 400 m2 (pre-fire) to 1660 m2; over the same period in a logged but unburned (control) area, U. maxima cover decreased from 398 m2 to 276 m2. Increased canopy openness due to fire-induced tree mortality corresponded with the greater magnitude of grass invasion following fire. Selective logging of this dry forest on the southern edge of the Amazon Basin promotes alien grass invasion; when coupled with fire, the rate of invasion substantially increased. Recognition of the grass-promoting potential of selective logging is important for understanding the possible fates of tropical forests in fire-prone regions.  相似文献   

16.
Estimation of total biomass in woody ecosystems is important because of its relevance to nutrient turnover and the potential to store carbon. Most work on mangrove biomass, particularly in the Western Indian Ocean Region, has concentrated on the above-ground component; comparatively little is known on below-ground biomass. The current study was conducted at Gazi bay on the southern coast of Kenya. The objective was to determine the below-ground biomass of three species of mangrove, Rhizophora mucronata Lamarck, Avicennia marina (Forsk.) Vierh and Sonneratia alba J. Smith, in natural and replanted stands. The effects of distance from the tree base and of soil depth on root biomass and size distributions were also studied using coring. Live below-ground biomass (mean ± S.E.) ranged from 7.5 ± 0.4 t/ha to 35.8 ± 1.1 t/ha, 48.4 ± 0.7 t/ha to 75.5 ± 2.0 t/ha and 39.1 ± 0.7 t/ha to 43.7 ± 1.7 t/ha for R. mucronata, S. alba and A. marina, respectively, depending on the age of the stand. Including dead roots produced total biomass values of 34.9 ± 1.8–111.5 ± 5.6 t/ha, 78.9 ± 3.3–121.5 ± 7.3 t/ha and 49.4 ± 1.1–84.7 ± 5.4 t/ha for R. mucronata, S. alba and A. marina. These values imply carbon contents of live roots ranging between 3.8 ± 0.2 C t/ha and 17.9 ± 0.6 C t/ha, 24.2 ± 0.4 C t/ha and 37.7 ± 1.0 C t/ha and 19.5 ± 0.4 C t/ha and 21.9 ± 0.9 C t/ha for R. mucronata, S. alba and A. marina stands, respectively, and 17.4 ± 0.9 C t/ha and 55.7 ± 2.8 C t/ha, 39.4 ± 1.7 C t/ha and 60.7 ± 3.6 C t/ha and 24.7 ± 0.6 C t/ha and 42.4 ± 2.9 C t/ha for R. mucronata, S. alba and A. marina stands, respectively if dead roots are included. Stand densities were 4650 ± 177 stems/ha, 3800 ± 212 stems/ha and 3567 ± 398 stems/ha for R. mucronata 6-year old, 12-year-old and natural stands respectively. Mean stem diameter, and basal area were highest in the 12-year-old plantation while below-ground root biomass increased with age. Stand density for S. alba, was highest in the 12-year-old plantation (7900 ± 141 stems/ha) while the 9-year-old stand had trees with the largest diameter (7.7 ± 0.9 cm). Below-ground biomass was highest in the 12-year old (75.5 ± 2.0 t/ha) and lowest in the natural stand (48.4 ± 0.7 t/ha). Stand density for A. marina was highest in the 12-year-old plantation (4300 ± 919 stems/ha) while mean stem diameter (7.9 ± 0.7 cm) and basal area (16.2 ± 2.1 m2/ha) were highest in the natural stand. Below-ground biomass in the 12-year-old (43.7 ± 1.7 t/ha) and natural stands (39.1 ± 0.7 t/ha) was similar. Root densities decreased with soil depth and with distance from the base of trees for all species and stands. Fine roots (diameter <5 mm) constituted between 24% and 45% of the total stand live root biomass. The information generated is important in establishing the total biomass and thus the potential amount of carbon sequestered by mangroves in the study area.  相似文献   

17.
Prunus cerasoides has poor regeneration in its natural habitat due to its hard seed coat. The information about maturity time of fruit/seed is scanty and studies on seed germination enhancement lacking. In the present study, the main focus has been given to the physical fruits/seeds attributes which are reliable indicators of maturity and seed pretreatments which help to enhance germination. The fruits/seeds were collected from low and high elevational sites covering the altitudinal range of the species during the period of fruit/seed development (last week of February–mid April) for two consecutive years (2003–2004). The change in fruit colour from dark green to pale red or red was a useful indicator of seed maturity in P. cerasoides. Fruit moisture content between 46.57 ± 0.45% and 56.81 ± 1.14% and seed moisture content between 29.8 ± 1.35% and 34.13 ± 1.50% coincided with maximum germination (41.11 ± 13.96% and 59.99 ± 12.05%) across sites. The removal of seed coat (mechanical treatment) enhanced the germination of seeds to 70 ± 0% at low elevation and 100 ± 0% at high elevation in comparison of control or untreated seeds (germination range between 5.83 ± 0.83% and 31.68 ± 25.02%). Positive correlation existed between seed size and germination (r = 0.280; P < 0.01).  相似文献   

18.
Soil properties under an exotic plantation (Pinus caribaea) and an indigenous plantation (Podocarpus imbricatus) were compared with adjacent secondary forests and abandoned land in the tropical forest areas of Jianfengling National Nature Reserve in Hainan province, southern China. The surface soil (0–0.2 m) under Pi. caribaea has higher bulk density, lower soil organic carbon, total N, total K, available N, microbial biomass carbon, and smaller soil microbial communities (as indicated by soil Biolog profiles) than under Po. imbricatus. Both land use types showed negative cumulative soil deterioration index (DI) compared to secondary forests. However, compared to abandoned land (DI = –262), the soil quality of Po. imbricatus showed improvement (DI = –194) while that of Pi. caribaea showed deterioration (DI = –358). These results demonstrated that these exotic pine plantations can significantly and negatively influence soil properties. By contrast, our results showed that adoption of indigenous species in plantations, or natural regeneration, can improve soil quality.  相似文献   

19.
Natal dispersal and habitat selection of hazel grouse Bonasa bonasia juveniles were assessed by radio tracking in a temperate forest of South Korea during June 2003–November 2006. The birds used in the dispersal analysis (n = 43), 88% of birds dispersed. The average dispersal of hazel grouse from the natal area was 2231 ± 494 m (mean ± SD); range 134–6267 m. There were no significant differences in dispersal rate and distance between sexes. Hazel grouse’ habitat use differed from random use of available natal dispersals. In this natal dispersal scale of habitat selection, natural deciduous forest ranked highest, followed by mixed forest, coniferous plantation, deciduous plantation and others (rock and bare lands). We found that in general, the hazel grouse is an active disperser. Knowledge of aspects of habitat use that are relevant to dispersal may provide a better assessment of the fitness effects of dispersal in proximate and ultimate terms.  相似文献   

20.
《林业研究》2020,31(5)
The explicit purpose of this study was to characterize climate and vegetation along the western slope of the El Sira Mountains(Peru) and evaluate radial tree growth in response to seasonal rainfall anomalies. From May 2011 until September 2015, we monitored radial stem growth of 67 trees using point dendrometers and measured climate within five sites along an altitudinal gradient. The transect extends from lowland terra firme forests, over submontane forests, late and mid successional montane cloud forests up to exposed elfin forests. Monthly rainfall estimates by the TRMM PR satellite(product 3B42) were highly correlated with our rain gauge observations but underestimate rainfall at high altitudes. Different intra-annual tree growth patterns could be identified within each elevational forest type, showing species with strictly seasonal growth, continuous growth or alternating growth patterns independent of the seasons. Stem growth at each site was generally larger during rainy seasons, except for the elfin forest. The rainy season from October 2013 to March 2014 was extraordinarily dry, with only 73% of long-term mean precipitation received, which resulted in reduced radial growth, again with the exception of the elfin forest. This indicates that montane tropical rain forests may suffer from prolonged droughts, while exposed ridges with elfin forests still receive plenty of precipitation and benefit from receiving more solar radiation for photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号