首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
随着海参养殖业快速发展,利用水下机器人代替人工作业的海参智能捕捞已成为发展趋势。浅海环境复杂,海参体色与环境区分性差、海参呈现半遮蔽状态等原因,导致目标识别准确率低下。此外由于景深运动,远端海参作为小目标常常未被识别成功。为解决上述问题,该研究提出一种基于改进SSD网络的海参目标检测算法。首先通过RFB(Receptive Field Block)模块扩大浅层特征感受野,利用膨胀卷积对特征图进行下采样,增加海参细节、位置等信息,并结合注意力机制,对不同深度特征进行强化,将计算得出的权重与原特征信息相乘以此获得特征图,使结果包含最具代表性的特征,也抑制无关特征。最后实现特征图融合,进一步提升水下海参的识别精度。以实际拍摄的视频进行测试验证,在网络结构层面上,对传统算法进行改进。试验结果表明,基于改进的SSD网络的海参目标检测算法的平均精度均值为95.63%,检测帧速为10.70帧/s,相较于传统的SSD算法,在平均精度均值提高3.85个百分点的同时检测帧速仅减少2.8帧/s。与Faster R-CNN算法和YOLOv4算法进行对比试验,该研究算法在平均精度均值指标上,分别比YOLOv4、Faster R-CNN算法提高4.19个百分点、1.74个百分点。在检测速度方面,该研究算法较YOLOv4、Faster R-CNN算法分别低4.6帧/s、高3.95帧/s,试验结果表明,综合考虑准确率与运行速度,改进后的SSD算法较适合进行海参智能捕捞任务。研究结果为海参智能捕捞提供参考。  相似文献   

2.
针对目前在水下复杂环境中池塘养殖河蟹与饵料的检测算法存在检测精度低、速度慢等问题,该研究提出了基于改进YOLOv5s(you only look once version 5 small)的河蟹与饵料检测方法。首先,采用轻量化卷积Ghost替换普通卷积,同时利用GhostBottleneck结构替换原主干网络中的残差结构快速提取网络特征,减少模型计算量,满足安卓端的应用要求。其次,为了弥补因网络参数量减少造成网络检测精度稍有降低的问题,借鉴BiFPN(bidirectional feature pyramid network)的思想改进原始YOLOv5s的双向融合骨干网络,以较低的计算成本提高网络对小目标的检测精度。此外,为了帮助网络进一步更好地识别目标,加入了CA(coordinate attention)注意力机制,使得图像中感兴趣的区域能够更准确地被捕获。试验结果表明:该研究改进模型平均精度均值为96.9%,计算量为8.5GFLOPs,与当前主流的单阶段有锚框目标检测算法SSD(single shot multibox detector)和YOLOv3相比,具有更高的检测精度以及更少的计算量。相比于原始YOLOv5s模型,本文改进模型平均精度均值提高了2.2个百分点,计算量和模型内存都降低了40%以上。最后,将改进前后的模型部署到安卓设备上测试。测试结果表明:改进后模型的平均检测速度为148ms/帧,相较于原始模型检测速度提高了20.9%,并且保持了较好的检测效果,平衡了安卓设备对模型检测精度以及速度的性能需求,能够为河蟹养殖投饵量的精准确定提供参考。  相似文献   

3.
为解决莲田环境下不同成熟期莲蓬的视觉感知问题,该研究提出了一种改进YOLOv5s的莲蓬成熟期检测方法。首先,通过在主干特征网络中引入BoT(bottleneck transformer)自注意力机制模块,构建融合整体与局部混合特征的映射结构,增强不同成熟期莲蓬的区分度;其次,采用高效交并比损失函数EIoU(efficient IoU)提高了边界框回归定位精度,提升模型的检测精度;再者,采用K-means++聚类算法优化初始锚框尺寸的计算方法,提高网络的收敛速度。试验结果表明,改进后YOLOv5s模型在测试集下的精确率P、召回率R、平均精度均值mAP分别为98.95%、97.00%、98.30%,平均检测时间为6.4ms,模型尺寸为13.4M。与YOLOv3、 YOLOv3-tiny、 YOLOv4-tiny、 YOLOv5s、YOLOv7检测模型对比,平均精度均值mAP分别提升0.2、1.8、1.5、0.5、0.9个百分点。基于建立的模型,该研究搭建了莲蓬成熟期视觉检测试验平台,将改进YOLOv5s模型部署在移动控制器Raspberry Pi 4B中,对4种距离范围下获取的莲蓬场景图像...  相似文献   

4.
李韬  任玲  胡斌  王双  赵明  张玉泉  杨苗 《农业工程学报》2023,39(23):174-184
为了提高番茄穴盘苗分级检测精度,该研究提出了改进YOLOv5s目标检测模型,并通过迁移学习对番茄穴盘病苗识别精度进行优化。采用轻量级网络EfficientNetv2的Backbone部分作为特征提取网络,保留YOLOv5s中的SPPF空间金字塔池化模块,压缩模型参数数量以减少计算量;更改模型Neck部分原始上采样模块为CARAFE轻量级上采样模块,在引入很少参数量的情况下提高模型精度;同时将PANet替换为BiFPN,引入特征权重信息,增强不同尺度特征融合能力;引入有效多尺度注意力机制(efficient multi-scale attention,EMA),提高对番茄苗的关注,减少背景干扰;替换CIoU损失函数为SIoU损失函数,考虑真实框与预测框之间的方向匹配,提高模型收敛效果。试验结果表明,改进的YOLOv5s目标检测模型经过迁移学习训练后,平均精度均值达到95.6%,较迁移学习前提高了0.7个百分点;与原YOLOv5s模型相比,改进YOLOv5s模型平均精度均值提升2.6个百分点;改进YOLOv5s模型的参数量、计算量和权重大小分别为原YOLOv5s模型的53.1%、20.0%...  相似文献   

5.
天气变化、光照变化、枝叶遮挡等复杂环境给红花丝的快速、准确检测带来挑战,影响红花采摘机器人的作业效率,该研究基于改进YOLOv3提出了一种目标检测算法(GSC-YOLOv3)。首先GSC-YOLOv3采用轻量级网络幻影结构GhostNet替换主干特征提取网络,并在保证良好检测精度的前提下,最大限度压缩算法参数,提高算法速度,从而使用少量参数生成红花丝有效特征;其次使用空间金字塔池化结构(spatial pyramid pooling,SPP)实现特征增强,弥补提取红花丝特征过程中的信息损失;最后将卷积块注意力模块(convolutional block attention module,CBAM)融入特征金字塔结构,以解决特征融合过程中的干扰问题,提高算法的检测效率和精度。检测结果表明:GSC-YOLOv3算法在测试集下的平均精度均值达到91.89%,比FasterR-CNN、YOLOv3、YOLOv4、YOLOv5、YOLOv6、YOLOv7算法分别高12.76、2.89、6.35、3.96、1.87、0.61个百分点;在GPU下的平均检测速度达到51.1帧/s,均比其他6种算法高。...  相似文献   

6.
快速精准识别棚内草莓的改进YOLOv4-Tiny模型   总被引:5,自引:5,他引:0  
为了实现棚内草莓果实的快速精准识别,该研究提出一种基于改进YOLOv4-Tiny的草莓检测模型。首先,为了大幅度减少模型计算量,采用轻量型网络GhostNet作为特征提取网络,并在GhostBottleneck结构中嵌入卷积注意力模块以加强网络的特征提取能力;其次,在颈部网络中添加空间金字塔池化模块和特征金字塔网络结构,融合多尺度特征提升小目标草莓的检测效果;最后,采用高效交并比损失作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进YOLOv4-Tiny模型权重大小仅为4.68 MB,平均每幅图片的检测时间为5.63 ms,在测试集上的平均精度均值达到92.62%,相较于原YOLOv4-Tiny模型提升了5.77个百分点。与主流的目标检测模型SSD、CenterNet、YOLOv3、YOLOv4和YOLOv5s相比,改进YOLOv4-Tiny模型平均精度均值分别高出9.11、4.80、2.26、1.22、1.91个百分点,并且模型权重大小和检测速度方面均具有绝对优势,该研究可为后续果实智能化采摘提供技术支撑。  相似文献   

7.
为实现黄花成熟度的快速、高精度识别,针对其相似特征识别精确度低以及相互遮挡检测困难的问题,提出一种基于YOLOv8-ABW的黄花成熟度检测方法。该研究在特征提取网络中加入结合注意力机制的尺度特征交互机制(attention based intra-scale feature interaction, AIFI),更好地提取黄花特征信息,提高检测的精确度。在特征融合网络中,进一步采用加权的双向特征金字塔特征融合网络(bidirectional feature pyramid network, Bi FPN),实现更高层次的跨通道特征融合,有效减少通道中的特征冗余。此外使用WIoUv3作为损失函数,聚焦普通质量的锚框,提高模型的定位性能。试验结果表明:YOLOv8-ABW模型检测精确度为82.32%,召回率为83.71%,平均精度均值mAP@0.5和mAP@0.5:0.95分别为88.44%和74.84%,调和均值提升至0.86,实时检测速度为214.5帧/s。与YOLOv8相比,YOLOv8-ABW的精确度提高1.41个百分点,召回率提高0.75个百分点,mAP@0.5和mAP@0.5:0.95分别提升1.54个百分点和1.42个百分点。对比RT-DETR、YOLOv3、YOLOv5、YOLOv7模型,YOLOv8-ABW参数量最少,仅为3.65×106,且模型浮点运算量比YOLOv7少96.3 G。体现出YOLOv8-ABW 模型能够在黄花成熟度检测中平衡检测精确度和检测速度,综合性能最佳,为黄花智能化实时采摘研究提供技术支持。  相似文献   

8.
基于改进YOLOv5的茶叶杂质检测算法   总被引:1,自引:1,他引:0  
针对现有目标检测算法检测茶叶杂质精度低、速度慢的问题,该研究提出了一种基于改进YOLOv5的茶叶杂质检测算法。采用K-Means聚类算法对杂质真实框聚类,以获取适合茶叶杂质特征的锚框尺寸;通过在主干特征提取网络CSPDarkNet中引入前馈卷积注意力机制(Convolutional Block Attention Module,CBAM),将茶叶杂质输入特征图依次经过通道注意力模块和空间注意力模块,获得特征图通道维度和空间维度的关键特征;在颈部网络中添加空间金字塔池化(Spatial Pyramid Pooling,SPP)模块,融合并提取不同感受野的关键特征信息;将普通卷积替换成深度可分离卷积,增大小目标预测特征图的置信度损失权重,构建了轻量化的改进YOLOv5网络结构模型;分别制作了铁观音茶叶中混合有稻谷、瓜子壳、竹片和茶梗4种杂质的数据集并进行茶叶杂质检测试验。结果表明,改进的YOLOv5比常规YOLOv5在茶叶杂质检测中具有更高的置信度分数,且定位更为准确,未出现漏检现象。改进YOLOv5的多类别平均精度(Mean Average Precision,mAP)和每秒传输帧数(Frame Per Second,FPS)达到96.05%和62帧/s,均优于主流的目标检测算法,验证了改进算法的高效性和鲁棒性。该研究成果可为提升茶叶制作过程中小目标杂质检测精度与检测速度奠定基础。  相似文献   

9.
针对现有目标检测模型对自然环境下茶叶病害识别易受复杂背景干扰、早期病斑难以检测等问题,该研究提出了YOLOv5-CBM茶叶病害识别模型。YOLOv5-CBM以YOLOv5s模型为基础,在主干特征提取阶段,将一个带有Transformer的C3模块和一个CA(coordinate attention)注意力机制融入特征提取网络中,实现对病害特征的提取。其次,利用加权双向特征金字塔(BiFPN)作为网络的Neck,通过自适应调节每个尺度特征的权重,使网络在获得不同尺寸特征时更好地将其融合,提高识别的准确率。最后,在检测端新增一个小目标检测头,解决了茶叶病害初期病斑较小容易出现漏检的问题。在包含有3种常见茶叶病害的数据集上进行试验,结果表明,YOLOv5-CBM对自然环境下的初期病斑检测效果有明显提高,与原始YOLOv5s模型相比,对早期茶饼病和早期茶轮斑病识别的平均精度分别提高了1.9和0.9个百分点,对不同病害检测的平均精度均值达到了97.3%,检测速度为8ms/幅,均优于其他目标检测算法。该模型具有较高的识别准确率与较强的鲁棒性,可为茶叶病害的智能诊断提供参考。  相似文献   

10.
为解决传统小肠绒毛需要专业人员手动检测耗时耗力且存在主观性和不稳定性等问题,同时提高在复杂病理学图像中小肠绒毛检测的准确率和效率,该研究提出基于改进YOLOv5s检测复杂病理学图像下猪只小肠绒毛的方法。首先,采用串联形式的混合池化对空间金字塔进行优化,增强特征提取与特征表达,提升检测精度;然后引入一种基于注意力机制的网络模块(simpleattentionmechanism,SimAM)与Bottleneck中的残差连接相结合,使用SimAM对Bottleneck中的特征图进行加权,得到加权后的特征表示,利用注意力机制加强模型对目标的感知。试验结果表明,该研究算法的平均精度(average precision)和每秒传输帧数(frame per second,FPS)达到92.43%和40帧/s。改进后的YOLOv5s在召回率和平均精度上相较改进前提高2.49和4.62个百分点,在不增加模型参数量的情况下,每帧图片的推理时间缩短1.04 ms。与经典的目标检测算法SSD、Faster R-CNN、YOLOv6s、YOLOX相比,平均精度分别提高15.16、10.56、2.03和4.07...  相似文献   

11.
针对名优茶智能采摘中茶叶嫩梢识别精度不足的问题,该研究对YOLOv8n模型进行优化。首先,在主干网络中引入动态蛇形卷积(dynamic snake convolution,DSConv),增强模型对茶叶嫩梢形状信息的捕捉能力;其次,将颈部的路径聚合网络(path aggregation network,PANet)替换为加权双向特征金字塔网络(bi-directional feature pyramid network,BiFPN),强化模型的特征融合效能;最后,在颈部网络的每个C2F模块后增设了无参注意力模块(simple attention module,SimAM),提升模型对茶叶嫩梢的识别关注度。试验结果表明,改进后的模型比原始模型的精确率(precision,P)、召回率(recall,R)、平均精确率均值(mean average precision,mAP)、F1得分(F1 score,F1)分别提升了4.2、2.9、3.7和3.3个百分点,推理速度为42 帧/s,模型大小为6.7 MB,满足低算力移动设备的部署条件。与Faster-RCNN、YOLOv5n、YOLOv7n和YOLOv8n目标检测算法相比,该研究提出的改进模型精确率分别高出57.4、4.4、4.7和4.2个百分点,召回率分别高出53.0、3.6、2.8和2.9个百分点,平均精确率均值分别高出58.9、5.0、4.6和3.7个百分点,F1得分分别高出了56.8、3.9、3.7和3.3个百分点,在茶叶嫩梢检测任务中展现出了更高的精确度和更低的漏检率,能够为名优茶的智能采摘提供算法参考。  相似文献   

12.
现有的目标检测算法检测茶叶嫩芽的精度较低,为提高茶叶嫩芽的检测精度,该研究提出一种基于改进YOLOv5s网络模型的茶叶嫩芽检测算法。该算法将骨干特征提取网络中的空间金字塔池化结构(spatial pyramid pooling-fast,SPPF)替换为空洞空间卷积池化金字塔结构(atrous spatial pyramid pooling,ASPP),增强模型对不同分辨率下目标的识别能力;针对茶叶嫩芽的小目标特征,在颈部网络中引入可加权重的双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),提高特征融合的效率,同时在颈部网络中的每个集中综合卷积模块(concentrated-comprehensive convolution block,C3)后添加卷积注意力模块(convolutional block attention module,CBAM)来提高模型关注小目标特征的能力。试验结果表明,改进后获得的Tea-YOLOv5s比原模型的准确率(precision,P)、召回率(recall,R)和平均精度值(mean average precision,mAP)分别高出4.4、0.5和4个百分点,且模型鲁棒性强,在多个场景下茶叶嫩芽的检测中具有更高的置信度分数。改进后的模型可为茶叶的产量估计和茶叶采摘机器人的嫩芽识别奠定基础。  相似文献   

13.
为解决自然环境中苹果叶片病害检测场景复杂、小目标病害检测难度高以及模型参数大无法在移动端和嵌入式设备部署等问题,提出一种基于YOLOv5s的苹果叶片小目标病害轻量化检测方法。该方法将YOLOv5s的骨干网络更改为ShuffleNet v2轻量化网络,引入CBAM(convolutional block attention module)注意力模块使模型关注苹果叶片小目标病害,添加改进RFB-s(receptive field block-s)支路获取多尺度特征,提高苹果叶片病害检测精度,并更改边界框回归损失函数为SIoU(scylla-intersection over union),增强病斑定位能力。试验表明改进后的YOLOv5s模型在IoU大于0.5时的平均精度均值(mean average precision,mAP0.5)和每秒传输帧数(frame per second,FPS)分别达到90.6%和175帧/s,对小目标的平均检测准确率为38.2%,与基准模型YOLOv5s相比,其mAP0.5提升了0.8个百分点,参数量减少了6.17 MB,计算量减少了13.8 G,对小目标的检测准确率提高了3个百分点。改进后的YOLOv5s目标检测模型与Faster R-CNN、SSD、YOLOv5m、YOLOv7、YOLOv8和YOLOv5s目标检测模型相比,具有最小的参数量和计算量,对小目标病害叶斑病和锈病的检测准确率分别提高了1.4、4.1、0.5、5.7、3.5、3.9和1.5、4.3、1.2、2.1、4、2.6个百分点,该方法为真实自然环境下苹果叶片病害尤其是小目标病害的轻量化检测提供参考依据。  相似文献   

14.
基于特征递归融合YOLOv4网络模型的春见柑橘检测与计数   总被引:3,自引:3,他引:0  
春见柑橘个体小、单株果树柑橘密集、柑橘之间的形态与颜色相似度高且易被树叶严重遮挡,这些特点给春见柑橘检测与计数带来了较大困难。该研究以实际春见果园环境中的春见柑橘作为检测与计数对象,提出了一种以春见柑橘为检测目标的基于特征递归融合YOLOv4网络模型(YOLOv4 network model with recursive fusion of features,FR-YOLOv4)。针对春见柑橘尺寸小的特点,FR-YOLOv4网络模型的主干特征提取网络采用了感受野更小的CSPResNest50网络,降低了小尺寸目标的特征图传不到目标检测器中的可能性;针对春见柑橘被遮挡和密集分布的情况,采用了递归特征金字塔(Recursive Feature Pyramid,RFP)网络来进行特征递归融合,提高了对果园环境下春见柑橘的检测精度。试验结果表明:FR-YOLOv4网络模型对于果园环境中春见柑橘的平均检测精度为94.6%,视频检测帧率为51帧/s。FR-YOLOv4网络模型相比于YOLOv4、单次多框检测器(Single Shot Multi-Box Detector,SSD)、CenterNet和更快速卷积神经网络(Faster- Region-Convolutional Neural Networks,Faster R-CNN)的平均检测精度分别提高了8.9、29.3、14.1和16.2个百分点,视频检测帧率分别比SSD、Faster R-CNN提高了17帧/s和33帧/s。FR-YOLOv4网络模型对于实际果园环境中春见柑橘的检测精度高,具备检测实时性,适用于春见果园中春见柑橘检测与计数。  相似文献   

15.
小白菜是中国种植面积较广、深受大众喜爱的蔬菜,但真实菜地环境中虫害往往出现在叶片的特定区域,且受环境因素如光照和背景干扰较大,影响对其的智能检测。为提高小白菜虫害的检测效率和准确率,该研究提出一种基于YOLOv5s网络框架改进的YOLOPC小白菜虫害识别模型。首先,引入CBAM(Convolutional Block Attention Module)注意力机制,将其放在CBS(卷积层Convolution+归一化层Batch normalization+激活函数层SILU)的输入端构成CBAM-CBS的结构,动态调整特征图中各个通道和空间位置的权重;使用上采样和1×1卷积操作来调整特征图的尺寸和通道数,实现不同层次特征的融合,增强模型的特征表示能力。同时,改进损失函数,使其更适合边界框回归的准确性需求;利用空洞卷积的优势提高网络的感受野范围,使模型能够更好地理解图像的上下文信息。试验结果表明,与改进前的YOLOv5s模型相比,YOLOPC模型对小白菜小菜蛾和潜叶蝇虫害检测的平均精度(mean Average Precision, mAP)达到91.40%,提高了12.9个百分点;每秒传输帧数(Frame Per Second, FPS)为58.82帧/s,增加了11.2帧/s,增加幅度达23.53个百分点;参数量仅为14.4 MB,降低了25.78个百分点。与经典的目标检测算法SSD、Faster R-CNN、YOLOv3、YOLOv7和YOLOv8相比,YOLOPC模型的平均精度分别高出20.1、24.6、14、13.4和13.3个百分点,此外,其准确率、召回率、帧速率和参数量均展现出显著优势。该模型可为复杂背景下小白菜虫害的快速准确检测提供技术支持。  相似文献   

16.
为提高自然环境下生姜叶片病虫害的识别精确率,提出一种基于改进YOLOv5s的生姜叶片病虫害识别模型。建立了田间不同自然环境条件下的生姜叶片病虫害数据集,为保证模型在田间移动设备上流畅运行,实现网络模型的轻量化,在YOLOv5s中引入GhostNet网络中的Ghost模块和Ghost BottleNeck结构。同时,为避免生姜叶片病虫害图像小目标特征丢失的情况,增强图像特征提取,加入CA注意力机制模块,提升生姜叶片病虫害的识别准确率和定位精确度。改进后的模型参数量、计算量和权重文件大小分别为YOLOv5s模型的52.0%、50.6%和55.2%,对生姜叶片病虫害识别平均精度均值达到了83.8%。与Faster-RCNN、SSD、YOLOv4、YOLOv5s、Tea-YOLOv5s等算法相比,平均精度均值分别提高37.6、39.1、22.5、1.5、0.7个百分点,将改进后的目标检测模型部署在Jetson Orin NX开发板上,并使用TensorRT、Int8量化和CUDA等方法对检测模型加速,加速后的模型检测速度为74.3帧/s,满足实时检测的要求,测试结果显示,改进后的模型减少了漏检、误检的情况,并且对目标定位更加精准,适用于自然环境下生姜叶片病虫害的精准识别,为后续生姜机械自动化施药作业提供技术理论支持。  相似文献   

17.
针对目前三七检测算法在复杂田间收获工况下检测精度低、模型复杂度大、移动端部署难等问题,该研究提出一种基于YOLOv5s的轻量化三七目标检测方法。首先,采用GSConv卷积方法替换原始颈部网络的传统卷积,引入Slim-neck轻量级颈部网络,降低了模型复杂度,同时提升了模型精度;其次,使用ShuffleNetv2轻量型特征提取网络对主干网络进行轻量化改进,提升了模型实时检测性能,并采用角度惩罚度量的损失(SIoU)优化边界框损失函数,提升了轻量化后的模型精度和泛化能力。试验结果表明,改进后的PN-YOLOv5s模型参数量、计算量、模型大小分别为原YOLOv5s模型的46.65%、34.18%和48.75%,检测速度提升了1.2倍,F1值较原始模型提升了0.22个百分点,平均精度均值达到了94.20%,较原始模型低0.6个百分点,与SSD、Faster R-CNN、YOLOv4-tiny、YOLOv7-tiny和YOLOv8s模型相比能够更好地平衡检测精度与速度,检测效果更好。台架试验测试结果表明,4种输送分离作业工况下三七目标检测的准确率达90%以上,F1值达86%以上,平均精度均值达87%以上,最低检测速度为105帧/s,实际收获工况下模型的检测性能良好,可为后续三七收获作业质量实时监测与精准分级输送提供技术支撑。  相似文献   

18.
茶叶的产量和品质深受病虫害的影响。茶尺蠖是一种常见的茶叶害虫,精确检测茶尺蠖对茶叶病虫害防治有重要意义。由于茶尺蠖和茶树枝、枯死茶叶的颜色、纹理相近,茶尺蠖的体积小、形态多变、被遮挡等问题,现有方法检测茶尺蠖的精度不高。该研究提出一种基于深度学习的复杂背景图像中茶尺蠖检测方法,该方法使用YOLOv5为基线网络,利用卷积核组增强对茶尺蠖的特征提取,在不增加计算量的条件下减少复杂背景对茶尺蠖检测结果的干扰;使用注意力模块关注茶尺蠖整体,根据茶尺蠖的大小和形状自适应调节感受野,降低因目标大小形状不一导致的漏检;使用Focal loss损失函数减少前景和背景的类不平衡对检测结果的影响。试验结果表明,所提方法用于复杂背景图像中茶尺蠖的检测,可以达到0.94的召回率,0.96的精确度和92.89%的平均精度均值。与基线网络相比,该方法的平均精度均值提高了6.44个百分点。使用相同的数据集和预处理的对比分析表明,该方法优于SSD、Faster RCNN和YOLOv4等其他经典深度学习方法,平均精度均值比SSD、Faster RCNN、YOLOv4分别高17.18个百分点、6.52个百分点和4.78个百分点。该方法可实现对茶尺蠖的智能检测,减少人力成本,有助于实现精准施药,提高茶叶的产量和品质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号