首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effects of O3 on growth, yields and physiological characteristics of Thai Jasmine rice cultivars. Rice was exposed to O3 for 7 h day?1 in a closed chamber for 113 days, beginning from seedling until harvest. O3 concentration in each chambers was controlled at 0 ppb, 50 ppb, 100 ppb, 150 ppb and at the ambient level. Effects of O3 on leaf area index (LAI) became obvious at maturity when LAI significantly decreased in the treatments under elevated O3 concentrations. Results in shoot biomass indicated that shoot length was more affected by O3 than shoot dry weight. Root length rather than dry weight was significantly reduced in all cultivars. The most severe damage of O3 was found in photosynthetic components, namely chlorophyll and carotenoid contents, and rate of net photosynthesis. Yield components were also strongly affected by O3. The highest reduction in filled seed per ear was found in the Pathumthani 1 cultivar by 78% when it was exposed to 150 ppb O3 compared to the control (0 ppb). Similarly, 100-grain weight was also reduced as much as 12.3% in this cultivar.  相似文献   

2.
Ponderosa pines (Pinus ponderosa Dougl. ex. Laws) 21 to 60 yr old were used to assess the relative importance of environmental stressors (O3, drought) versus an enhancer (N deposition) on foliar retention, components of aboveground growth, and whole tree biomass allocation. Sites were chosen across a well-described gradient in ozone exposure (40 to 80 ppb per h, 24 h basis, 6 month growing season) and nitrogen deposition (5 to 40 kg ha-1 yr-1) in the San Bernardino Mountains east of Los Angeles, California. A high level of chlorotic mottle indicated high O3 injury at sites closest to the pollution source, despite potential for the mitigating effects of N deposition. At the least polluted site, foliar biomass was evenly distributed across three of the five needle-age classes retained. At the most polluted site, 95% of the foliar biomass was found in the current year's growth. High N deposition and O3 exposure combined to shift biomass allocation in pine to that of a deciduous tree with one overwintering needle age class. Based on whole tree harvests, root biomass was lowest at sites with the highest pollution exposure, confirming previous chamber exposure and field studies. Aboveground growth responses in the high-pollution sites were opposite to those expected for O3 injury. Needle and lateral branch elongation growth, and measures of wood production increased with increasing proximity to the pollution source. An enhancement of these growth attributes suggested that N deposition dominated the ponderosa pine response despite high O3 exposure.  相似文献   

3.
The aim of the present study was to determine whether arbuscular mycorrhizal (AM) inoculation with a biofertilizer containing clays as granular carriers, leek root pieces and Glomus intraradices spores could improve alkalinity tolerance of two cucumber genotypes, and to study the changes induced by AM at agronomical and physiological level. A greenhouse experiment was carried out to determine yield, growth, fruit quality, net photosynthesis (ACO2), electrolyte leakage, and mineral composition of two cucumber (Cucumis sativus L.) genotypes (hybrid “Ekron” or open-pollinated variety “Marketmore”) with inoculated and noninoculated arbuscular mycorrhizal biofertilizer. Plants were supplied with nutrient solutions at two pH values (6.0 or 8.1). The high pH nutrient solution had the same basic composition with an additional 10 mM NaHCO3 and 0.5 g l−1 CaCO3. The percentage root colonization was higher in “Marketmore” (21.8%) than “Ekron” (12.7%). Total and marketable yield and total biomass were significantly higher by 189%, 213%, and 77%, respectively, with Ekron in comparison to those recorded with Marketmore. The highest crop performance with Ekron in comparison to Marketmore was due to the improved nutritional status (higher N, P, K, Ca, Mg, Fe, Mn, and B), higher leaf area, and net photosynthesis. Increasing the concentration of NaHCO3 from 0 to 10 mM in the nutrient solution significantly decreased yield, plant growth, ACO2, N, P, Fe, Cu, Zn, Mn, and B concentration in leaf tissue, whereas the electrolyte leakage increased. The inoculated plants under alkaline conditions had higher total, marketable yield, and total biomass than noninoculated plant. Mycorrhizal cucumber plants grown under alkaline conditions had a higher macronutrient concentration in leaf tissue compared to noninoculated plants. The highest yield and biomass production in inoculated plants seems to be related to the capacity of maintaining higher net ACO2 and to a better nutritional status (high P, K, Mg, Fe, Zn, and Mn and low Na accumulation) in response to bicarbonate stress with respect to −AM plants.  相似文献   

4.
The effects of inoculating arbuscular mycorrhizal (AM) fungi on the growth, phosphorus (P) uptake, and yield of Welsh onion (Allium fistulosum L.) were examined under the non-sterile field condition. Welsh onion was inoculated with the AM fungus, Glomus R-10, and grown in a glasshouse for 58?days. Non-inoculated plants were grown as control. Inoculated and non-inoculated seedlings were transplanted to a field with four available soil P levels (300, 600, 1,000, and 1,500?mg P2O5?kg?1 soil) and grown for 109?days. AM fungus colonization, shoot P concentration, shoot dry weight, shoot length, and leaf sheath diameter were measured. Percentage AM fungus colonization of inoculated plants was 94% at transplant and ranged from 60% to 77% at harvest. Meanwhile, non-inoculated plants were colonized by indigenous AM fungi. Shoot length and leaf sheath diameter of inoculated plants were larger than those of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Shoot P content of inoculated plants was higher than that of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Yield (shoot dry weight) was higher for non-inoculated plants grown in soil containing 1,000 and 1,500?mg P2O5?kg?1 soil than for those grown in soil containing 300 and 600?mg?P2O5 kg?1 soil. Meanwhile, the yields of inoculated plants (200?g plant?1) grown in soils containing the four P levels were not significantly different. Yield of inoculated plants grown in soil containing 300?mg P2O5 kg?1 soil was similar to that of non-inoculated plants grown in soil containing 1,000?mg P2O5?kg?1 soil. The cost of AM fungal inoculum for inoculated plants was US$ 2,285?ha?1 and lower than the cost of superphosphate (US$ 5,659?ha?1) added to soil containing 1,000?mg P2O5 kg?1 soil for non-inoculated plants. These results indicate that the inoculation of AM fungi can achieve marketable yield of A. fistulosum under the field condition with reduced application of P fertilizer.  相似文献   

5.
Two cultivars of soybean (Pusa 9814 and Pusa 9712) were investigated to evaluate the impact of ambient and elevated concentrations of ozone (O3) in a suburban site of India with and without application of 400 ppm ethylenediurea (EDU) in open top chambers having filtered air (FCs), non-filtered air (NFCs), and non-filtered plus 20 ppb O3 (NFCs?+?20 ppb). Significant reductions were observed in various growth parameters, biomass accumulation, and yield attributes of soybean cultivars due to ambient O3 in NFCs and elevated concentration of O3 in NFCs?+?20 ppb. Reductions in all parameters were of lower magnitude in plants treated with EDU as compared to non-EDU treated plants. Yield (weight of seeds plant?1) increased by 29.8% and 33% in Pusa 9712 and by 28.2% and 29.0% in Pusa 9814 due to EDU treatment in plants grown at ambient and elevated levels of O3, respectively. The results clearly showed that (a) EDU can be effectively used to assess phytotoxicity of O3 by providing protection against its deleterious effects, (b) EDU can be used for biomonitoring of O3 in areas experiencing its higher concentrations, and (3) EDU is more effective against higher concentrations of O3.  相似文献   

6.
7.
8.
三叶草根间菌丝桥在32P传递中的作用   总被引:3,自引:0,他引:3  
应用五室方法研究了不同收获期三叶草根间菌丝桥在32P传递中的作用及其对受体植株生长的影响。结果证实32P可以通过菌丝桥在三叶草根系间传递,三个收获期32P的传递量无显著差异;供体和受体植株根间形成的菌丝桥对受体植株生长的促进作用在10周时才表现出来。本文对影响植株间菌丝桥传递转移32P数量的因素进行了初步的讨论。  相似文献   

9.
Cucumber (Cucumis sativus L. cv. Lvyuan4) seedlings were either noninoculated or inoculated with four bacteria to study the interactions of salinity in saline soil, cucumber, and bacteria. The seedlings were grown under controlled conditions in pots; the solutions of 100, 200, 400, and 600 mM sodium chloride (NaCl) and bacterial broth were added to the soils. Deionized water was used as control. There were nine treatments in the experiment. Each treatment contained three replications and each replication represented six plants. After 14 days of treatment, morphological characteristics, fresh and dry weights, chlorophyll, soluble sugar, malonaldehyde, proline, nutrient elements, and sodium (Na+) and chloride (Cl?) contents in plants and soils were calculated. Soil salinity inhibited seedlings growth, but low concentration of NaCl promoted plant growth. Soil microbial biomass decreased in saline soils and increased in inoculated treatments. Bacteria had the role of promoting growth and protecting plants against salinity. Bacteria accelerated Na+ and Cl? uptake markedly.  相似文献   

10.
《Journal of plant nutrition》2013,36(8):1311-1323
Tomato (Lycopersicon esculentum Mill.) yields are known to decrease for plants grown in saline soils. This study was conducted to determine the effects of arbuscular mycorrhizal fungi (AMF) inoculation on fruit yield and mineral content of salt-tolerant and salt-sensitive tomato cultivars grown with varied levels of salt. NaCl and CaCl2were added to soil in the irrigation water in equal molar ratios to give ECe values of 1.4 (nonstressed) and 4.9 dS m?1 (salt stressed). Plants were grown in a greenhouse using unsterilized, low phosphorus (P) (silty clay) soil-sand mix. Mycorrhizal root colonization occurred whether cultivars were salt stressed or nonstressed, but the extent of AMF root colonization was higher in AMF inoculated than uninoculated plants. The salt tolerant cultivar ‘Pello’ generally had higher AMF root colonization than the salt sensitive cultivar ‘Marriha’. Shoot dry matter (DM) yield, fruit fresh yield, and AMF colonization were higher for plants grown under nonstressed than for plants grown under salt stressed conditions. Shoot DM and fruit fresh yields were higher in AMF inoculated than uninoculated plants grown with or without salt stress. Pello generally had higher fruit fresh yield per plant and fruit weight than Marriha, but these differences were only significant for fruit weight in unioculated plants grown under salt stressed conditions. The enhancement in fruit fresh yield due to AMF inoculation was 26 and 23% under nonstressed and 28 and 46% under salt stressed treatments for Pello and Marriha, respectively. For both cultivars, fruit contents of P, potassium (K), zinc (Zn), copper (Cu), and iron (Fe) were higher in AMF inoculated compared with uninoculated plants grown under nonstressed and salt stressed conditions. Fruit Na concentrations were lower in AMF inoculated than uninoculated plants grown under salt stressed conditions. The enhancement in P, K, Zn, Cu, and Fe acquisition due to AMF inoculation was more pronounced in Marriha than in Pello cultivar under salt stressed conditions. The results of this study indicated that AMF inoculated plants had greater tolerance to salt stress than unioculated plants.  相似文献   

11.
The Interaction between the effects of nitrate (NO3) and sodium chloride (NaCl) concentration on growth) water relations, nitrogen (N) contents and N fixation were investigated in alfalfa (Medicago sativa L. cv. Magali). The plants were grown hydroponically in a growth chamber, in the presence or absence of 3 mM potassium nitrate (KNO3) and exposed to various concentrations of NaCl. Increased salinity resulted in a significant decrease in shoot and root biomass, relative water content and water potential. Shoot growth was more inhibited by NaCl than root biomass. The plants grown in the presence of NO3 were slightly less affected by NaCl than the plants dependent on N fixation for their N nutrition. Nitrogenase activity measured by acetylene reduction activity was substantially inhibited by NaCl, and this inhibition was significantly correlated to the inhibition of shoot growth and total N contents. The comparison of the curves of ARA response to oxygen (O2) partial pressure showed that the salt‐induced inhibition of nitrogenase activity was associated with a significant increase in the critical O2 pressure of the nodules exposed to NaCl. This result shows that NaCl decreases the nodule permeability to O2 diffusion in undeterminate nodule of alfalfa, like previously shown with determinate nodules of soybean.  相似文献   

12.
Tropospheric ozone (O3) has long been documented to cause an injury to plants, but a plants’ protectant, widely applicable in agronomical practice, does not exist. We evaluated the potential antiozonate efficacy of the antitranspirant di-1-p-menthene (Vapor Gard) compared with ethylenediurea (EDU) on Bel-W3 tobacco plants. Plants were treated either with water, or by EDU (10, 100, and 500 mg dm?3), or by vapor (1, 5, 10, and 50 ml dm?3) and were exposed either to O3-enriched (90 ppb) or O3-free air, for 12 days and 8 h day?1. EDU when applied at 10 mg dm?3 did not protect the plants against O3, but when applied at 100 and 500 mg dm?3 offered a significant protection to the plants. Vapor, when applied at 1 ml dm?3 did not protect the plants against O3, neither by terms of foliar visible injury nor by terms of aboveground biomass. In addition, when applied at 10 and 50 ml dm?3 caused phytotoxicity to all the plants, which it was expressed as necrotic spots on the leaves’ surface, misshaping of the leaves, or short plants' height. It is obvious that vapor does not protect Bel-W3 tobacco plants against O3. The antiozonate role of di-1-p-menthene is species-specific and probably occurs only under short-term exposures.  相似文献   

13.
An experimental study was performed in open-top chambers to assess the relative O3-sensitivity of the following Mediterranean woody plants: Quercus ilex ssp. ilex, Quercus ilex ssp. ballota, Olea europaea ssp. sylvestris, Ceratonia siliqua and Arbutus unedo. Assessment of O3 ‘sensitivity’ was based on the development of O3-induced visible injury and the extent of the reduction in relative growth rate induced by O3. Two-year-old seedlings were exposed in open-top chambers to charcoal filtered air (CFA), Non-filtered air (NFA) or Non-filtered air supplied with 40 ppb O3 from 09:00 to 18:00 hours (NFA+40). No clear relationships were found between the development of visible injury and effects on plant growth or accumulated biomass. Olea europea ssp. sylvestris and Quercus ilex ssp. ballota appeared to be the most O3-sensitive tree species screened; a ten month exposure to ambient O3 levels (AOT40 = 12.4 ppm.h) caused reductions in height and/or stem growth. Further research is needed to characterise the physiological, biochemical and anatomical characteristics that may underlie the ‘sensitivity’ of certain Mediterranean species to O3  相似文献   

14.
Young trees of 14 species were exposed to ambient ozone (O3), (charcoal-filtered air [CF] or non-filtered air [NF]) and/or acid mist (pH 5 or 3: SO4 2?, NO3 ?, Cl? at equivalent 1:2:1 ratio) over three seasons (from June 1993 to November 1995) using tunnel-type open-top chambers at two sites (Abiko: 25 m a.s.l. and Akagi: 540 m a.s.l.) in Japan. Ambient, 12-hr (0600–1800) mean O3 concentration for April–September during the period of experiment at Akagi (41 ppb) was 40 % higher than that at Abiko (30 ppb). The NF- and CF-chambers had 90 % and 30 % of ambient O3, respectively. Significant decreases in biomass in the NF treatments were observed in Pinus densiflora, Larix k aempferi, Picea abies, Abies firma, Abies homolepis, Abies veitchii, Cryptomeria japonica, Populus maximowiczii, Betula platyphylla, Fagus crenata and Zelkova serrata as compared with the CF treatment. These results indicate that the current ambient level of O3 in Japan is high enough to have adverse effects on the growth of all tree species examined, except Pinus thunbergii, Chamaecyparis obtusa and Quercus mongolica. Increasing acidity of mist caused no growth decreases in all tree species examined. However, the growth decreases by O3 were greater at pH 3 mist treatment than at pH 5 mist treatment on Abies veitchii and Fagus. This suggested that the O3 effect on tree growth can be exacerbated by the deposition of acid mist, possibly associated with nitrate.  相似文献   

15.
丛枝菌根真菌对红三叶草利用不同有机磷源的研究   总被引:5,自引:3,他引:5  
以红三叶草为材料 ,利用三室隔网培养方法 ,施用不同有机磷源 :植酸钠 (Na -Phytate)、核糖核酸 (RNA)和卵磷脂 (Lecithin) ,研究接种菌根真菌Glmous versiforme对土壤及外加有机磷源的利用效率 ,另设无机磷及不施磷作为对照。结果表明 ,接种菌根真菌能明显增加植株干物重、含磷量和吸磷总量。与各有机磷处理相比 ,无机磷处理前期的生长效应较好 ,施用有机磷各处理在不同生长时期均明显促进了植株生长 ,但不同有机磷源之间没有显著差异。在植株吸磷量上 ,植株生长 7周以前 ,磷酸二氢钾处理高于其它处理 ,而植株生长 10周时 ,植酸钠处理高于磷酸二氢钾处理。接种菌根处理由于丛枝菌根活化了土壤有机磷 ,到植株生长 10周时其吸收有机磷的量已占吸磷总量的 76 .7%。  相似文献   

16.
ABSTRACT

A pot experiment was conducted out to investigate the yield and pungency of spring onion (Allium fistulosum L.) as affected by inoculation with arbuscular mycorrhizal (AM) fungi and addition of nitrogen (N) and sulfur (S) fertilizers. Plants were inoculated with either Glomus mosseae or Glomus intraradices or grown as uninoculated controls. Two levels of N and S were applied to the soil in factorial combinations of 50 and 250 mg N kg?1 soil and 0 and 60 mg S kg?1 soil. Plants were grown in a greenhouse for 25 weeks and then harvested. Mycorrhizal colonization resulted in increased shoot dry weight, shoot-to-root ratio, shoot length, sheath diameter, and phosphorus (P) concentrations. Shoot dry-matter yield was significantly affected by added N, but not by S. Shoot dry weight increased with increasing N supply (except for non-mycorrhizal controls without additional S fertilizer). Shoot total S concentration (TSC), enzyme-produced pyruvate (EPY), and organic sulfur concentration (OSC) in plants inoculated with Glomus mosseae were significantly lower than those of non-mycorrhizal controls, while these parameters in plants inoculated with Glomus intraradices were comparable to or higher than in the controls. Neither N nor S supply affected shoot EPY or OSC, whereas shoot TSC (except in plants inoculated with Glomus mosseae) and SO4 2? concentrations were usually significantly increased by S supply. In soil of high S and low P availability, mycorrhizal colonization had a profound influence on both the yield and the pungency of spring onion.  相似文献   

17.
Loblolly pine seedlings of five half-sib families were grown under ambient, subambient (approximately 0.6 × ambient), and elevated [ambient + 60 ppb O3 (120 μg m?3)] O3 levels for one growing season in open-topped chambers. Diameter and height of the seedlings were measured periodically over the growing season, and above ground and below ground biomass were determined at harvest. Significant genetic differences were found in above ground volume (D 2H) 1 mo after 03 fumigation began and continued until harvest. Biomass of secondary needles and coarse and fine roots also differed significantly among families. Elevated O3 resulted in significantly decreased D 2H and secondary needle biomass relative to seedlings grown in ambient air. Seedlings receiving subambient O3 levels were intermediate in size, but were not significantly different from seedlings fumigated at ambient O3 levels. Root and stem biomass did not differ significantly among treatments. A significant interaction of O3 and genotype was detected, suggesting that the response of loblolly pine to O3 is influenced by genotype.  相似文献   

18.
Six phosphorus (P) fertilizers recycled from sewage sludge [Struvite SSL, Struvite AirPrex®, P‐RoC®, Mephrec®, Pyrolysis coal and Ash (Mg‐SSA)] were tested for their plant availability in potted soil of pH 7.2 under greenhouse conditions. The crop sequence simulated a rotation of red clover (Trifolium pratense L.), maize (Zea maize L.), and ryegrass (Lolium perenne L.). Other P fertilizer treatments included: Phosphate Rock (PR), Calcium dihydrogen phosphate [Ca(H2PO4)2], and an unfertilized control. Additionally, soil was regularly inoculated with two strains of plant growth‐promoting rhizobacteria (PGPR; Pseudomonas sp. Proradix, and Bacillus amyloliquefaciens) to test their ability to increase P availability to plants. Sequential P fractionation was conducted to link the amount of readily available P in fertilizers to plant P acquisition. Shoot P content and dry matter of maize decreased in the following order: Struvite SSL ≥ Ca(H2PO4)2 > P‐RoC® ≥ Struvite AirPrex® ≥ Mephrec® > Pyrolysis coal ≥ Mg‐SSA ≥ PR ≥ unfertilized. Rhizobacteria did not affect shoot biomass or P content. The results show that red clover might have mobilized substantial amounts of P. Sequential P fractionation was not suitable to predict the efficacy of the fertilizers. Generally, the sewage sludge‐based fertilizers tested proved to be suitable alternative P sources relevant to organic farming systems. However, the efficacy of recycled fertilizers is strongly dependent on their specific production conditions.  相似文献   

19.
 When comparing nitrite (NO2 ) and nitrate (NO3 ) toxicity to maize (Zea mays L.) growth, it is important to know the fate of applied nitrogen (N). A pot experiment, using potassium nitrite (K15NO2) and potassium nitrate (K15NO3) was conducted to determine the fate of N (0, 75, 150, and 225 mg N kg–1 soil) applied to a sandy loam soil collected from Gistel (Belgium). The total dry weight of the plants treated with NO2 was lower than that of the plants treated with NO3 at 15 and 26 days after N application (harvest 1 and harvest 2, respectively). Shoot and root biomass reduction started at a relatively low NO2 application rate (75 mg NO2 -N kg–1). Biomass reduction increased, at both harvests with increasing amounts of NO2 to more than 55% at the highest application rate (225 mg NO3 -N kg–1). In the NO3 treatment, a reduction of 16% in total plant dry biomass was recorded only at the highest application rate (225 mg NO2 -N kg–1), at both harvest times. The 15N plant uptake (shoots plus roots) at harvest 1 decreased with increasing N application rates of both N forms (KNO2 and KNO3). Twenty-six days after the N application, the total 15N taken up by the plant increased in all treatments in comparison with 15 days after the N application. However, only at higher rates of N application (150 and 225 mg N kg–1) was the 15N uptake by the NO2 fed plants significantly lower than by the NO3 fed plants. The percentage of immobilized N from the applied N was low (0–17.7%) at both harvests, irrespective of the N source. However, with relatively low N application rates (75 mg N kg–1), the immobilized N in the soil decreased with time. This may be due to the re-mineralization of the applied N. The percentage of inorganic 15N in the soil in NO2 treatments was slightly lower than in equivalent doses of NO3 . This might be due to higher losses of N as N-oxides. Unaccounted for N from the applied N ranged from 21% to 52% for the NO2 treatments and from 3% to 38% for the NO3 treatments. Received: 17 July 1997  相似文献   

20.
Abstract

A time-course study examining the current photosynthate allocation of soybean (Glycine max [L.] Merr.) cv. Williams was conducted in relation to nodule initiation. Whole shoots were exposed to 14CO2 for 120 min and the distribution of radioactivity in each organ was determined. During the early stages of nodule formation (i.e. 4, 6 and 8 days after inoculation) the 14C distribution to the inoculated roots did not increase when compared with uninoculated control roots. In addition, the 14C respired by underground parts was similar in both the inoculated and the control roots. Eight days after inoculation, the accumulation of starch and sugar was similar in both inoculated and uninoculated plants. These results indicate that photosynthate allocation for nodule initiation does not increase markedly during the early stages of nodule formation. After the emergence of the nodules, photosynthate allocation to the inoculated roots gradually increased. In addition, the consumption of current photosynthate by the respiration of underground parts increased at day 12 after inoculation, but did not increase at day 8 after inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号