首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male and female genetic linkage map of hops, Humulus lupulus   总被引:2,自引:0,他引:2  
A male and female linkage map of hop has been constructed using 224 DNA polymorphisms (106 amplified fragment length polymorphisms (AFLPs), three random amplified polymorphic DNAs (RAPDs), one RAPD‐sequence‐tagged‐site (STS), and three microsatellite (STSs) segregating in an F1 population of the English cultivar ‘Wye Target’‐the German male breeding line ‘85/54/15’. Linkage between these loci was estimated using JOINMAP Version 2.0. The final map for the female parent consisted of 110 loci assigned to eight linkage groups covering a distance of 346.7 cM. For the male map, 57 loci could be mapped on nine linkage groups spanning over 227.4 cM. One of these male linkage groups (Gr09‐M) presumably represents the Y chromosome, since all markers assigned (10 AFLPs, three RAPDs and one STS) were closely linked to the male sex (M). Because of their sex‐specific segregation, 10 doubly heterozygous AFLPs spanning a distance of 18.7 cM could be identified as markers describing the X chromosome, which is part of the male and female map. Three STMSs, which had already proved useful in hop genotyping, could be integrated as codominant locus‐specific markers and thus allowed to produce reliable allelic bridges between the female and male counterparts.  相似文献   

2.
Z. Lin    D. He    X. Zhang    Y. Nie    X. Guo    C. Feng  J. McD. STEWART 《Plant Breeding》2005,124(2):180-187
Tetraploid cotton is one of the most extensively cultivated species. Two tetraploid species, Gossypium hirsutum L. and G. barbadense L., dominate the world's cotton production. To better understand the genetic basis of cotton fibre traits for the improvement of fibre quality, a genetic linkage map of tetraploid cotton was constructed using sequence‐related amplified polymorphisms (SRAPs), simple sequence repeats (SSRs) and random amplified polymorphic DNAs (RAPDs). A total of 238 SRAP primer combinations, 368 SSR primer pairs and 600 RAPD primers were used to screen polymorphisms between G. hirsutum cv. Handan208 and G. barbadense cv. Pima90 which revealed 749 polymorphic loci in total (205 SSRs, 107 RAPDs and 437 SRAPs). Sixty‐nine F2 progeny from the interspecific cross of ‘Handan208’בPima90’ were genotyped with the 749 polymorphic markers. A total of 566 loci were assembled into 41 linkage groups with at least three loci in each group. Twenty‐eight linkage groups were assigned to corresponding chromosomes by SSR markers with known chromosome locations. The map covered 5141.8 cM with a mean interlocus space of 9.08 cM. A × test for significance of deviations from the expected ratio (1: 2: 1 or 3: 1) identified 135 loci (18.0%) with skewed segregation, most of which had an excess of maternal parental alleles. In total, 13 QTL associated with fibre traits were detected, among which two QTL were for fibre strength, four for fibre length and seven for micronaire value. These QTL were on nine linkage groups explaining 16.18‐28.92% of the trait variation. Six QTL were located in the A subgenome, six QTL in the D subgenome and one QTL in an unassigned linkage group. There were three QTL for micronaire value clustered on LG1, which would be very useful for improving this trait by molecular marker‐assisted selection.  相似文献   

3.
Clubroot is a soilborne disease that severely infects cruciferous species. Pak choi (Brassica rapa subsp. chinensis) is an economically important cruciferous crop cultivated throughout the world. However, no clubroot‐resistant germplasms have been identified in pak choi to date. To improve disease resistance, we used marker‐assisted selection (MAS) to introgress the clubroot resistance (CR) trait from the ‘CCR13685’ Chinese cabbage (Brapa subsp. pekinensis) inbred line into an elite pak choi inbred line, ‘GHQ11021’. Genetic analysis of F2 and BC1 progeny showed that CR of ‘CCR13685’ was controlled by a single dominant gene. We designed nine candidate sequence‐characterized amplified region markers, K‐1 to K‐9, based on two molecular markers linked to the CR gene. We found that K‐3 co‐segregated with CR and an inoculation test confirmed that K‐3 could be used for MAS. Two introgression lines, BC3‐1‐4 and BC3‐2‐18, were developed using K‐3 for foreground selection. These lines displayed the same phenotypic properties as ‘GHQ11021’, but were highly resistant to clubroot, indicating that the CR gene of ‘CCR13685’ had been successfully introduced into pak choi.  相似文献   

4.
White jute (Corchorus capsularis) and dark jute (Corchorus olitorius) are two important cultivated crops that are used for natural fibre production. Some genetic maps have been developed for dark jute, but the genetic map information for white jute (C. capsularis) is limited. In this study, a linkage map comprising 44 sequence‐related amplified polymorphisms (SRAPs), 57 intersimple sequence repeats (ISSRs) and 18 randomly amplified polymorphic DNA (RAPD) covering 2185.7 cM with a mean density of 18.7 cM per locus was constructed in an F2 population consisting of 185 individuals derived from a cross between two diverse genotypes of ‘Xinxuan No. 1’ and ‘Qiongyueqing’ in white jute. These markers were evenly distributed in the linkage groups without any clustering. This genetic linkage map construction will facilitate the mapping of agronomic traits and marker‐assisted selection breeding in white jute.  相似文献   

5.
Random amplified polymorphic DNA (RAPD) markers were used to evaluate genetic stability of regenerants of soybean plants obtained through somatic embryogenesis using 180 μM 2,4‐dichloro‐phenoxy acetic acid. Twenty primers were used to screen 44 regenerants from the cultivar ‘Spring’ and 28 from the cultivar ‘CAC‐1’. Three primers were polymorphic for two of the ‘Spring’‐derived regenerants, with a somaclonal frequency of 4.5%. Four primers were polymorphic for the ‘CAC’‐l‐derived regenerant, with a somaclonal frequency of 3.57%. The results indicate the usefulness of RAPD markers to detect genetic instability in soybean primary regenerant plants derived from somatic embryogenesis, and as a certification tool for monitoring genetic stability during the regeneration process.  相似文献   

6.
B. E. Ubi    M. Fujimori    Y. Mano  T. Komatsu 《Plant Breeding》2004,123(3):247-253
The linkage relationships between 164 polymorphic amplified fragment length polymorphism (AFLP) and 25 restriction fragment length polymorphism (RFLP) fragments assayed in a pseudo‐testcross population generated from the mating of single genotypes from two divergent cultivars were used to construct female, ‘Katambora’ (‘Kat’) and male, ‘Tochirakukei’ (‘Toch’) parental genetic maps for rhodesgrass. The ‘Kat’ genetic map consists of 84 marker loci (72 AFLP and 12 RFLP markers) distributed on 14 linkage groups and spans a total length of 488.3 cM, with an average distance of 7.8 cM between adjacent markers. The ‘Toch’ genetic map consists of 61 marker loci (52 AFLP and nine RFLP) mapped on 12 linkage groups spanning a total length of 443.3 cM, with an average spacing of 9.0 cM between adjacent markers. About 23% of the markers remained unassigned. The level of segregation distortion observed in this cross was 11.1%. In both maps, linked duplicated RFLP loci were found. These linkage maps will serve as a starting point for linkage studies in rhodesgrass with potential application for marker‐assisted selection in breeding programmes.  相似文献   

7.
Three accessions, corresponding to different ‘foundation’ farms, of each of the alfalfa (lucerne) Italian ecotypes ‘Vogherese’ and ‘Marem‐mano’, and two varieties were studied in order to evaluate: (1) the among‐ and within‐ecotype variation; and (2) the possibility of distinguishing the populations by means of bio‐agronomic characters and molecular markers (amplified fragment length polymorphisms, AFLPs). The two ecotypes could be distinguished by the differences in persistency after 15 cuttings in 3 years cultivation and by the seasonal distribution of the dry matter yield. Within‐ecotype variation was always of minor importance as compared with the among‐ecotype differences. The AFLP analyses generated 20 polymorphic fragments in ‘bulk’ samples: none was able to distinguish the two ecotypes, while variety‐specific fragments were found. The same analysis on an individual plant basis (485 polymorphic fragments) confirmed the absence of differences among ecotypes, while 10% of the total variance was attributable to variation among accessions within ecotype. The results of the analyses using agronomic traits and molecular markers are discussed in relation to the possibility of ecotype identification.  相似文献   

8.
Development of effective molecular markers linked to Pm21 deriving from Haynaldia villosa is critical for wheat breeding of powdery mildew resistance. In this study, we designed 12 pairs of conserved‐intron scanning primers (CISPs), using intron‐containing conserved genes located on the short arm of Brachypodium distachyon chromosome 3 (3BdS) aligned with cDNA or expressed sequence tags (ESTs) of Triticeae crops. Of 12 CISP primer pairs, 11 amplified DNA both in H. villosa and in wheat, and four displayed H. villosa chromosome 6VS‐specific polymorphisms. Six non‐polymorphic DNAs were further sequenced for designing internal primers, and five additional 6VS‐specific markers were obtained. Of the total nine 6VS‐specific co‐dominant markers, six could effectively trace Pm21 in F2 population derived from the hybrid between the T6AL.6VS line and ‘Yangmai 158’. This study demonstrated that Brachypodium genomic information could be powerfully utilized to develop molecular markers in H. villosa or other Triticeae species.  相似文献   

9.
Random amplified polymorphic DNAs and atp9‐related sequences were amplified in cytoplasmic male sterile (CMS) and maintainer lines drawn from a backcross programme to represent all five known cytoplasm types in chives. From these PCR amplifications, markers associated with CMS‐inducing cytoplasm types, (S1) and (S2), and for two of the three known normal cytoplasm types, (N2) and (N3), were developed. These newly developed PCR markers were used to determine the cytoplasm types in 126 plants representing 12 German chive varieties. The dependability of these PCR markers was confirmed by analysis with previously described and marker‐trait linked restriction fragment length polymorphisms. Two to five cytoplasm types were found in each of the 12 German chive varieties investigated. While the (S1) cytoplasm occurred, on average, at a frequency of 5% and the (S2) cytoplasm at 12%, the three normal cytoplasms (N1), (N2) and (N3) were present at 30, 29 and 24%, respectively. Thus, the prospects of finding maintainers for both CMS systems are relatively high in this population, if the frequency of non‐restoring alleles for the nuclear genes involved is also high enough.  相似文献   

10.
S. Tavoletti    L. Iommarini 《Plant Breeding》2007,126(6):607-611
Levels of genetic similarity characterizing 20 grasspea (Lathyrus sativus L.) populations collected in central Italy (17 populations in the Marche region and three populations in the Abruzzo region) were analysed with amplified fragment length polymorphism (AFLP) molecular markers. Two main clusters were found: one included large‐seeded populations from farms that were not market‐oriented (named Household populations) and the second, small‐seeded populations, cultivated in market‐oriented farms (named Commercial populations). Relationships among populations collected in different regions were found, although one population of the Abruzzo region was placed between the two main clusters, suggesting a possible further genetic differentiation within this grasspea germplasm collection. Principal component analysis based on AFLP marker frequency was effective in identifying polymorphic markers showing high discriminating ability between clusters H and C. In particular, seven markers showing high positive and three markers with low negative PC1 scores showed an almost cluster‐specific distribution. These results will be useful for enhancing Italian grasspea germplasm use in plant‐breeding programmes and for extending grasspea cultivation within the sustainable agricultural systems of central Italy.  相似文献   

11.
M. Gowda    S. Roy-Barman    B. B. Chattoo 《Plant Breeding》2006,125(6):596-599
Blast, caused by Magnaporthe grisea, is the most devastating disease of rice worldwide. In this study, the main objective was to identify and map a new gene for blast resistance, in an indica rice cultivar ‘Tadukan’ against blast fungal isolate B157, using molecular tools. F2 segregating population was derived from ‘CO39’ (susceptible) and ‘Tadukan’ (resistant), and molecular mapping of the blast resistance gene was carried out using simple sequence length polymorphism (SSLP) and amplified fragment length polymorphism (AFLP) methods. Two SSLP markers, RM206 and RM21 and three AFLP markers (AF1: E‐aca/M‐ctt; AF2: E‐aca/M‐cat and AF3: E‐acc/M‐cac2) were identified to be linked to the resistance gene. The co‐segregation analysis using SSLP markers implied that the blast resistance gene designated Pi38 resides on rice chromosome 11.  相似文献   

12.
We produced 15 dissection lines of common wheat carrying segments of chromosome 1R of wild rye (Secale montanum) (1Rm) by the gametocidal system. Using the 1Rm dissection lines and previously established 24 dissection lines of chromosome 1R from cultivated rye (Secale cereale cv. ‘Imperial’) (1Ri), we conducted cytological mapping of 97 markers that were amplified in the 1Ri addition line. Sixty‐eight of the 97 markers were amplified in the 1Rm addition line. To reveal what structural differentiation occurred in chromosome 1R during domestication, we compared the cytological map of chromosome 1Ri with that of chromosome 1Rm, and also with the previously published cytological map of chromosome 1R from wheat cultivar ‘Burgas 2’ (1RB). There was one discrepancy in marker order in the satellite region between chromosomes 1Ri and 1RB, while there were four discrepancies in marker order between chromosomes 1Ri and 1Rm. These results suggested that during the domestication of rye, some intrachromosomal rearrangements had occurred in chromosome 1R, although this chromosome is regarded as the most stable chromosome in the rye genome.  相似文献   

13.
Pigeonpea is an important tropical grain legume widely cultivated in South and South‐East Asia for versatile end usage as food, feed, fodder and fuel. Recent publication of draft genome sequence of pigeonpea (‘Arhar’) has allowed mining of large numbers of genomic simple sequence repeat (SSR) markers most of which are either not validated or show very little polymorphism in simple agarose gel–based assays. Here, we describe a special category of 370 validated highly variable ‘Arhar’ genomic SSR (HASSR) markers, which provide much higher level of polymorphism than a random set of SSR markers. These markers were validated for consistent amplification in a set of eight pigeonpea varieties and 152 of these (41%) showed allelic polymorphism on agarose gel electrophoresis. Twenty‐four highest polymorphic HASSR markers were used on a larger set of forty pigeonpea varieties and eight wild Cajanus species for the analysis of genetic diversity and phylogenetic relationship. Genomic HASSR markers described here are highly suitable for genetic diversity and phylogenic studies in pigeonpea.  相似文献   

14.
Amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeat, SSR) techniques were used to map the _RGSpeking gene, which is resistant to most isolates of Cercospora sojina in the soya bean cultivar ‘Peking’. The mapping was conducted using a defined F2 population derived from the cross of ‘Peking’(resistant) בLee’(susceptible). Of 64 EcoRI and MseI primer combinations, 30 produced polymorphisms between the two parents. The F2 population, consisting of 116 individuals, was screened with the 30 AFLP primer pairs and three mapped SSR markers to detect markers possibly linked to RcsPeking. One AFLP marker amplified by primer pair E‐AAC/M‐CTA and one SSR marker Satt244 were identified to be linked to ResPeking. The gene was located within a 2.1‐cM interval between markers AACCTA178 and Satt244, 1.1 cM from Satt244 and 1.0 cM from AACCTA178. Since the SSR markers Satt244 and Satt431 have been mapped to molecular linkage group (LG) J of soya bean, the ResPeking resistance gene was putatively located on the LG J. This will provide soya bean breeders an opportunity to use these markers for marker‐assisted selection for frogeye leaf spot resistance in soya bean.  相似文献   

15.
Eucalyptus spp. are widely used in exotic plantations. Since many of these trees are derived from vegetative propagation, the routine identification of clones has become increasingly important. The most widely used molecular based method for fingerprinting these clones is by random amplified polymorphic DNAs (RAPDs). Although this technique is useful, its results are not very repeatable, especially between laboratories. The aim of this study was to develop microsatellite markers that are highly repeatable, and to investigate their value in Eucalyptus fingerprinting. Typically, this process involves the expensive procedure of constructing an enriched genomic library. However, we used an intersimple sequence repeat (ISSR) polymerase chain reaction (PCR)‐based enrichment technique for microsatellite‐rich regions. With this relatively inexpensive method, microsatellite‐rich regions were amplified directly from genomic DNA, after which PCR products were cloned and sequenced. From these microsatellite‐rich sequences, primer sets were constructed to amplify mono‐, di‐, tri‐, hexa‐and nona‐nucleotide repeats. These markers were all inherited in a Mendelian fashion in the progeny of a test cross between two Eucalyptus grandis trees. The primer sets developed were also able to amplify the corresponding microsatellite loci from five different Eucalyptus spp., namely E. grandis, E. nitens, E. globulus, E. camaldulensis and E. urophylla.  相似文献   

16.
N. Saka    T. Tsuji    T. Toyama    M. Yano    T. Izawa    T. Sasaki 《Plant Breeding》2006,125(2):140-143
The chromosomal location of the resistance gene for green rice leafhopper (GRLH), an injurious insect for rice, has been determined and RFLP markers closely linked to this gene have been identified. The susceptible japonica rice variety ‘Nipponbare’ was crossed with a resistant japonica rice line ‘Aichi42’, in which green rice leaf hopper resistance had been introduced from an indica variety ‘Rantaj‐emas2’, and the 100 F2 plants obtained were used for linkage analysis. The green rice leafhopper resistance gene, Grh3(t), was mapped between RFLP markers C288B and C133A on chromosome 6 and co‐segregated with C81. Of the RFLP markers tightly linked to Grh3(t), C81 was converted to a SCAR marker and C133A to a cleaved amplified polymorphic sequence marker that could distinguish the heterozygous genotype to establish an effective marker‐aided selection system for the GRLH resistance gene.  相似文献   

17.
Soybean (Glycine max [L.] Merr.) is cultivated primarily for its protein and oil in the seed. In addition, soybean seeds contain nutraceutical compounds such as tocopherols (vitamin E), which are powerful antioxidants with health benefits. The objective of this study was to identify molecular markers linked to quantitative trait loci (QTL) that affect accumulation of soybean seed tocopherols. A recombinant inbred line (RIL) population derived from the cross ‘OAC Bayfield’ × ‘OAC Shire’ was grown in three locations over 2 years. A total of 151 SSR markers were polymorphic of which a one‐way analysis of variance identified 42 markers whereas composite interval mapping identified 26 markers linked to tocopherol QTL across 17 chromosomes. Individual QTL explained from 7% to 42% of the total phenotypic variation. Significant two‐locus epistatic interactions were identified for a total of 122 combinations in 2009 and 152 in 2010. The multiple‐locus models explained 18.4–72.2% of the total phenotypic variation. The reported QTL may be used in marker‐assisted selection (MAS) to develop high tocopherol soybean cultivars.  相似文献   

18.
Fusarium head blight (FHB) is a devastating disease that reduces the yield, quality and economic value of wheat. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3:5 lines, derived from a ‘Wangshuibai’ (resistant)/‘Seri82’(susceptible) cross, were spray inoculated during 2001 and 2002, respectively. Artificial inoculation was carried out under field conditions. Of 420 markers, 258 amplified fragment length polymorphism and 39 simple sequence repeat (SSR) markers were mapped and yielded 44 linkage groups covering a total genetic distance of 2554 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve. The analyses revealed a QTL in the map interval Xgwm533‐Xs18/m12 on chromosome 3BS accounting for up to 17% of the phenotypic variation. In addition, a QTL was detected in the map interval Xgwm539‐Xs15/m24 on chromosome 2DL explaining up to 11% of the phenotypic variation. The QTL alleles originated from ‘Wangshuibai’ and were tagged with SSR markers. Using these SSR markers would facilitate marker‐assisted selection to improve FHB resistance in wheat.  相似文献   

19.
Quantitative trait loci (QTLs) for black‐point resistance have been mapped in two doubled haploid‐derived wheat populations, each thought to contain unrelated sources of resistance. In the ‘Sunco’בTasman’‐derived population, QTLs were located on chromosomes 1D, 2B, 3D, 4A, 5A and 7A with each QTL explaining between 4 and 15% of the observed phenotypic variance. QTLs were contributed by both parents. In the ‘Cascades’בAUS1408’‐derived population, QTLs from ‘Cascades’ were identified on chromosomes 2A, 2D and 7A with each QTL explaining between 12 and 18% of the phenotypic variance. Several markers were identified which are promising candidates for use in marker‐assisted selection programmes. If one, two or three of these markers would have been used to select for black‐point resistance in the ‘Sunco’בTasman’ population, then with one marker 34 of 39 resistant lines, with two markers 23 of 32 and with three markers 17 of 32 would have been selected. At the same time, 67 false positives obtained by selecting with one marker are reduced to 24 by selection with two markers and to 11 by selection with three markers. Similarly, if one, two or three markers are used to select for black‐point resistance in the ‘Cascades’בAUS1408’ populations, then with one marker 25 of 31 resistant lines, with two markers 26 of 31 and with three markers 10 of 31 are selected. At the same time, 14 false positives are obtained with one marker are reduced to six by selection with two markers and no false positives are selected using three markers.  相似文献   

20.
The witches’ broom disease caused by the fungus Crinipellis perniciosa is the main limiting factor for cocoa production in South America and the Caribbean. In Brazil, this disease affects almost all cocoa‐growing regions, causing serious economic, social and ecological damage. The aim of this study was to map genomic regions associated with resistance to C. perniciosa using an F2 population derived from a cross between ‘Scavina‐6’(resistant) and ‘ICS‐1’(susceptible). The phenotypic index was determined as the average number of vegetative witches’ brooms per canopy area of each plant, the witches’ brooms were counted and eliminated during six field evaluations between May 1998 and August 1999. A total of 124 random amplified polymorphic DNA (RAPD) and 69 amplified fragment length polymorphism (AFLP) markers were mapped along 25 linkage groups covering 1713 cM of cocoa genome. After employing single factor and composite interval mapping analyses, a major quantitative trait loci (QTL) flanked by the marker AV14.940 was identified in the linkage group 11, explaining almost 35% of the resistance to witches’ broom. The present result suggests that this QTL acts as a major dominant component of resistance to this pathogen, with great potential for use in marker‐assisted selection procedures in cocoa breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号