首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为了满足温室农作物在不同生长阶段对水资源的需求,研制了一套基于ZigBee技术的温室智能灌溉执行子系统。与传统的灌溉方式相比,该系统实现了灌溉的无线化和智能化,节省了布线的成本。该系统可以根据温室内农作物的环境参数,实现智能化、精确化的灌溉。  相似文献   

2.
针对温室无线监测系统中电池供电节点生存周期短导致传感网失效等缺陷,提出了应用于温室监测的低功耗无线监测系统设计方案。通过对传感器节点各部分进行能耗分析,结合温室应用的特点,对节点软硬件系统进行低功耗设计。硬件上对元器件选型进行综合考虑,并对外围电路进行低功耗设计;软件上采用减少采集工作量的智能数据采集机制、软件工程优化设计以及软硬件结合的节能机制。实验结果表明:与传统设计相比,低功耗节点的工作量减少了89%,工作电流降低了57%,休眠电流降低了97%。该低功耗温室监测系统设计方案可以有效延长传感网生存时间。  相似文献   

3.
根据新疆南疆地区智能温室大棚的特点,设计基于ZigBee无线通信技术的环境监测系统,可实时获取环境因子数据并进行相应调整。系统仿真结果表明:系统可实现环境因子实时监测和无线通信传输,提高温室大棚环境监测效率。  相似文献   

4.
利用西藏地区太阳能丰富的优势,采用太阳能资源为主要供能方式,为智能温室系统构建基于Zig Bee协议的无线传感网络和nRF2401无线传感器的双层无线通信网络,以减少西藏地区有线布线成本和解决温室群控制问题。同时,在传统智能温室中结合线阵CCD技术,为智能温室系统提供实时、直观的作物生长状况数据,有效提高对温室内环境因素的监控效率及温室智能自动化控制程度,以满足现代化高效节约型农业的发展形势需求,以及西藏地区特定的地理环境对于农业自动化的需求。  相似文献   

5.
王淼 《农业工程》2018,8(11):34-36
现代化信息技术的出现和应用给传统的农业生产领域带来了广阔的发展空间。该文对基于ZigBee的智能农业物联网系统研发应用课题进行了针对性研究和探索,以期为推动智能农业物联网系统的广泛应用相关方面的课题研究和实践提供一些参考或借鉴。   相似文献   

6.
随着我国温室工程的发展,在温室设计中应用新的设计思想和先进的设计理念显得尤为重要.为此,介绍了模块化设计思想,分析了应用模块化原理进行温室设计的实用价值,提出了基于模块化的现代温室设计方法.对温室结构的组成元素进行了分析,给出了温室结构的功能模块划分方法,并结合实例说明了模块化设计理念在温室设计中的应用.  相似文献   

7.
针对传统的照明系统功耗高、组网不灵活等问题,提出了将ZigBee协议应用到智能照明系统中,以此为理论依据设计出一套功能较为完善的智能照明系统,并且对该系统设计的性能和效果进行了分析与测试。  相似文献   

8.
为解决温室灰色预测模糊PID控制算法控制适应性差的问题,在灰色预测模糊PID控制算法的基础上,加入依据室外温度变化的模式控制算法,构建了由温度采集节点、中心节点、温度控制节点与PC机组成的ZigBee无线网络温度控制系统。在IAR Embedded Workbench IED和Visual C++6.0环境下,开发了ZigBee节点程序和上位机算法程序。对灰色预测模糊PID算法和改进控制算法进行了对比控制试验,并依据Harris理论对两种算法的控制精度进行了评价。试验结果表明:改进控制算法比灰色预测模糊PID算法控制精度提高了0.2℃。  相似文献   

9.
针对国内现有温室建设情况,设计一种新型的基于ZigBee无线传感器网络的温室监测系统。该系统在TI公司CC2530芯片和免费ZigBee协议基础上,通过对系统的软硬件设计,实现了温室内温度、湿度以及农作物叶片温湿度的实时监测,为农作物疾病预防提供有效保障。测试结果表明,系统运行可靠、采集灵敏,满足系统设计和实际需求。  相似文献   

10.
现有玻璃温室采用独立管理,人力投入大,难以适应规模化设施基地集中控制需求。为此,设计了基于ZigBee的玻璃温室远程控制系统,由无线控制节点、控制分发节点和基地管理平台3部分组成。无线控制节点以CC2530为核心,完成温室内多路设备的按需控制,控制分发节点以ZigBee协议和GPRS协议实现无线控制节点和基地管理平台之间的信息交互,从而完成玻璃温室的远程控制。试验结果表明,该系统运行稳定,可实现温室环境远程控制。  相似文献   

11.
针对我国水资源紧缺及温室大棚节水灌溉的迫切需求,研究设计了一套基于ZigBee的温室自动灌溉系统。该系统由太阳能供电,可以现场为用户提供直观的系统管理平台来完成节点管理和数据处理功能,开发了服务器端温室信息管理系统软件,实现了Web方式下的信息实时监控和远程监控报警,并且有效简化了现场设备安装与拆移等过程,使之更适合不便直接连线的一般监控场合应用。初步试验表明:把土壤湿度提高30%所需的时间在50~60 min之内,系统的控制误差在4%以内;系统运行稳定,操作简单,准确性和快速性等指标能满足农业技术要求,具有一定的推广应用价值。系统的研制和使用可为建立大型远程智能灌溉系统提供经验和技术支持。  相似文献   

12.
ZigBee技术在温室监控系统中的应用   总被引:2,自引:0,他引:2  
分析了目前温室环境监控系统存在的问题和ZigBee的技术特征,介绍了基于ZigBee技术的温室监控系统的结构,阐述了网络节点的硬件设计,并讨论了应用中存在的问题.温室监控系统实现了对温室环境参数的监控,提高了可靠性、抗干扰性与灵活性.  相似文献   

13.
介绍了一种基于CAN总线技术的温室环境单片机测控系统的设计全过程;对其中的软件和硬件设计做了具体的分析,给出了CAN总线智能节点的硬件电路图,选择了合适的PC-CAN接口卡;软件设计使用了keil C51和vi sual C 等,并给出了详细的功能说明和流程图.该系统与传统的基于RS-485总线的温室测控系统相比具有通信质量高、系统性能稳定和价格适中等优点.  相似文献   

14.
张静 《农机化研究》2022,44(4):213-217
为进一步改善果蔬大棚的种植效率,以ZigBee通信传输技术为切入点,针对大棚土壤墒情管理系统展开研究。在果蔬大棚运行管理机理的基础上,以准确获取并有效辨识出果蔬大棚不同区块的土壤墒情状况为目标,建立ZigBee数据通信模型,进行数据采集处理与精准传输过程分析以及土壤墒情管理系统体系化设计,搭建平台进行土壤墒情管理系统作业状况监测。试验结果表明:基于ZigBee技术的土壤监测试验平台,土壤含水率监测值与实际仪器测得值之间的相对误差控制在5%以内,一致性较好;ZigBee技术应用后,系统的监测数据准确度可提高8.50%,土壤墒情的监测效率整体提高8.10%,满足土壤墒情监测要求,有利于农业大棚种植培养向精准化、智能化方向深度推进。  相似文献   

15.
针对东北地区传统日光温室环境监控上所存在的设备安装困难、测量精度差、工作效率低等问题,采用ZigBee无线传输技术开发了一套智能日光温室监控系统。该系统可以对空气温湿度、土壤含水率、二氧化碳浓度以及光照强度进行监测,并通过控制模块实现对环境参数的合理调控。利用本系统,工作人员可以在现场或在远处工作室内实时监测日光温室内的环境状况,设置参数的上下限,控制各个设备的开关状态。试验结果表明,监控系统性能稳定,能够有效监控日光温室内的环境情况。  相似文献   

16.
程绍明  姜雄晖 《农机化研究》2005,(4):152-153,156
间隔互插式连栋塑料温室的天沟,其功能除了排除雨水、雪水外.还作为副拱的支座,起到连接的作用.对温室的稳定性、承载等方面具有很重要的意义。为此.针对间隔互插式(简易型)塑料温室所采用厚度为1.1Bm的镀锌白铁板制作的天沟(有沟槽和没有沟槽两种)进行比较,结果表明,有沟槽的天沟强度可以增加50%以上。  相似文献   

17.
基于PLC的温室控制系统的研究   总被引:3,自引:0,他引:3  
介绍了温室控制系统中的温度控制子系统、灌溉控制子系统的功能实现及软件设计.利用计算机的串行传输将控制值传入CPM2AE-60CDR-A PLC控制系统工作;同时,利用CPM2AE-60CDR-A PLC的扩展模块CPM1A-MAD02-CH将传感器的输出信号进行数模转换,PLC实时处理数据并发送指令调控温室内的温度和光照.该系统中各个子系统相互独立,互不影响.其功能块集成度高,性能可靠,工作稳定.实践证明,该系统能够实现温室的自动化控制,提高了温室管理的水平,降低了温室的成本,充分发挥了温室农业的高效性.  相似文献   

18.
对温室大棚电子设备供电系统的要求进行了分析,得出太阳能电池供电方式的优势,进而提出了太阳能电池供电系统的设计方案,最后对太阳能供电系统进行了具体设计与实验,并给出了实验结果。  相似文献   

19.
基于ZigBee技术的无线智能灌溉系统的研制   总被引:6,自引:2,他引:4  
近年来,如何节水省工成为灌溉技术的研究重点之一。针对丽水黑木耳的种植,研究设计了一套基于ZigBee技术的无线智能灌溉系统。相对于传统的灌溉方式,该系统实现了灌溉的智能化和无线化,通过在灌溉现场的长时间运行,充分证明了系统的可行性和可靠性。为此,主要介绍了ZigBee网络中的传感器节点和控制器节点的硬件设计以及整个智能灌溉系统的软件设计。作为无线传感器网络技术在智能灌溉领域的探索性研究,可为以后建立大型的远程智能灌溉系统奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号