首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetics and systemic bioavailability of amoxycillin were investigated in clinically healthy, broiler chickens (n = 10 per group) after single intravenous (i.v.), intramuscular (i.m.), and oral administrations at a dose of 10 mg/kg body weight. The plasma concentrations of amoxycillin were determined using high-performance liquid chromatography (HPLC) and the data were subjected to compartmental and non-compartmental kinetic analyses. Following single i.v. injection, all plasma amoxycillin data were described by a two compartment-open model. The elimination half-lives of amoxycillin were 1.07 h, 1.09 h and 1.13 h after single i.v., i.m. and oral administration, respectively. The total body clearance (Cl(B)) of amoxycillin was 0.80 (L/h)/kg and the volume of distribution calculated as V(d(area)) was 1.12 L/kg, respectively after i.v. administration. Substantial differences in the resultant kinetic data were obtained by comparing the plasma concentration profiles after i.m. injection with that after oral administration. The systemic i.m. bioavailability of amoxycillin was higher (77.21%) than after oral (60.92%) dosing. In vitro, the mean plasma protein binding of amoxycillin amounted to 8.27%. Owing to high clearance of amoxycillin in birds in our study, a plasma level was maintained above 0.25 microg/ml for only 6 h after i.m. and oral routes of administration and consequently frequent dosing may be necessary daily.  相似文献   

2.
Pharmacokinetics and lung tissue concentrations of tulathromycin in swine   总被引:5,自引:0,他引:5  
The absolute bioavailability and lung tissue distribution of the triamilide antimicrobial, tulathromycin, were investigated in swine. Fifty-six pigs received 2.5 mg/kg of tulathromycin 10% formulation by either intramuscular (i.m.) or intravenous (i.v.) route in two studies: study A (10 pigs, i.m. and 10 pigs, i.v.) and study B (36 pigs, i.m.). After i.m. administration the mean maximum plasma concentration (C(max)) was 616 ng/mL, which was reached by 0.25 h postinjection (t(max)). The mean apparent elimination half-life (t(1/2)) in plasma was 75.6 h. After i.v. injection plasma clearance (Cl) was 181 mL/kg.h, the volume of distribution at steady-state (V(ss)) was 13.2 L/kg and the elimination t(1/2) was 67.5 h. The systemic bioavailability following i.m. administration was >87% and the ratio of lung drug concentration for i.m. vs. i.v. injection was > or =0.96. Following i.m. administration, a mean tulathromycin concentration of 2840 ng/g was detected in lung tissue at 12 h postdosing. The mean lung C(max) of 3470 ng/g was reached by 24 h postdose (t(max)). Mean lung drug concentrations after 6 and 10 days were 1700 and 1240 ng/g, respectively. The AUC(inf) was 61.4 times greater for the lung than for plasma. The apparent elimination t(1/2) for tulathromycin in the lung was 142 h (6 days). Following i.m. administration to pigs at 2.5 mg/kg body weight, tulathromycin was rapidly absorbed and highly bioavailable. The high distribution to lung and slow elimination following a single dose of tulathromycin, are desirable pharmacokinetic attributes for an antimicrobial drug indicated for the treatment of respiratory disease in swine.  相似文献   

3.
Tulathromycin is a macrolide antimicrobial agent proposed for therapeutic use in treatment of porcine and bovine respiratory disease. In this study, the absolute bioavailability of tulathromycin solution was investigated in pigs. Eight pigs, with body weight of 20.5 ± 1.6 kg, were given a single dose of tulathromycin at 2.5 mg/kg oral (p.o.) and intravenous (i.v.) in a crossover design. The plasma concentrations of tulathromycin and its metabolite were determined by LC-MS/MS method, and the pharmacokinetic parameters of tulathromycin were calculated by noncompartmental analysis. After p.o. administration, the maximum plasma concentration (C(max) ) was 0.20 ± 0.05 μg/mL at 3.75 ± 0.71 h. The terminal half-life (t(1/2λz) ) in plasma was 78.7 ± 6.75 h, and plasma clearance (Cl/F) was 1.14 ± 0.28 L/h/kg. After i.v. injection, plasma clearance (Cl) was 0.580 ± 0.170 L/h/kg, the volume of distribution (Vz) was 64.3 ± 21.2 L/kg, and the t(1/2λz) was 76.5 ± 13.4 h. In conclusion, an analytical method for the quantification of tulathromycin and its metabolite in plasma in swine was developed and validated. Following p.o. administration to pigs at 2.5 mg/kg b.w., tulathromycin was rapidly absorbed and the systemic bioavailability was 51.1 ± 10.2.  相似文献   

4.
The pharmacokinetics of intravenous (i.v.) and intramuscular (i.m.) single-dose administration of acyclovir were determined in Quaker parakeets. After i.v. injection at a dose of 20 mg/kg of acyclovir, elimination half-life was estimated at 0.65 h, volume of distribution at steady state was 627.65 ml/kg, and clearance was 11.22 ml/kg/min. The estimated pharmacokinetic values after i.m. injection at a dose of 40 mg/kg of acyclovir were an elimination half-life of 0.71 h and a bioavailability of 90.1%. The peak plasma acyclovir concentration occurred at 15 min when the drug was administered i.m. Plasma concentrations of acyclovir were undetectable 4-6 h after i.v. administration and 6-8 h after i.m. administration. Oral (capsules) and intravenous (sodium salt) formulations of acyclovir were given by gavage at 80 mg/kg. Peak concentrations with the sodium salt formulation were lower and developed more slowly than with the capsules. In studies designed to detect excessive drug accumulation or adverse side effects, acyclovir was administered i.m. at 40 mg/kg every 8 h for 7 days. Plasma concentrations were determined 15 min after (peak) and just prior to drug administration (trough). In another study acyclovir was gavaged at a dose of 80 mg/kg every 8 h for 4 days. Acyclovir plasma concentrations were determined just prior to and 2 h after drug administration. In both experiments, the birds maintained normal appetite and weight and did not exhibit excessive drug accumulation. Acyclovir plasma concentrations ranging from 2.07 +/- 1.09 micrograms/ml to 3.93 +/- 1.13 micrograms/ml were maintained for 4 days when acyclovir was administered in the feed and water (sole source of food and water).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Three ampicillin and three amoxycillin formulations (tablets and capsules, administered orally, and oily suspensions, injected intramuscularly (i.m.) and subcutaneously (s.c.] were studied in twenty adult homing pigeons (Columba livia). Bioavailability, pharmacokinetics and recovery were determined for each product and administration route. A standard dose of 50 mg/pigeon or 100 mg/kg was used in each study. The mean availability calculated for each of these preparations was 7% for ampicillin anhydrate tablets, 22% for amoxycillin trihydrate tablets, 17% for ampicillin trihydrate capsules, 67% for amoxycillin trihydrate capsules, 46% for ampicillin oily suspension i.m., 67% for amoxycillin oily suspension i.m. and 43% for amoxycillin oily suspension s.c. The blood concentration-time curves for the tablets were very scattered, which was far less the case for the capsules. The maximum blood concentration (Cmax) for amoxycillin was twice as high as for ampicillin. The Cmax resulting from the oily suspensions administered i.m. were low (4.35 +/- 1.05 and 5.04 +/- 1.36 mg/l, for ampicillin and amoxycillin, respectively). The Tmax for ampicillin was 10 h and for amoxycillin it was 0.9 h after administration. Both curves showed biphasic absorption, the initial peak representing an absorption and a distribution phase and the second part reflecting the 'depot-nature' of the drug. After the s.c. administration of the amoxycillin oily suspension the same pattern was found, but the Cmax, which was found at 2.13 +/- 1.03 h after administration, was low (2.81 +/- 0.68 mg/l).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The pharmacokinetic properties of amoxicillin and clavulanic acid were studied in healthy, fasted pigs after single intravenous (i.v.) and oral (p.o.) dosage of 20 mg/kg of amoxicillin and 5 mg/kg of clavulanic acid. The plasma concentrations of the drugs were determined by validated high-performance liquid chromatographic methods and the pharmacokinetic parameters were calculated by compartmental and noncompartmental analyses. After i.v. administration of the two drugs, plasma concentration-time curves were best described by a three-compartmental open model for amoxicillin and a two-compartmental open model for clavulanic acid. Amoxicillin (with a t(1/2 gamma) = 1.03 h and a clearance of 0.58 L/h.kg) and clavulanic acid (with a t(1/2 beta) of 0.74 h and a clearance of 0.41 L/h.kg) were both rapidly eliminated from plasma. Both drugs had apparently the same volume of distribution of 0.34 L/kg. After p.o. administration of the two drugs, a noncompartmental model was used. Elimination half-lives of amoxicillin and clavulanic acid were not significantly different, i.e. 0.73 and 0.67 h respectively. The mean maximal plasma concentrations of amoxicillin and clavulanic acid were 3.14 and 2.42 mg/L, and these were reached after 1.19 and 0.88 h respectively. The mean p.o. bioavailability was found to be 22.8% for amoxicillin and 44.7% for clavulanic acid.  相似文献   

7.
The pharmacokinetics and pharmacological efficacy of orally (p.o.) administered acepromazine were studied and compared with the intravenous (i.v.) route of administration in a cross-over study using six horses. The oral kinetics of acepromazine can be described by a two-compartment open model with first-order absorption. The drug was rapidly absorbed after p.o. administration with a half-life of 0.84 h, t max of 0.4 h and C max of 59 ng/ml. The elimination was slower after p.o. administration (half-life 6.04 h) than after i.v. injection (half-life 2.6 h). The bioavailability of the orally administered drug formulation was 55.1%. After p.o. administration of 0.5 mg/kg acepromazine, the parameters of the sedative effect were similar to those obtained after i.v. injection of 0.1 mg/kg. The effect of the drug on blood cell count and haemoglobin content was similar after both p.o. administration and injection, while the effects on the parameters of penile prolapse and on the mean arterial blood pressure were less pronounced after p.o. administration than after injection. After p.o. administration, no significant effects on haematoerit-level as well as on the heart and respiratory rates were observed, while these parameters were significantly affected after injection. It is concluded that the high initial plasma level of the drug after i.v. injection may play a role in producing adverse effects of acepromazine.  相似文献   

8.
Nonsteroidal anti‐inflammatory drugs (NSAIDs) are an integral component of equine analgesia, yet currently available NSAIDs are both limited in their analgesic efficacy and have adverse effects. The NSAID ketorolac tromethamine (KT) is widely used in humans as a potent morphine‐sparing analgesic drug but has not been fully evaluated in horses. The purpose of this study was to determine the pharmacokinetic profile of KT in horses after intravenous (i.v.), intramuscular (i.m.), and oral (p.o.) administration. Nine healthy adult horses received a single 0.5‐mg/kg dose of KT via each route of administration. Plasma was collected up to 48 h postadministration and analyzed for KT concentration using HPLC/MS/MS. Noncompartmental analysis of i.v. dosage indicated a mean plasma clearance of 8.4 (mL/min)/kg and an estimated mean volume of distribution at steady‐state of 0.77 L/kg. Noncompartmental analysis of i.v., i.m., and p.o. dosages indicated mean residence times of 2.0, 2.6, and 7.1 h, respectively. The drug was rapidly absorbed after i.m. and p.o. administration, and mean bioavailability was 71% and 57% for i.m. and p.o. administration, respectively. Adverse effects were not observed after i.v., i.m., and p.o. administration. More studies are needed to evaluate the analgesic and anti‐inflammatory properties of KT in horses.  相似文献   

9.
The pharmacokinetic properties of pentoxyfylline and its metabolites were determined in healthy chickens after single intravenous and oral dosage of 100 mg/kg pentoxyfylline. Plasma concentrations of pentoxyfylline and its metabolites were determined by a validated high-performance liquid chromatographic method. After intravenous (i.v.) and oral (p.o.) administration, the plasma concentration-time curves were best described by a one-compartment open model. The mean elimination half-life (t(1/2el)) of pentoxyfylline was 1.05 h, total body clearance 1.90 L/h x kg, volume of distribution 2.40 L/kg and the mean residence time was 2.73 h, after i.v. administration. After oral dosing, mean maximal plasma concentration of pentoxyfylline was 4.01 microg/mL and the interval from p.o. administration until maximum concentration was 1.15 h. The mean oral bioavailability was found to be 28.2%. Metabolites I, IV and V were present in chicken plasma after both i.v. and p.o. administration, with metabolite V being the most dominant.  相似文献   

10.
The pharmacokinetics and dosage regimen of norfloxacin-glycine acetate (NFLXGA) was investigated in pigs after a single intravenous (i.v.) or oral (p.o.) administration at a dosage of 7.2 mg/kg body weight. After both i.v. and p.o. administration, plasma drug concentrations were best fitted to an open two-compartment model with a rapid distribution phase. After i.v. administration of NFLXGA, the distribution (t1/2α) and elimination half-life (t1/2β) were 0.36 ± 0.07 h and 7.42 ± 3.55 h, respectively. The volume of distribution of NFLXGA at steady state (Vdss) was 4.66 ± 1.39 l/kg. After p.o. administration of NFLXGA, the maximal absorption concentration (Cmax) was 0.43 ± 0.06 µg/ml at 1.36 ± 0.39 h (Tmax). The mean absorption (t1/2ka) and elimination half-life (t1/2β) of NFLXGA were 0.78 ± 0.27 h and 7.13 ± 1.41 h, respectively. The mean systemic bioavailability (F) after p.o. administration was 31.10 ± 15.16%. We suggest that the optimal dosage calculated from the pharmacokinetic parameters is 5.01 mg/kg per day i.v. or 16.12 mg/kg per day p.o.  相似文献   

11.
Pharmacokinetics of difloxacin, a fluoroquinolone antibiotic, was determined in pigs and broilers after intravenous (i.v.), intramuscular (i.m.), or oral (p.o.) administration at a single dose of five (pigs) or 10 mg/kg (broilers). Plasma concentration profiles were analyzed by a compartmental pharmacokinetic method. Following i.v., i.m. and p.o. doses, the elimination half-lives (t(1/2beta)) were 17.14 +/- 4.14, 25.79 +/- 8.10, 16.67 +/- 4.04 (pigs) and 6.11 +/- 1.50, 5.64 +/- 0.74, 8.20 +/- 3.12 h (broilers), respectively. After single i.m. and p.o. administration, difloxacin was rapidly absorbed, with peak plasma concentrations (C(max)) of 1.77 +/- 0.66, 2.29 +/- 0.85 (pigs) and 2.51 +/- 0.36, 1.00 +/- 0.21 microg/mL (broilers) attained at t(max) of 1.29 +/- 0.26, 1.41 +/- 0.88 (pigs) and 0.86 +/- 0.4, 4.34 +/- 2.40 h (broilers), respectively. Bioavailabilities (F) were (95.3 +/- 28.9)% and (105.7 +/- 37.1)% (pigs) and (77.0 +/- 11.8)% and (54.2 +/- 12.6)% (broilers) after i.m. and p.o. doses, respectively. Apparent distribution volumes(V(d(area))) of 4.91 +/- 1.88 and 3.10 +/- 0.67 L/kg and total body clearances(Cl(B)) of 0.20 +/- 0.06 and 0.37 +/- 0.10 L/kg/h were determined in pigs and broilers, respectively. Areas under the curve (AUC), the half-lives of both absorption and distribution(t(1/2ka), t(1/2alpha)) were also determined. Based on the single-dose pharmacokinetic parameters determined, multiple dosage regimens were recommended as: a dosage of 5 mg/kg given intramuscularly every 24 h in pigs, or administered orally every 24 h at the dosage of 10 mg/kg in broilers, can maintain effective plasma concentrations with bacteria infections, in which MIC(90) are <0.25 microg/mL and <0.1 microg/mL respectively.  相似文献   

12.
The pharmacokinetic properties of cefpodoxime, and its prodrug, cefpodoxime proxetil, were evaluated in two separate studies, one following intravenous (i.v.) administration of cefpodoxime sodium and the second after oral (p.o.) administration of cefpodoxime proxetil to healthy dogs. After cefpodoxime administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). A single i.v. administration of cefpodoxime sodium at a dose of 10 mg cefpodoxime/kg body weight resulted in a cefpodoxime average maximum plasma concentration (Cmax) of 91 (+/-17.7) microg/mL, measured at 0.5 h after drug administration, an average half-life (t1/2) of 4.67 (+/-0.680) h, an average AUC(0-infinity) of 454 (+/-83.1) h.microg/mL, an average V(d(ss)) of 151 (+/-27) mL/kg, an average Cl(B) of 22.7 (+/-4.2) mL/h/kg and an average MRT(0-infinity) of 5.97 (+/-0.573) h. When dose normalized to 10 mg cefpodoxime/kg body weight, cefpodoxime proxetil administered orally resulted in Cmax of 17.8 +/- 11.4 microg/mL for the tablet formulation and 20.1 +/- 6.20 microg/mL for the suspension formulation and an average AUC(0-LOQ) of 156 (+/-76.1) h.microg/mL for the tablet formulation and 162 (+/-48.6) h.microg/mL for the suspension formulation. Relative bioavailability of the two oral formulations was 1.04 (suspension compared with tablet), whereas the absolute bioavailability of both oral formulations was estimated to be approximately 35-36% in the cross-study comparison with the i.v. pharmacokinetics. Combined with previous studies, these results suggest that a single daily oral dose of 5-10 mg cefpodoxime/kg body weight as cefpodoxime proxetil maintains plasma concentrations effective for treatment of specified skin infections in dogs.  相似文献   

13.
Summary

Plasma ampicillin concentrations were determined in an eight‐ways crossover trial involving six ruminant calves, which were treated intravenously (i.v.) with sodium ampicillin at 15.5 mg/kg and intramuscularly (i.m.) with five different ampicillin trihydrate or ampicillin anhydrate formulations at 7.7 mg/kg. The mean plasma concentration‐time curve (Cp)after intravenous ampicillin sodium administration was described biexponentially, as: Cp = 38.8 e ‐0.0268t + 0.45 e ‐0.0058t.

Intramuscular injection, into the lateral neck, of Ampikel‐20® and Polyflex® resulted in 100 per cent bioavailabilities within 12 h post injection (p.i.), but the biological half‐lives (t½>) were different, being 2.1 and 3.8 h, respectively. Ampikel‐20® produced the hïghest peak plasma drug concentrations (mean C max:4.8 μg ampicillin/ml). After intramuscular injection of Penbritin® the mean bioavailability for the first 12 h p.i. was 63 per cent, the mean t½>, was 5.9 h, and the mean Cmax was 1.8 μg/ml. Treatment with Albipen® and Duphacillin® resulted in low plasma ampicillin levels, which were maintained for 3 to 6 days p.i., limited bioavailability during the first 12 h p.i., and a mean t½> of 22.2 and 11.9 h, respectively. Plasma concentrations of ampicillin from four hours onwards after i.m. and s.c. administration of Ampikel‐20® at a dose level of 15.5 mg/ kg were similar.

The duration of potentially therapeutic plasma ampicillin concentrations after administration of each formulation is presented. Pre‐slaughter withdrawal times for diseased calves are suggested for the different formulations studied.  相似文献   

14.
Pharmacokinetics of sarafloxacin, a fluoroquinolone antibiotic, was determined in pigs and broilers after intravenous (i.v.), intramuscular (i.m.), or oral (p.o.) administration at a single dose of 5 (pigs) or 10 mg/kg (broilers). Plasma concentration profiles were analysed by a noncompartmental pharmacokinetic method. Following i.v., i.m. and p.o. doses, the elimination half-lives (t1/2beta) were 3.37 +/- 0.46, 4.66 +/- 1.34, 7.20 +/- 1.92 (pigs) and 2.53 +/- 0.82, 6.81 +/- 2.04, 3.89 +/- 1.19 h (broilers), respectively. After i.m. and p.o. doses, bioavailabilities (F) were 81.8 +/- 9.8 and 42.6 +/- 8.2% (pigs) and 72.1 +/- 8.1 and 59.6 +/- 13.8% (broilers), respectively. Steady-state distribution volumes (Vd(ss)) of 1.92 +/- 0.27 and 3.40 +/- 1.26 L/kg and total body clearances (ClB) of 0.51 +/- 0.03 and 1.20 +/- 0.20 L/kg/h were determined in pigs and broilers, respectively. Areas under the curve (AUC), mean residence times (MRT), and mean absorption times (MAT) were also determined. Sarafloxacin was demonstrated to be more rapidly absorbed, more extensively distributed, and more quickly eliminated in broilers than in pigs. Based on the single-dose pharmacokinetic parameters determined, multiple dosage regimens were recommended as: a dosage of 10 mg/kg given intramuscularly every 12 h in pigs, or administered orally every 8 h in broilers, can maintain effective plasma concentrations with bacteria infections, in which MIC90 are <0.25 microg/mL.  相似文献   

15.
The pharmacokinetic behaviour of amoxycillin sodium and amoxycillin trihydrate-20% aqueous suspension was studied in a group of five dairy cows. Amoxycillin sodium was administered intravenously and amoxycillin trihydrate-20% by four different routes of administration: subcutaneously in the dewlap, intramuscularly in the lateral neck, M. triceps, and buttock (M. semitendineus). The dose level for both drug formulations was 3.83 ± 0.47 mg/kg. The mean plasma concentration–time curve(Cp)for intravenous amoxycillin sodium administration could be described mathematically by the biexponential equation Cp= 15.6 e-0.033t+ 1.04 e-0.0091t. The areas under the plasma concentration–time curve (AUC's) obtained after the intravenous injections of sodium amoxycillin were used as references for the bioavailability studies of the four routes of amoxycillin trihydrate administration. Intramuscular injections into the lateral neck or into the M. triceps resulted in similar systemic bioavailabilities, being at 12 h post injection (p.i.) 76.2 and 79.2% of the administered dose. The biological half-lives (t1/2) were similar, being 6.2 and 6.9 h, respectively. After subcutaneous injection into the dewlap or intramuscular injection into the buttock lower bioavailabilities at 12 h p.i. were observed (24.1 and 49.2%, respectively). The plasma amoxycillin concentration was persistently low. The half-lives of plasma amoxycillin disposition after the buttock and dewlap injections were 13.2 and 44 h, respectively. The plasma concentrations obtained were compared with minimal inhibitory concentrations (MIC) against pathogenic bacteria with respect to the theoretical design of effective antibacterial therapy. The differences observed serve to emphasize the fact that more attention should be paid to the effect of the route of administration on the biological bioavailability of a drug, with particular reference to studies on clinical efficacy. Pre-slaughter withdrawal times were suggested for the different routes of injection of these two drug formations.  相似文献   

16.
Azithromycin is the first of a class of antimicrobial agents designated azalides. The aim of the present study was to investigate the disposition pharmacokinetics of azithromycin in goats and determine its bioavailability. A cross-over study was carried out in two phases separated by 30 days. Azithromycin was administered at a single dose of 20 mg/kg body weight by i.v. and i.m. routes. Plasma concentrations of azithromycin were determined by a modified agar diffusion bioassay. After a single i.v. dose plasma concentrations were best fitted to a three-compartment open model. A two-compartment open model with first-order absorption fitted best after i.m. administration. The values of the pharmacokinetic parameters after i.v. administration were: half-life 32.5 h, apparent volume of distribution at the steady-state 34.5 L/kg, clearance 0.85 L/kg. and mean residence time (MRT) 40.1 h. After i.m. administration half-life of 45.2 h, a MRT of 60.3 h, maximum plasma concentration 0.64 mg/L and a bioavalability 92.2% were obtained. The pharmacokinetic parameters of azithromycin after i.m. administration, principally its long half-life and high bioavailability, could provide an alternative to the oral route of administration in goats, although more studies are needed to establish a suitable pharmaceutical formulation, propose optimun dosage regimens, investigate clinical efficacy and study the tolerability of repeated doses.  相似文献   

17.
The disposition of spiramycin and lincomycin was measured after intravenous (i.v.) and oral (p.o.) administration to pigs. Twelve healthy pigs (six for each compound) weighing 16–43 kg received a dose of 10 mg/kg intravenously, and 55 mg/kg (spiramycin) or 33 mg/kg (lincomycin) orally in both a fasted and a fed condition in a three-way cross-over design. Spiramycin was detectable in plasma up to 30 h after intravenous and oral administration to both fasted and fed pigs, whereas lincomycin was detected for only 12 h after intravenous administration and up to 15 h after oral administration. The volume of distribution was 5.6 ± 1.5 and 1.1 ± 0.2 L/kg body weight for spiramycin and lincomycin, respectively. For both compounds the bioavailability was strongly dependent on the presence of food in the gastrointestinal tract. For spiramycin the bioavailability was determined to be 60% and 24% in fasted and fed pigs, respectively, whereas the corresponding figures for lincomycin were 73% and 41%. The maximum plasma concentration of spiramycin (Cmax) was estimated to be 5 μg/mL in fasted pigs and 1 μg/mL only in fed pigs. It is concluded that an oral dose of 55 mg/kg body weight is not enough to give a therapeutically effective plasma concentration of spiramycin against species of Mycoplasma, Streptoccocus, Staphylococcus and Pasteurella multocida. The maximum plasma concentration of lincomycin was estimated to be 8 μg/mL in fasted pigs and 5 μg/mL in fed pigs, but as the minimum inhibitory concentration for lincomycin against Actinobacillus pleuropneumoniae and P. multocida is higher than 32 μg/mL a therapeutically effective plasma concentration could not be obtained following oral administration of the drug. For Mycoplasma the MIC90 is below 1 μg/mL and a therapeutically effective plasma concentration of lincomycin was thus obtained after oral administration to both fed and fasted pigs.  相似文献   

18.
The pharmacokinetics of ketorolac (Toradol), a human non-narcotic, nonsteroidal anti-inflammatory drug (NSAID) of the pyrrolo-pyrrole group, was studied in six mixed breed dogs of varying ages (1-5 years). The study was performed using a randomized crossover design, with each dog initially assigned to one of two groups (intravenous (i.v.) or oral (p.o.)). Each group of three dogs received either the injectable or oral formulation of ketorolac tromethamine at 0.5 mg/kg. Serial blood samples were collected before and over 96 h following treatment. Samples were analysed by reverse phase HPLC. Individual ketorolac plasma concentration-time curves were initially evaluated by computerized curve stripping techniques followed by nonlinear least squares regression. Following i.v. administration mean (+/- SD) pharmacokinetic parameters were: elimination half-life (t1/2 beta) = 4.55 h, plasma clearance (Clp) = 1.25 (1.13) mL/kg/min, and volume of distribution at steady state (Vss) = 0.33 (0.10) L/kg. Mean (+/- SD) p.o. pharmacokinetic values were: t1/2 beta = 4.07 h, time to reach maximum concentration (tmax) = 51.2 (40.6) min, and p.o. bioavailability (F) = 100.9 (46.7)%. These results suggest that the pharmacodisposition characteristics of a clinically effective 0.5 mg/kg i.v. or p.o. single dose of ketorolac tromethamine administered to dogs is fairly similar to that observed in humans.  相似文献   

19.
OBJECTIVE: To characterize the pharmacokinetics of lamivudine (3TC) in cats. ANIMALS: 6 sexually intact 9-month-old barrier-reared domestic shorthair cats. PROCEDURE: Cats were randomly alloted into 3 groups, and lamivudine (25 mg/kg) was administered i.v., intragastrically (i.g.), and p.o. in a 3-way crossover study design with 2-week washout periods between experiments. Plasma samples were collected for 12 hours after drug administration, and lamivudine concentrations were determined by high-performance liquid chromatography. Maximum plasma concentrations (Cmax), time to reach Cmax (Tmax), and bioavailability were compared between i.g. and p.o. routes. Area under the curve (AUC) and terminal phase half-life (t(1/2)) among the 3 administration routes were also compared. RESULTS: Plasma concentrations of lamivudine declined rapidly with a t(1/2) of 1.9 +/- 0.21 hours, 2.6 +/- 0.66 hours, and 2.7 +/- 1.50 hours after i.v., i.g., and p.o. administration, respectively. Total body clearance and steady-state volume of distribution were 0.22 +/- 0.09 L/h/kg and 0.60 +/- 0.22 L/kg, respectively. Mean Tmax for i.g. administration (0.5 hours) was significantly shorter than Tmax for p.o. administration (1.1 hours). The AUC after i.v., i.g., and p.o. administration was 130 +/- 55.2 mg x h/L, 115 +/- 97.5 mg x h/L, and 106 +/- 94.9 mg x h/L, respectively. Lamivudine was well absorbed after i.g. and p.o. administration with bioavailability values of 88 +/- 45% and 80 +/- 52%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Cats had a shorter t(1/2) but slower total clearance of lamivudine, compared with humans. Plasma concentrations of lamivudine were maintained above the minimum effective concentration for inhibiting FIV replication by 50% (0.14 microM [0.032 microg/mL] for wild-type FIV clinical isolate) for at least 12 hours after i.v., i.g., or p.o. administration.  相似文献   

20.
OBJECTIVE: To characterize the pharmacokinetics of zidovudine (AZT) in cats. ANIMALS: 6 sexually intact 9-month-old barrier-reared domestic shorthair cats. PROCEDURE: Cats were randomly alloted into 3 groups, and zidovudine (25 mg/kg) was administered i.v., intragastrically (i.g.), and p.o. in a 3-way crossover study design with 2-week washout periods between experiments. Plasma samples were collected for 12 hours after drug administration, and zidovudine concentrations were determined by high-performance liquid chromatography. Maximum plasma concentrations (Cmax), time to reach Cmax (Tmax), and bioavailability were compared between i.g. and p.o. routes. Area under the curve (AUC) and terminal phase half-life (t(1/2)) among the 3 administration routes were also compared. RESULTS: Plasma concentrations of zidovudine declined rapidly with t(1/2) of 1.4 +/- 0.19 hours, 1.4 +/- 0.16 hours, and 1.5 +/- 0.28 hours after i.v., i.g., and p.o. administration, respectively. Total body clearance and steady-state volume of distribution were 0.41 +/- 0.10 L/h/kg and 0.82 +/- 0.15 L/kg, respectively. Mean Tmax for i.g. administration (0.22 hours) was significantly shorter than Tmax for p.o. administration (0.67 hours). The AUC after i.v. and p.o. administration was 64.7 +/- 16.6 mg x h/L and 60.5 +/- 17.0 mg x h/L, respectively, whereas AUC for the i.g. route was significantly less at 42.5 +/- 9.41 mg x h/L. Zidovudine was well absorbed after i.g. and p.o. administration with bioavailability values of 70 +/- 24% and 95 +/- 23%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Cats had slower clearance of zidovudine, compared with other species. Plasma concentrations of zidovudine were maintained above the minimum effective concentration for inhibiting FIV replication by 50% (0.07 microM [0.019 microg/mL] for wild-type FIV clinical isolate) for at least 12 hours after i.v., i.g., or p.o. administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号