首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Huang H  Huang L  Feng G  Wang S  Wang Y  Liu J  Jiang N  Yan W  Xu L  Sun P  Li Z  Pan S  Liu X  Xiao Y  Liu E  Dai L  Wang GL 《Phytopathology》2011,101(5):620-626
The indica rice cultivar Xiangzi 3150 (XZ3150) confers a high level of resistance to 95% of the isolates of Magnaporthe oryzae (the agent of rice blast disease) collected in Hunan Province, China. To identify the resistance (R) gene(s) controlling the high level of resistance in this cultivar, we developed 286 F(9) recombinant inbred lines (RILs) from a cross between XZ3150 and the highly susceptible cultivar CO39. Inoculation of the RILs and an F(2) population from a cross between the two cultivars with the avirulent isolate 193-1-1 in the growth chamber indicated the presence of two dominant R genes in XZ3150. A linkage map with 134 polymorphic simple sequence repeat and single feature polymorphism markers was constructed with the genotype data of the 286 RILs. Composite interval mapping (CIM) using the results of 193-1-1 inoculation showed that two major R genes, designated Pi47 and Pi48, were located between RM206 and RM224 on chromosome 11, and between RM5364 and RM7102 on chromosome 12, respectively. Interestingly, the CIM analysis of the four resistant components of the RILs to the field blast population revealed that Pi47 and Pi48 were also the major genetic factors responsible for the field resistance in XZ3150. The DNA markers linked to the new R genes identified in this study should be useful for further fine mapping, gene cloning, and marker-aided breeding of blast-resistant rice cultivars.  相似文献   

2.
The rice blast resistance gene Pi54 (formerly Pi-k h ) isolated from indica rice line Tetep confers broad spectrum resistance to different strains of Magnaporthe oryzae in India. In this study, we performed PCR based allele mining for blast resistance gene Pi54 from six cultivated rice lines and eight wild rice species to understand its structural variation and its impact on the phenotypes. Sequence analysis indicates presence of more variation between cultivated and wild species (35–90 %) than variation found among cultivated species (1–20 %). Structural analysis of alleles showed presence of variable number of Open Reading Frames (0–2) principally having point mutations in the leucine rich repeats (LRR) regions. The Ka/Ks ratio of LRR region was >1, which shows the effect of selection pressure at this domain. The Pi54 alleles have 142 polymorphic sites with average nucleotide diversity of 0.04522. The Ka/Ks ratio of coding region ranged from 0 to >1 and Tajima’s D test showed negative as well as Darwinian selection within the alleles, which corresponded well with their phenotypic reaction to M. oryzae. The results obtained in this study shows divergent nature of Pi54 allele in wild species and land races of rice. The resistance alleles identified in this study can be used in effective management of rice blast disease through gene pyramiding.  相似文献   

3.
 以湘资3150 和CO39 为亲本建立F10 重组自交系群体为材料, 在桃江病圃应用自然诱发接种法对群体的田间叶瘟抗性表现进行了分析。结果表明, 在LOD 2. 5 的域值上,共检测到14 个有效的微效基因QTL 位点(LOD 值均大于2. 5),分别位于水稻第3、8 和10 染色体上,其表型变异贡献值差异比较大,介于11. 78% ~ 40. 57% 之间;表明可能控制不同抗性表型的QTL 紧密连锁或者同一个QTL 对不同的抗性表型均具有抗性贡献。  相似文献   

4.
 为明确吉林省主栽水稻品种的抗瘟性和抗瘟基因型,选用了一套已明确其无毒基因组成的稻瘟病菌标准菌株对吉林省68个主栽水稻品种进行喷雾和离体划伤接种试验。结果表明,68个品种的抗瘟能力存在较大差异,中抗以上抗病品种达到44个,占供试品种的64.7%;抗瘟基因推导结果结合特异性分子标记检测表明,Pita、Pia、Pish、Pita2、PibPi9等6个基因为吉林省主栽水稻品种中主要的抗瘟基因,并且品种中含有的抗瘟基因数量与抗瘟能力呈正相关;根据结果推测,测试的所有品种中可能不含有Pi2、Pikh、Pikm、Pi11和Pi12基因。本研究揭示了吉林省近年主栽水稻品种的抗瘟能力和抗瘟基因组成,明确了吉林稻区主效抗瘟基因和基因聚合对稻瘟病的抗性贡献,为进一步培育广谱持久抗瘟品种和合理布局抗病品种提供了重要参考。  相似文献   

5.
已知抗瘟基因在黑龙江省寒地稻区的评价与利用   总被引:5,自引:1,他引:5  
 利用12个日本鉴别品种、7个中国鉴别品种、24个抗稻瘟病单基因系及6个当地主栽品种,对2006年采自该省主要积温区不同水稻品种的178个稻瘟病菌株进行了致病性测定。结果表明:2006年黑龙江省稻瘟病菌生理小种划分为104个日本小种,077.7号生理小种比例最高为4.49%,017.1号、017.5号、037.5号生理小种出现频率为3.93%。就抗性基因而言,抗瘟基因Pi9(t)在全省抗谱为97.75%,是较好的抗源可以在全省内广泛利用;Piz-5、Pi12(t)抗瘟基因抗谱分别为78.09%和78.65%,根据品种种植区域可以有选择地利用。就品种而言,抗瘟基因Pi9(t)、Piz-5是空育131;Pi5(t)、Pita-2是垦稻10号;Pi9(t)、Pita是上育397;Piz-5、Pi12(t)是垦稻12号等品种抗瘟改良的有利基因;在研究中同时加强对稻瘟病菌种群的监测和新抗源的发掘,有针对性地向主栽品种导入新的抗性基因。  相似文献   

6.
ABSTRACT Partial resistance to rice blast in the Oryza sativa japonica group cv. Chubu 32 is controlled by Pi34, a major quantitative trait locus (QTL) on chromosome 11, and several uncharacterized QTLs. The objectives of the study were (i) high-resolution genetic and physical mapping of Pi34 and (ii) identification of new QTL imparting resistance to rice blast. Chubu 32 was crossed with a susceptible chromosomal segment substitution line (CSSL) of cv. Koshihikari. From 4,012 of segregating individuals, 213 recombinants in the Pi34 region were screened by using polymerase chain reaction-based markers and tested resistance in the field and greenhouse. The Pi34 locus is located in the 54.1-kb region on the genomic sequence of cv. Nipponbare. We constructed a bacterial artificial chromosome (BAC) library of Chubu 32, selected the clone containing Pi34, and sequenced it. The Pi34 locus consequently was located on an interval of 65.3 kb containing 10 predicted open reading frames (ORFs). Two of these ORFs were predicted only in Chubu 32 and encoded transposable elements. The other eight ORFs were found in both Chubu 32 and Nipponbare and one of them, which encoded an unknown protein, showed significantly different amino acid sequences between two cultivars. The new QTL, Piq6(t), was detected on the short arm of chromosome 6 and the genetic distance of flanking markers was 16.9 centimorgans in Nipponbare. Pi34 and Piq6(t) acted additively on resistance to rice blast but the effect of Piq6(t) was relatively small compared with Pi34.  相似文献   

7.
ABSTRACT Pi7(t), a dominant blast resistance gene derived from the rice cultivar Moroberekan, confers complete resistance against the fungal pathogen Magnaporthe grisea. Pi7(t) previously was positioned on chromosome 11 by restriction fragment length polymorphism (RFLP) mapping of a recombinant inbred line population. One derivative of this population, recombinant inbred line (RIL)29, was designated as the representative line for Pi7(t). A segregating F2 population was created from RIL29 in order to determine the location of Pi7(t). The new mapping data indicate a position for Pi7(t) 30 centimorgans distal to the original location. Pi7(t) shares a common position with the previously mapped Pi1 M. grisea resistance gene. RIL29 carries DNA not derived from either parent used to create the RIL population at the newly assigned Pi7(t) locus. RFLP analysis has identified a possible donor source.  相似文献   

8.
 稻瘟病是福建省水稻生产中的重要病害之一,系统掌握稻瘟菌毒性类型组成和变化动态及其与主要抗病基因的互作特点,是制定抗病品种选育与合理利用的依据。本研究根据稻瘟病菌与6个CO39近等基因系品种互作亲和性的结果,将1995~2001年从福建采集分离的398个有效单孢菌株区分为26个毒性类型,其中毒性类型I34.1出现频率最高,为优势毒性类型,出现频率较高的还有I20.1、I04.1、I24.1、I0.1、I30.1等;结果还发现福建稻瘟菌群体对Pi1Pi2毒性频率较低,分别为7.53%和11.31%,特别是对Pi1Pi2基因联合毒性频率仅2.76%,说明在水稻抗瘟育种中可以考虑将Pi1Pi2基因累加利用。  相似文献   

9.
 利用稻瘟病抗性基因进行抗病新品种的培育是控制稻瘟病害最经济、有效的措施。为了明确当前广东省水稻稻瘟病抗性基因的分布特点,本研究利用Pi1、Pi2、Pi9、Pib、Pita等5个已克隆主效抗稻瘟病基因的分子标记,结合叶瘟和穗颈瘟自然抗性鉴定,对70份广东省主栽水稻品种和骨干亲本抗稻瘟病基因的组成进行了分析。结果显示,含有Pi2抗性基因的水稻品种有10份(占14.3%),抗性贡献率显著;PibPita的检出率较高,分别为42份(60%)和37份(52.9%),但对广东省稻瘟病菌的抗性较弱;未检测到上述已知主效抗稻瘟病基因的有13份(18.6%),表现为感稻瘟病;全部供试材料均未检测到含有Pi1Pi9抗性基因。本研究揭示了广东省主栽水稻品种和骨干亲本抗稻瘟病基因的组成及其对稻瘟病抗性的贡献,为华南稻区抗病新品种的培育提供重要参考。  相似文献   

10.
Rice blast is the most serious disease threat to rice production worldwide. It is difficult to control due to the complex diversity and wide geographic distribution of the causal pathogen Magnaporthe oryzae. In Australia, rice blast occurs in northern Australia but remains exotic to the main south-eastern rice growing area; however, there is the potential for rice blast to threaten this area; in addition, rice production is currently expanding from south-eastern Australia into northern Australia, which makes rice blast a major concern and challenge to rice industry in Australia. Prior to this study, there was lack of information on the race status of M. oryzae present in Australia and on how to manage the disease through host resistance. The races of rice blast isolates collected in northern Australia was characterised based on the disease reactions of eight standard rice differentials used in an international race differential system. The following studies revealed genes conferring resistance to these races through investigating the responses of 25 monogenic rice lines with targeted resistance gene against different races. The rice blast isolates were characterised into five races: IA-1, IA-3, IA-63, IB-3 and IB-59. Genes Pi40, Piz-t, Pi9, Pi5(t) and Pi12(t) exhibited resistance to all the isolates belonging to five races. In addition, two genes showed complete resistance to multiple races, viz. Pi9 that showed complete resistance to races IA-1, IA-3, IA-63 and IB-3 and Pita2 that had complete resistance to races IA-3, IB-3 and IB-59. This study provides information about the races of M. oryzae in Australia. Genes identified conferring resistance to multiple races will not only streamline the identification via molecular markers of imported rice varieties with resistance to rice blast in Australia, but will also allow the Australian rice breeding program to develop new varieties with broad-spectrum resistance to rice blast and pyramid multi-gene resistance into Australian rice varieties.  相似文献   

11.
广东省主栽水稻品种稻瘟病主效抗性基因的鉴定及分析   总被引:1,自引:0,他引:1  
利用稻瘟病抗性基因进行抗病新品种的培育是控制稻瘟病害最经济、有效的措施。为了明确当前广东省水稻稻瘟病抗性基因的分布特点,本研究利用Pi1、Pi2、Pi9、Pib、Pita等5个已克隆主效抗稻瘟病基因的分子标记,结合叶瘟和穗颈瘟自然抗性鉴定,对70份广东省主栽水稻品种和骨干亲本抗稻瘟病基因的组成进行了分析。结果显示,含有Pi2抗性基因的水稻品种有10份(占14.3%),抗性贡献率显著;Pib和Pita的检出率较高,分别为42份(60%)和37份(52.9%),但对广东省稻瘟病菌的抗性较弱;未检测到上述已知主效抗稻瘟病基因的有13份(18.6%),表现为感稻瘟病;全部供试材料均未检测到含有Pi1和Pi9抗性基因。本研究揭示了广东省主栽水稻品种和骨干亲本抗稻瘟病基因的组成及其对稻瘟病抗性的贡献,为华南稻区抗病新品种的培育提供重要参考。  相似文献   

12.
The japonica rice (Oryza sativa) cultivar Chubu 32 has a high level of partial resistance to blast, which is mainly controlled by a dominant resistance gene located on chromosome 11. The partial resistance to the rice blast fungus (Magnaporthe grisea) in Chubu 32 has isolate specificity; isolate IBOS8-1-1 is more aggressive on Chubu 32 than are other isolates. We hypothesized that the gene-for-gene relationship fits this case of a partial resistance gene in Chubu 32 against the avirulence gene in the pathogen. The partial resistance gene in Chubu 32 was mapped between DNA markers C1172 (and three other co-segregated markers) and E2021 and was designated Pi34. In the 32 F3 lines from the cross between a chromosome segment substitution line (Pi34) from Koshihikari/Kasalath and Chubu 32, the lines with high levels of partial resistance to the M. grisea isolate Y93-245c-2 corresponded to the presence of Pi34 estimated by graphic genotyping. This indicated that Pi34 has partial resistance to isolate Y93-245c-2 in compatible interactions. The 69 blast isolates from the F1 progeny produced by the cross between Y93-245c-2 and IBOS8-1-1 were tested for aggressiveness on Chubu 32 and rice cultivar Koshihikari (Pi34). The progeny segregated at a 1 : 1 ratio for strong to weak aggressiveness on Chubu 32. The results suggested that Y93-245c-2 has one gene encoding avirulence to Pi34 (AVRPi34), and IBOS8-1-1 is extremely aggressive on Chubu 32 because of the absence of AVRPi34. This is the first report of a gene-for-gene relationship between a fungal disease resistance gene associated with severity of disease and pathogen aggressiveness.  相似文献   

13.
二十二个抗稻瘟病基因在云南的利用价值评价   总被引:5,自引:4,他引:5       下载免费PDF全文
为了明确22个抗稻瘟菌基因在云南省的抗性水平及其利用价值,将采集、分离自云南省3个稻区的282个稻瘟病菌单孢菌株,接种于以丽江新团黑谷为轮回亲本培育而成的含有22个垂直抗性基因的水稻单基因系上.根据各稻区采集的菌株在水稻单基因系上的侵染率,分析出各垂直抗性基因在云南省各稻区的利用价值.持有Pi9、Piz5、Pi1、Pita2、Piz、Pikh、Pizt 7个垂直抗性基因的单基因系的侵染率分别为1.22%、2.40%、3.21%、4.82%、5.95%、7.23%、9.04%,可在籼稻区种植或作抗源使用;持有Pi9、Piz5、Pi1、Pita2、Piz、Pikh、Pizt、Pi12、Pita、Pib 10个垂直抗性基因的单基因系的侵染率分别为0.93%、 16.67%、10.19%、 5.09%、15.74%、15.74%、12.04%、9.26%、19.29%、11.11%,可在粳稻区种植或作抗源使用;持有Pi9、Piz5、Pi1、Pita2 4个垂直抗性基因的单基因系的侵染率分别为8.60%、13.83%、10.93%、18.04%,可在籼粳交错区种植或作抗源使用.同时用联合致病性系数和联合抗病性系数分析了病菌和单基因系的群体互作以及抗瘟组合的利用价值,结果表明:品种两两搭配后的RAC值大于0.80的组合有Pi9与Pita2、Pizt、Pi1、Piz,说明以上4种组合的抗病性最强,应用价值最大.  相似文献   

14.
水稻主要抗瘟基因对福建稻瘟菌群体的抗性分析   总被引:3,自引:0,他引:3  
 用1995-2003年间在福建省水稻产区采集的稻瘟菌代表菌系的108个分离菌,它们在CO39近等基因系上测定被划分为30个毒性类型,用它们在30个水稻抗稻瘟病近等基因系或单基因系品种上进行抗病性测定。结果表明水稻抗稻瘟病基因Pi-kh抗性最强,抗性频率高达98.15%,Pi-1Pi-9(t)也具有较高的抗性频率,是较好的抗源;对2个和3个Pi基因的联合抗性频率的分析,发现一些联合抗性频率极高,甚至有达到100%的组合,表明抗瘟育种采用多个Pi基因聚合,易于获得抗性强的品种。根据抗病基因与供试菌株互作的亲和性,对供试30个Pi基因可能的系统关系分析得到的初步信息可为抗病基因的聚合与布局策略提供参考。  相似文献   

15.
 对云南药用野生稻7个不同居群的稻瘟病、纹枯病、白叶枯病和细菌性条斑病抗型表型进行鉴定,筛选抗源,并检测已克隆的抗稻瘟病、抗白叶枯病基因在它们中的存在情况。结果表明:用云南稻瘟病菌毒性菌株16t接种云南药用野生稻7个居群,除勐海药野(7)表型为感病外,其他6个居群均为抗病;勐遮药用野生稻(4)和景纳上沟药用野生稻(1)分别不含PibPi2基因片段,其他5个居群都含有Pib、Pi2、Pi9、Pid2、Pikp、PisPi56等基因片段;所有的参试药用野生稻高抗纹枯病;除勐往药野(13)和澜沧孟矿药野(14)对细菌性条斑病菌菌株RS105表现为感病和勐遮药野(5)对菌株RS1-20表现为感病外,其他材料对菌株RS105和RS1-20都表现为抗病;云南白叶枯病菌强致病性菌株CX30-1、菲律宾菌株PXO99和PXO86对景纳上沟药用野生稻(1)和澜沧孟矿药用野生稻(14)具有强致病性,其他居群表现为抗病至中抗;7个居群都含有Xa5、Xa13、Xa21基因片段。本文首次报道了云南药用野生稻多个居群类型对4种主要病害的抗性,这些结果为深度挖掘利用云南药用野生稻资源的有效抗病基因奠定了基础。  相似文献   

16.
Ma HX  Bai GH  Zhang X  Lu WZ 《Phytopathology》2006,96(5):534-541
ABSTRACT Chinese Spring Sumai 3 chromosome 7A disomic substitution line (CS-SM3-7ADS) is highly resistant to Fusarium head blight (FHB), and an F(7) population of recombinant inbred lines derived from the cross CS-SM3-7ADS x Annong 8455 was evaluated for resistance to FHB to investigate main effects, epistasis, and environmental interactions of quantitative trait loci (QTLs) for FHB resistance. A molecular linkage map consists of 501 simple sequence repeat and amplified fragment length polymorphism markers. A total of 10 QTLs were identified with significant main effects on the FHB resistance using MapQTL and QTLMapper software. Among them, CS-SM3-7ADS carries FHB-resistance alleles at five QTLs on chromosomes 2D, 3B, 4D, and 6A. One QTL on 3BS had the largest effect and explained 30.2% of the phenotypic variance. Susceptible QTLs were detected on chromosomes 1A, 1D, 4A, and 4B. A QTL for enhanced FHB resistance was not detected on chromosome 7A of CS-SM3-7ADS; therefore, the increased FHB resistance in CS-SM3-7ADS was not due to any major FHB-resistance QTL on 7A of Sumai 3, but more likely was due to removal of susceptible alleles of QTLs on 7A of Chinese Spring. QTLMapper detected nine pairs of additive-additive interactions at 17 loci that explained 26% phenotypic variance. QTL-environment interactions explained 49% of phenotypic variation, indicating that the environments significantly affected the expression of the QTLs, especially these epistasis QTLs. Adding FHB-enhancing QTLs or removal of susceptible QTLs both may significantly enhance the degree of wheat resistance to FHB in a wheat cultivar.  相似文献   

17.
转基因水稻对稻瘟病的抗性研究   总被引:6,自引:0,他引:6  
 采用苗期初筛、复筛、抗谱测定和田间自然诱发试验等不同鉴定方法,对经分子检测证明已整合有碱性几丁质酶基因和β-1,3-葡聚精酶基因的22个转化系的转基因水稻植株进行稻瘟病抗性鉴定研究,筛选出对稻瘟病的抗性比原种对照七丝软占有明显提高的一系列转基因水稻品系,其中表现高抗的有来自F4-9转化株系的7个品系。高抗材料的R7代品系,经室内抗谱测定及田间病圃试验结果,仍然表现高抗稻瘟病。本研究通过转基因技术,成功地将优质感病品种改良成高抗品系,研究结果证明了利用基因工程手段培育抗病水稻新品种是一个非常有希望的育种途径。  相似文献   

18.
Hayashi N  Ando I  Imbe T 《Phytopathology》1998,88(8):822-827
ABSTRACT Genetic analysis of the rice cultivar Aichi Asahi and some other Japanese cultivars for the high resistance to the blast fungus isolate CHNOS58-3-1 from China was performed. All the Japanese differential cultivars were resistant to the isolate except for 'Pi No. 4', which showed moderate resistance. Analysis of the F(2) population of a cross of the susceptible cultivar Reiho and the resistant cultivar Aichi Asahi indicated that the resistance of 'Aichi Asahi' to the isolate was conferred by one dominant gene. To identify the gene in other Japanese differential cultivars, AK lines, which were derived from a cross of 'Aichi Asahi' x 'K59' and assumed to harbor no known genes except for the new one, were used for the allelism tests. The new, completely dominant resistance gene was detected in 14 differential cultivars, but not in 'Pi No. 4', 'Yashiro-mochi', and 'K1', and was designated as Pi19(t). Pi19(t) was allelic or closely linked to Pita(2) on chromosome 12. Pi19(t) was extensively distributed among Japanese traditional local cultivars.  相似文献   

19.
The virulence structure of theMagnaporthe grisea rice population from the northwestern Himalayan region of India was deciphered on 24 rice genotypes harboring different blast resistance genes. Matching virulences appropriate to all the rice genotypes, except Fukunishiki (Pi-z, Pi-sh) and Zenith (Pi-z, Pi-a, Pi-i), were present in the pathogen population. Moreover, a very low percentage of isolates were virulent on Tetep (Pi-ta, Pi-k h, Pi-4b) and Tadukan (Pi-ta/Pi-ta 2). Although virulence was recorded on most of the lines tested, none was susceptible to all of the isolates. Three pairs of genotypes, namely, C101LAC:C101A51; K-1: Dular; and Dular: HPU-741, exhibited complementary resistance spectra as no isolate combined virulence to both the members of each of the three pairs of genotypes despite the fact that individual members were susceptible to a major portion of the pathogen population. The blast resistance genesPi-z, Pi-k h, Pi-l andPi-2 and their various combinations were construed to provide broad spectrum and durable blast resistance in Himachal Pradesh. Pathotype analysis revealed the existence of extremely high pathotypic diversity in the pathogen population. Based on the observed population structure forM. grisea, it was not possible to designate a minimum set of pathogen isolates that could be used in blast resistance screens to identify effective sources of blast resistance. The overall results suggested that the pathotype analysis alone is insufficient to describe the existing pathogenic variability, especially when this information has to be used for guiding the breeding programs aimed at developing durable blast resistance. However, population genetics approach of studying pathogenic specialization by monitoring the frequency of individual virulence genes and analyzing virulence gene combinations for their association or dissociation might generate useful information for developing durable blast resistance. http://www.phytoparasitica.org posting May 14, 2006.  相似文献   

20.
四川省水稻抗稻瘟病育种现状及发展方向   总被引:7,自引:0,他引:7  
稻瘟病是四川省水稻的主要病害,实践证明,选育种植抗病品种是控制该病害的最经济有效的措施。1981年开始,植物病理工作者与遗传育种工作者经过20年的协作攻关,研究制定了一套适合四川生态特点的有关病菌生理小种、水稻品种抗瘟性鉴定的规范化技术和评价体系,探明稻瘟病菌致病性变异和水稻品种抗瘟性丧失规律,筛选出200多份稻瘟病抗源材料,育成穗颈瘟1-5级的抗病品种(组合)27个,累计推广面积达2750万hm^2,有效地控制了稻瘟病的流行。在此基础上,提出今后重点研究领域和抗病育种策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号