首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 728 毫秒
1.
The purpose of this study was to evaluate the effects of dietary modification in addition to twice daily insulin glargine. Cats were treated with insulin glargine twice daily and randomized to receive either a low carbohydrate, high protein (LCHP) diet (n=6) or a control diet (n=6) for 10 weeks. Re-evaluations of clinical signs, blood glucose curves, and serum fructosamine concentrations were performed at weeks 1, 2, 4, 6, and 10. Two of 12 cats achieved complete remission by the end of the study but remission rate was not different between diet groups. Using twice daily insulin glargine and frequent monitoring, all cats in both diet groups achieved successful glycemic control. Frequent monitoring is key to achieving glycemic control in diabetic cats; potential benefits of dietary modification require further evaluation.  相似文献   

2.
The goals of this study were to compare the efficacy of once-daily administered Glargine insulin to twice-daily administered Lente insulin in cats with diabetes mellitus and to describe the use of a high-protein, low-carbohydrate diet designed for the management of diabetes mellitus in cats. All cats with naturally occurring diabetes mellitus were eligible for inclusion. Baseline testing included a physical examination, serum biochemistry, urinalysis and urine culture, serum thyroxine concentration, and serum fructosamine concentration. All cats were fed the high-protein, low-carbohydrate diet exclusively. Cats were randomized to receive either 0.5 U/kg Lente insulin q12h or 0.5 U/kg Glargine insulin q24h. Re-evaluations were performed on all cats at weeks 1, 2, 4, 8, and 12, and included an assessment of clinical signs, physical examination, 16-hour blood glucose curve, and serum fructosamine concentrations. Thirteen cats completed the study (Lente, n = 7, Glargine, n = 6). There was significant improvement in serum fructosamine and glucose concentrations in all cats but there was no significant difference between the 2 insulin groups. Four of the 13 cats were in complete remission by the end of the study period (Lente, n = 3; Glargine, n = 1). The results of the study support the use of once-daily insulin Glargine or twice-daily Lente insulin in combination with a high-protein, low-carbohydrate diet for treatment of feline diabetes mellitus.  相似文献   

3.
The purpose of this study was to determine the effect of an alpha-glucosidase inhibitor (acarbose), combined with a low-carbohydrate diet on the treatment of naturally occurring diabetes mellitus in cats. Eighteen client-owned cats with naturally occurring diabetes mellitus were entered into the study. Dual-energy X-ray absorptiometry (DEXA) was performed prior to and 4 months after feeding the diet to determine total body composition, including lean body mass (LBM) and percent body fat. Each cat was fed a commercially available low-carbohydrate canned feline diet and received 12.5mg/cat acarbose orally every 12h with meals. All cats received subcutaneous insulin therapy except one cat in the study group that received glipizide (5mg BID PO). Monthly serum glucose and fructosamine concentrations were obtained, and were used to adjust insulin doses based on individual cat's requirements. Patients were later classified as responders (insulin was discontinued, n=11) and non-responders (continued to require insulin or glipizide, n=7). Responders were initially obese (>28% body fat) and non-responders had significantly less body fat than responders (<28% body fat). Serum fructosamine and glucose concentrations decreased significantly in both responder and non-responder groups over the course of 4 months of therapy. Better results were observed in responder cats, for which exogenous insulin therapy was discontinued, glycemic parameters improved, and body fat decreased. In non-responders, median insulin requirements decreased and glycemic parameters improved significantly, despite continued insulin dependence. The use of a low-carbohydrate diet with acarbose was an effective means of decreasing exogenous insulin dependence and improving glycemic control in a series of client-owned cats with naturally occurring diabetes mellitus.  相似文献   

4.
Fructosamines are glycated serum proteins that reflect long-term serum glucose concentrations in humans and several animal species. In the present study, blood samples were drawn from three populations of diabetic cats: untreated diabetic cats with clinical symptoms prevailing only a few days (n = 1), untreated diabetic cats with symptoms lasting more than two weeks (n = 6) and clinically well stabilised diabetic cats receiving insulin twice daily which showed no signs of disease (n = 4). All untreated diabetic cats showed elevated fructosamine measurements. Based on fructosamine measurements, clinically well stabilised diabetic cats could be subdivided further according to the degree of glycaemic control. Diabetic cats with satisfactory glycaemic control revealed fructosamine concentrations within or close to the reference range (146 to 271 umol/litre), whereas fructosamine concentrations above 400 umol/litre indicated insufficient glycaemic control. This study suggests that the fructosamine assay reflects persistently elevated serum glucose concentrations in cats and is a useful parameter for diagnosing and monitoring diabetes mellitus in cats.  相似文献   

5.
OBJECTIVE: To correlate serum fructosamine concentrations with established measures of glycemic control and to compare serum fructosamine and blood glycosylated hemoglobin (GHb) concentrations as a means for assessing glycemic control in diabetic cats. DESIGN: Longitudinal cohort study. ANIMALS: 26 healthy cats, 5 cats with stress-induced hyperglycemia, 15 untreated diabetic cats, and 36 treated diabetic cats. PROCEDURE: Control of glycemia was classified and monitored and serum fructosamine and blood GHb concentrations were measured for 12 poorly controlled diabetic cats before and after improving glycemic control, 8 well-controlled treated diabetic cats before and after glycemic control deteriorated, and 5 cats with diabetes mellitus before and after onset of stress-induced hyperglycemia. RESULTS: Mean serum fructosamine and blood GHb concentrations were significantly higher in untreated diabetic cats, compared with healthy cats, and in 24 poorly controlled diabetic cats, compared with 12 well-controlled diabetic cats. Mean serum fructosamine and blood GHb concentrations decreased significantly in 12 poorly controlled diabetic cats after improving glycemic control and increased significantly in 8 well-controlled diabetic cats after glycemic control deteriorated. A significant stress-induced increase in mean blood glucose concentration was evident 12 hours after insulin administration, but not in 5 docile diabetic cats that became fractious. CLINICAL IMPLICATIONS: Serum fructosamine and blood GHb concentrations are clinically useful tools for monitoring control of glycemia in cats with diabetes mellitus.  相似文献   

6.
The purpose of this study was to evaluate fructosamine concentrations in clinically healthy cats, sick cats with stress hyperglycemia, and untreated diabetic cats to determine the usefulness of this test in diagnosing diabetes mellitus in cats, and in differentiating the disease from stress-induced hyperglycemia. In addition, we evaluated if the degree of glycemic control in cats treated for diabetes influenced their serum fructosamine concentrations. In the 14 sick cats with stress hyperglycemia, the median serum fructosamine concentration (269 μmol/L) was not significantly different from the median value in the 26 clinically normal cats (252 μmol/L). Two of the 14 cats with stress hyperglycemia (14.3%) had serum fructosamine concentrations above the upper limit of the reference range (175 to 400 μmol/U; on the basis of these results, the test specificity was calculated as 0.86. In 30 cats with untreated diabetes mellitus, the median serum fructosamine concentration was 624 μmol/L, markedly higher than the value in either the normal cats or the cats with stress hyperglycemia. All but 2 of the 30 untreated diabetic cats (6.7%) had serum fructosamine concentration above the upper limit of the reference range; on the basis of these results, the sensitivity of serum fructosamine concentration as a diagnostic test for diabetes mellitus was 0.93. When 30 diabetic cats receiving treatment were divided into 3 groups according to their response to treatment (ie, poor, fair, and good), the 16 cats that had a good response to treatment had significantly lower serum concentrations of both glucose and fructosamine compared with cats that had either a fair or poor response to treatment. A significant correlation (rs= .70, n = 100, P < .001) was found between serum concentrations of glucose and fructosamine. Results of this study indicate that quantification of serum fructosamine concentration is a meaningful test for the diagnosis of diabetes, for differentiating diabetes from stress hyperglycemia; and for monitoring the metabolic control in treated diabetic cats.  相似文献   

7.
OBJECTIVE: To determine the effect of hyperthyroidism on serum fructosamine concentration in cats. DESIGN: Cohort study. ANIMALS: 22 cats with overt hyperthyroidism. PROCEDURE: Hyperthyroidism was diagnosed on the basis of clinical signs, detection of a palpable thyroid gland, and high total serum thyroxine (T4) concentrations. Hyperthyroid cats with abnormal serum albumin, total protein, and glucose concentrations were excluded from the study. Samples for determination of serum fructosamine concentration were obtained prior to initiating treatment. Results were compared with fructosamine concentrations in healthy cats, cats in which diabetes had recently been diagnosed, and cats with hypoproteinemia. In 6 cats, follow-up measurements were obtained 2 and 6 weeks after initiating treatment with carbimazole. RESULTS: Serum fructosamine concentrations ranged from 154 to 267 mumol/L (median, 198 mumol/L) and were significantly lower than values in healthy cats. Eleven (50%) of the hyperthyroid cats had serum fructosamine concentrations less than the reference range. Serum fructosamine concentrations in hyperthyroid, normoproteinemic cats did not differ from values in hypoproteinemic cats. During treatment, an increase in serum fructosamine concentration was detected. CONCLUSIONS AND CLINICAL RELEVANCE: In hyperthyroid cats, concentration of serum fructosamine may be low because of accelerated protein turnover, independent of blood glucose concentration. Serum fructosamine concentrations should not be evaluated in cats with overt hyperthyroidism and diabetes mellitus. Additionally, concentration of serum fructosamine in hyperthyroid cats should not be used to differentiate between diabetes mellitus and transitory stress-related hyperglycemia.  相似文献   

8.
OBJECTIVE: To evaluate effects of protamine zinc insulin (PZI) on control of glycemia in cats with newly diagnosed diabetes mellitus or poorly controlled diabetes. DESIGN: Clinical trial. ANIMALS: 67 diabetic cats. PROCEDURE: 34 cats with newly diagnosed diabetes and 33 cats with poorly controlled diabetes were treated with PZI twice daily for 45 days. Control of glycemia was assessed on days 7, 14, 30, and 45 by evaluation of clinical response, change in body weight, serum fructosamine concentration, blood glucose concentration measured 1, 3, 5, 7, and 9 hours after administration of PZI, lowest blood glucose concentration, and mean blood glucose concentration during the 9-hour period after administration. Adjustments in dosage of PZI were made as needed to attain control of glycemia. RESULTS: For all cats, a significant increase in mean dosage of PZI and significant decreases in 9-hour mean blood glucose concentration, lowest mean blood glucose concentration, and mean serum fructosamine concentration were detected. For cats with poorly controlled diabetes, 9-hour mean blood glucose concentration and mean serum fructosamine concentration were significantly decreased on day 45, compared with day 0. Ninety percent of owners reported improvement or resolution of clinical signs by day 45. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that PZI was effective for control of glycemia in cats with newly diagnosed or poorly controlled diabetes and may be used as an initial treatment or as an alternative treatment in cats that do not respond to treatment with other types of insulin.  相似文献   

9.
This study compared the effects of a moderate carbohydrate-high fiber (MC-HF) food and a low carbohydrate-low fiber (LC-LF) food on glycemic control in cats with diabetes mellitus. Sixty-three diabetic cats (48 male castrated, 15 female spayed) were randomly assigned to be fed either a canned MC-HF (n = 32) food or a canned LC-LF (n = 31) food for 16 weeks. Owners were blinded to the type of diet fed. CBC, urinalysis, serum chemistry panel, fructosamine concentration and thyroxine concentration were determined on initial examination, and a complete blood count, serum chemistry panel, urinalysis and serum fructosamine concentration were repeated every 4 weeks for 16 weeks. Insulin doses were adjusted as needed to resolve clinical signs and lower serum fructosamine concentrations. Serum glucose (P = 0.0001) and fructosamine (P = 0.0001) concentrations significantly decreased from week 0 to week 16 in both dietary groups. By week 16, significantly more of the cats fed the LC-LF food (68%, 22/31), compared to the cats fed the MC-HF food (41%, 13/32), had reverted to a non-insulin-dependent state (P = 0.03). Cats in both groups were successfully taken off of insulin regardless of age, sex, type of insulin administered or duration of clinical disease before entering the study. There was no significant difference in the initial or final mean body weights or in the mean change in body weight from week 0 to week 16 between dietary groups. Diabetic cats in this study were significantly more likely to revert to a non-insulin-dependent state when fed the canned LC-LF food versus the MC-HF food.  相似文献   

10.
The objective of this study was to evaluate the safety and efficacy of insulin glargine in dogs with diabetes mellitus (DM). Twelve client-owned dogs with DM were included. All dogs received insulin glargine every 12 hours for at least six months, re-evaluations were performed after one, two, four, eight, 12 and 24 weeks and included clinical signs, blood glucose curves (BGCs) and measurement of serum fructosamine concentrations. Mean blood glucose concentrations were significantly lower after two weeks of treatment and remained significantly lower for the duration of the study. By week 24, polyuria/polydipsia had improved in 91 per cent of the dogs. No clinical signs that could have been caused by hypoglycaemia were observed. Based on BGCs and remission of the clinical signs for judging the success of the treatment, 58, 33 and 8 per cent of the dogs attained good, moderate and poor glycaemic control by week 24 of the study, respectively. Insulin glargine administered subcutaneously twice daily is a possible and safe method of treatment for dogs with naturally occurring DM. Although only a few studies are available on the use of other types of insulin in dogs, their success rate is somewhat greater than that with insulin glargine.  相似文献   

11.
Background: This study describes the efficacy of a new protamine zinc recombinant human insulin (PZIR) preparation for treating diabetic cats. Objective: To evaluate effects of PZIR on control of glycemia in cats with newly diagnosed or poorly controlled diabetes mellitus. Animals: One hundred and thirty‐three diabetic cats 120 newly diagnosed and 13 previously treated. Methods: Prospective, uncontrolled clinical trial. Cats were treated with PZIR twice daily for 45 days. Control of glycemia was assessed on days 7, 14, 30, and 45 by evaluation of change in water consumption, frequency of urination, appetite, and body weight, serum fructosamine concentration, and blood glucose concentrations determined 1, 3, 5, 7, and 9 hours after administration of PZIR. Adjustments in dosage of PZIR were made as needed to control glycemia. Results: PZIR administration resulted in a significant decrease in 9‐hour mean blood glucose (199 ± 114 versus 417 ± 83 mg/dL, X± SD, P < .001) and serum fructosamine (375 ± 117 versus 505 ± 96 μmol/L, P < .001) concentration and a significant increase in mean body weight (5.9 ± 1.4 versus 5.4 ± 1.5 kg, P= .017) in 133 diabetic cats at day 45 compared with day 0, respectively. By day 45, polyuria and polydipsia had improved in 79% (105 of 133), 89% (118 of 133) had a good body condition, and 9‐hour mean blood glucose concentration, serum fructosamine concentration, or both had improved in 84% (112 of 133) of the cats compared with day 0. Hypoglycemia (<80 mg/dL) was identified in 151 of 678, 9‐hour serial blood glucose determinations and in 85 of 133 diabetic cats. Hypoglycemia causing clinical signs was confirmed in 2 diabetic cats. Conclusions and Clinical Relevance: PZIR is effective for controlling glycemia in diabetic cats and can be used as an initial treatment or as an alternative treatment in diabetic cats that do not respond to treatment with other insulin preparations.  相似文献   

12.
Fructosamine   总被引:3,自引:0,他引:3  
Fructosamines are glycated serum proteins that, depending on their life span, reflect glycemic control over the previous 2 to 3 weeks. The nitroblue tetrazolium reduction method adapted to autoanalysis appeared to be a practical means to assay fructosamine quickly, economically, and accurately. The upper limit of the reference range is 374 μmol/L in dogs (95% percentile) and 340 μmol/L in cats (95% percentile). Newly diagnosed diabetic dogs and cats that had not undergone previous insulin therapy had significantly higher fructosamine concentrations than nondiabetic animals. In diabetic dogs that were receiving insulin therapy, the fructosamine test reflected the glycemic state far more accurately than did individual blood glucose measurements. Animals with satisfactory metabolic control revealed fructosamine concentrations within the reference range, whereas fructosamine concentrations above 400 μmol/L indicated insufficient metabolic control. On the basis of fructosamine concentrations, cats with a transitory hyperglycemia and cats with diabetes mellitus were differentiated. The fructosamine test is a valuable parameter for the diagnosis and metabolic control of diabetes mellitus in dogs and cats.  相似文献   

13.
The recently discovered pancreatic peptide amylin is postulated to be involved in the pathogenesis of feline diabetes mellitus. However, plasma amylin concentrations in normal and diabetic cats have not yet been published. The aim of the present study was to validate a commercial amylin radioimmunoassay kit for the measurement of feline amylin in unextracted plasma, and to measure plasma amylin concentrations in normal and diabetic cats. The kit had satisfactory specificity, sensitivity, accuracy, and precision, and can be recommended for measurement of feline amylin in unextracted EDTA plasma, when nonspecific binding of plasma samples is used in the calculation of measured amylin concentration. Fasting amylin concentration in cats with normal glucose tolerance was 97 +/- 4 pmol/L. Plasma amylin increased in parallel with insulin after glucose administration in cats with normal and impaired glucose tolerance. In contrast to cats with normal glucose tolerance, cats with impaired glucose tolerance had markedly delayed amylin and insulin secretion. Diabetic cats had basal hypoinsulinemia combined with hyperamylinemia. Hyperamylinemia may lead to reduced insulin secretion and insulin resistance, and contribute to the development of feline diabetes. In conclusion, feline amylin can be measured in unextracted EDTA plasma. Fasting amylin concentrations are approximately 100 pmol/L, and amylin and insulin are cosecreted in cats with normal and impaired glucose tolerance. Increased amylin concentrations may contribute to the development of feline diabetes mellitus.  相似文献   

14.
To elucidate the impact of dietary influence on carbohydrate and lipid metabolism and on the development of diabetes mellitus in the carnivorous cat, a 3 weeks feeding trial was carried out on six sexually intact and six neutered adult male cats. The effects of two isonitrogenic diets, differing in carbohydrate and fat content, were investigated on plasma metabolite levels in a 24-h blood sampling trial. Plasma leptin concentrations were also determined at the beginning and at the end of the 24-h trial. Glucose and insulin response was measured in an i.v. glucose tolerance test. A 5 days long digestion trial was also performed, which revealed a high digestion capacity of both fat and carbohydrates in cats. The high fat diet induced a significant rise in the plasma triglyceride, FFA, beta-hydroxybutyrate and cholesterol concentration, while the elevation in the glucose level did not reach significance. In the glucose tolerance test no significant difference was found between the neutered and intact cats. However, independently of the sexual state, the cats on the high fat diet showed a slightly elongated glucose clearance and reduced acute insulin response to glucose administration. This is indicative of diminished pancreatic insulin secretion and/or beta-cell responsiveness to glucose. The results of this preliminary study may be the impetus for a long-term study to find out whether it is rather the fat rich ration than carbohydrate rich diet that is expected to impair glucose tolerance and thus might contribute to the development of diabetes mellitus in cats. Whether the alteration in glucose metabolism is due to altered leptin levels remains to be determined.  相似文献   

15.
With the recent identification of non-insulin-dependent diabetes mellitus (NIDDM) in cats, new possibilities arise for the use of oral hypoglycaemic agents in the treatment of feline NIDDM, similar to their use in humans. To identify the future applicability of the oral hypoglycaemic agent, glipizide, in the treatment of feline NIDDM, its effects on serum insulin and glucose concentrations in healthy cats was examined. In addition, adverse effects seen clinically or on bloodwork following short-term use of the drug were looked for. Serum insulin and glucose concentrations were evaluated after the oral administration of 2.5, 5.0 and 10.0 mg glipizide and placebo in 10 healthy cats. For each drug trial, blood was obtained five minutes before, immediately before, and 7.5, 15, 30, 45, 60, 90 and 120 minutes after glipizide or placebo administration. Mean serum insulin concentration increased after glipizide administration, with peak mean serum insulin concentration occurring 15 minutes after administration and declining to baseline by 60 minutes. There was no significant difference in peak mean serum insulin concentration, mean serum insulin concentration at 60 minutes after glipizide administration, or mean total insulin secretion between the three glipizide dosages. Mean serum glucose concentration decreased within 15 minutes of glipizide administration, with the glucose nadir occurring 60 minutes after glipizide administration. Placebo trials showed no significant change in mean serum insulin or glucose concentrations from baseline concentrations.  相似文献   

16.
OBJECTIVE: To evaluate effects of dietary insoluble fiber on control of glycemia in cats with naturally acquired diabetes mellitus. DESIGN: Randomized controlled crossover trial. ANIMALS: 16 cats with naturally acquired diabetes mellitus. PROCEDURE: Cats were fed a diet high in insoluble fiber (HF) containing 12% cellulose (dry-matter basis) or a diet low in insoluble fiber (LF) for 24 weeks; they were fed the other diet for the subsequent 24 weeks. Caloric intake and insulin treatment were adjusted to maintain stable body weight and control of glycemia, respectively. Cats were allowed an adaptation period of 6 weeks after initiation of a diet, after which control of glycemia was evaluated at 6-week intervals for 18 weeks. Variables assessed included serum glucose concentration measured during the preprandial state, blood glycated hemoglobin concentration, serum glucose concentration measured at 2-hour intervals for 12 hours beginning at the time of the morning insulin injection, 12-hour mean serum glucose concentration, and mean fluctuation in serum glucose concentration from the 12-hour mean serum glucose concentration. RESULTS: Mean daily caloric intake, body weight, or daily insulin dosage did not differ significantly between cats when fed HF and LF diets. Mean preprandial serum glucose concentration, most post-prandial serum glucose concentrations, and the 12-hour mean serum glucose concentration were significantly lower when cats consumed the HF diet, compared with values when cats consumed the LF diet. CONCLUSIONS AND CLINICAL RELEVANCE: These results support feeding a commercially available diet containing approximately 12% insoluble fiber (dry-matter basis) to cats with naturally acquired diabetes mellitus.  相似文献   

17.
Dietary therapy is an important treatment component for diabetes mellitus (DM). In this study, the impact of three different commercially available diet regiments (1 general use and 2 aimed for treating obesity and DM) on short-term post-prandial serum glucose and insulin concentrations of five healthy cats to better understand what impact each of these diets may have for diabetic cats. The diet regiments used in this study were as follows: C/D dry (General Use- Low protein, High fat, High carbohydrate, and Low fiber), M/D dry (DM- High protein, High fat, Low carbohydrate, and High Fiber), and W/D dry (DM- Low Protein, Low Fat, High Carbohydrate, and High Fiber). No significant difference in post-prandial serum glucose levels were observed with the C/D (84.6 ± 1.5 mg/dl) and W/D (83.8 ± 1.4 mg/dl) dry diets when compared to pre-prandial fasting levels (83.9 ± 1.4 mg/dl). However, a significant reduction was observed with the M/D diet (78.9 ± 0.8 mg/dl) which had 50-60% less carbohydrates than either C/D or W/D diet. Unlike what was observed with post-prandial glucose levels, an interesting pattern emerged with post-prandial insulin levels, which were increasing with W/D, C/D, and M/D diets in that order (1.1 ± 0.2, 1.7 ± 0.2, and 2.3 ± 0.2 ng/ml respectively). Most surprising, though, was the fact that the W/D diet did not seem to stimulate insulin secretion as compared to pre-prandial levels (1.1 ± 0.1 ng/ml) in healthy cats. Interestingly, the W/D diet had high levels of carbohydrate and low levels of protein. Coincidentally, the only diet (M/D) which had a significant reduction in post-prandial glucose also showed the highest increase in post-prandial insulin in healthy cats. Therefore, dietary amounts of carbohydrate, fat, protein and fiber can all have an individual impact on post-prandial glycemia and subsequent insulin requirement levels. Just as concepts regarding dietary management of people with DM are evolving, investigators are reassessing what constitutes the ideal diet for the diabetic feline. As such, having a better understanding for each dietary component, may lead us to better understand how we can synergize certain dietary components to aid in DM management.  相似文献   

18.
The aim of this study was to investigate the effect of bexagliflozin on glycemic control in poorly regulated diabetic cats and to evaluate for adverse events associated with this medication.Sodium-glucose cotransporter 2 inhibitors are a newer class of drugs used in the management of humans with type 2 diabetes mellitus. The objective of this study was to evaluate the effect of the orally administered drug, bexagliflozin in a group of poorly regulated diabetic cats over a 4-week study period. Five client-owned cats with poorly controlled diabetes mellitus receiving insulin therapy were enrolled. Bexagliflozin was administered once daily. Serum fructosamine, serum biochemistry profile, and 10-hour blood glucose curves were assessed at baseline (Day 0), Day 14, and Day 28. All cats had a significant reduction in insulin dose requirement (P = 0.015) and insulin was discontinued in 2 cats. There was a significant decrease in blood glucose concentration obtained from blood glucose concentration curves during the study period (P = 0.022). Serum fructosamine decreased in 4 of the 5 cats with a median decrease of 152 μmol/L (range: 103 to 241 μmol/L), which was not statistically significant (P = 0.117). No cats had any documented episodes of hypoglycemia. Adverse effects were mild. The addition of bexagliflozin significantly improved diabetic management in this group of cats.  相似文献   

19.
Since insulin-like growth factor-I (IGF-I) was first discovered as a mediator of glucose homeostasis, it has been extensively investigated in diabetes research in humans, rodents and primates. To date, however, relatively little work has been carried out on this hormone in the cat, despite the pathophysiological similarities between human and feline diabetes mellitus, as well as the relatively common nature of the disease in cats. This study reports on the IGF-I concentrations of 42 insulin treated diabetic cats and 25 normal cats. Diabetic subjects were grouped according to length of insulin treatment as either short, medium or long term. Analysis of variance (ANOVA) and Fischer's pair-wise comparisons revealed that mean IGF-I levels in short-term diabetic cats were significantly lower than those in normal cats whilst mean levels in long-term diabetics were significantly higher. The direction and extent of these alterations may have implications for our understanding of the pathophysiology of feline diabetes mellitus and for the use of this hormone in the diagnosis of acromegaly in diabetic cats.  相似文献   

20.
This study quantifies the effects of marked weight gain on glucose and insulin metabolism in 16 cats which increased their weight by an average of 44.2% over 10 months. Significantly, the development of feline obesity was accompanied by a 52% decrease in tissue sensitivity to insulin and diminished glucose effectiveness. In addition, glucose intolerance and abnormal insulin response occurred in some cats. An important finding was that normal weight cats with low insulin sensitivity and glucose effectiveness were at increased risk of developing impaired glucose tolerance with obesity. High basal insulin concentrations or low acute insulin response to glucose also independently increased the risk for developing impaired glucose tolerance. Male cats gained more weight relative to females and this, combined with their tendency to lower insulin sensitivity and higher insulin concentrations, may explain why male cats are at greater risk for diabetes. Results suggest an underlying predisposition for glucose intolerance in some cats, which is exacerbated by obesity. These cats may be more at risk of progressing to overt type 2 diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号