首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Single-conidial isolates of Uncinula necator from (i) a population representing two vineyards with no previous exposure to sterol demethylation inhibitor (DMI) fungicides ("unexposed," n = 77) and (ii) a population representing two vineyards in which powdery mildew was poorly controlled by triadimefon after prolonged DMI use ("selected," n = 82) were assayed to determine distributions of sensitivities to the DMI fungicides triadimenol (the active form of triadimefon), myclobutanil, and fenarimol. Median 50% effective dose (ED(50)) values (micrograms per milliliter) in the selected versus unexposed populations were 0.06 versus 1.9 for triadimenol, 0.03 versus 0.23 for myclobutanil, and 0.03 versus 0.07 for fenarimol, respectively. Isolates were grouped into sensitivity classes according to their ED(50) values, and those from the selected population were categorized as resistant if the frequency of their sensitivity class had increased significantly relative to levels found in the unexposed population (ED(50) values exceeding 0.56, 0.18, and 0.18 mug/ml for triadimenol, myclobutanil, and fenarimol, respectively). Of the 76 isolates defined as resistant to triadimenol, 64% were classified as cross-resistant to myclobutanil, 18% were classified as cross-resistant to fenarimol, and 17% were classified as resistant to all three fungicides; 25% of the isolates classified as resistant to myclobutanil also were classified as resistant to fenarimol. Similar cross-resistance relationships were revealed when all isolates were examined by regressing log ED(50) values for each fungicide against those for the remaining two fungicides to determine the correlation coefficients (e.g., r = 0.85 for triadimenol versus myclobutanil and 0.56 for triadimenol versus fenarimol). The restricted levels of cross-resistance indicated by these data, particularly between fenarimol and the other two fungicides, is in sharp contrast to the high levels of cross-resistance among DMIs reported for some other pathogens and has significant implications with respect to programs for managing grapevine powdery mildew and DMI resistance.  相似文献   

2.
ABSTRACT The intensive use of site-specific fungicides in agricultural production provides a potent selective mechanism for increasing the frequency of fungicide-resistant isolates in pathogen populations. Practical resistance occurs when the frequency and levels of resistance are great enough to limit the effectiveness of disease control in the field. Cherry leaf spot (CLS), caused by the fungus Blumeriella jaapii, is a major disease of cherry trees in the Great Lakes region. The site-specific sterol demethylation inhibitor fungicides (DMIs) have been used extensively in the region. In 2002, CLS control failed in a Michigan orchard that had used the DMI fenbuconazole exclusively for 8 years. That control failure and our observations from around the state suggested that practical resistance had developed in B. jaapii. Field trial data covering 1989 to 2005 for the DMIs fenbuconazole and tebuconazole supported observations of reduced efficacy of DMIs for controlling CLS. To verify the occurrence of fungicide-resistant B. jaapii, monoconidial isolates were collected in two surveys and tested using a fungicide-amended medium. In one survey, 137 isolates from sites with different DMI histories (no known history, mixed or alternated with other fungicides, and exclusive use) were tested against 12 concentrations of fenbuconazole, tebuconazole, myclobutanil, and fenarimol. Isolates from sites with no prior DMI use were DMI sensitive (DMI(S) = no colony growth at 0.2 mug/ml a.i.) whereas the isolates from the site with prior exclusive use showed growth at DMI concentrations 3 to >100 times higher, and were rated as DMI resistant (DMI(R)). A second survey examined 1,530 monoconidial isolates, including 1,143 from 62 orchard sites in Michigan, where DMIs had been used to control CLS. Resistance to fenbuconazole was detected in 99.7% of the orchard isolates. All isolates from wild cherry trees were sensitive and isolates from feral and dooryard trees showed a range of sensitivities. A polymerase chain reaction (PCR)-based detection method for identifying B. jaapii and DMI(R) was developed and tested. The species-specific primer pair (Bj-F and Bj-R) based on introns in the CYP51 gene of B. jaapii, and the DMI(R)-specific primer pair (DMI-R-Bj-F and DMI-R-Bj-R) based on an insert found upstream of CYP51 in all DMI(R) isolates, provided an accurate and rapid method for detecting DMI(R) B. jaapii. The PCR-based identification method will facilitate timely decision making and continued monitoring of DMI(R) subpopulations in response to management programs.  相似文献   

3.
Kunz S  Deising H  Mendgen K 《Phytopathology》1997,87(12):1272-1278
ABSTRACT Acquisition of resistance to sterol demethylation inhibitors (DMIs) by populations of Venturia inaequalis was investigated using a microscopical method developed by C. Siebels and K. Mendgen. Microscopical analysis of conidiophore formation enabled the earlier detection of resistance and a clearer distinction between DMI-resistant and DMI-sensitive populations than other in vivo methods commonly used to analyze inhibitory effects of fungicides. In addition, because observations were made on the level of individuals, quantitative measures of the composition of conidial populations were obtained. The development of DMI sensitivity was followed over a period of 3 years in control apple orchards that had never been treated with fungicides and in orchards with DMI history. The 50% effective dose values determined by microscopical evaluation of conidio-phore development for untreated populations revealed the baseline sensitivities of 0.3, 0.96, 0.09, 1.22, and 1.92 mg/liter for flusilazole, fenarimol, difenoconazole, tebuconazole, and pyrifenox, respectively. As compared with the baseline sensitivity, all populations with DMI history showed significant resistance to flusilazole. A strong nonlinear correlation (R = 0.96) was found between the resistance factors and the sum of all DMI treatments of the 3 years before taking the sample. According to this correlation, resistance can be expected in all apple orchards of the fruit-growing area along Lake Constance, Germany, in which more than two DMI treatments per season have been applied. Due to cross-resistance, the recently introduced DMI fungicides difenoconazole, tebuconazole, and pyrifenox did not allow the control of V. inaequalis populations resistant to flusilazole.  相似文献   

4.
BACKGROUND: Myclobutanil, a demethylation inhibitor (DMI) fungicide, is an important fungicide for controlling apple scab and powdery mildew. Overuse of this fungicide has led to establishment of scab isolates with reduced sensitivity to this fungicide in several countries. Experiments were conducted to determine the sensitivity of the causal agent of apple scab, Venturia inaequalis (Cooke) Winter, to myclobutanil in the UK, in order to assess whether there is a relationship between fungal insensitivity and the number of DMI applications, and establishing whether fungal sensitivity varied greatly within an orchard. RESULTS: Reduced sensitivity of V. inaequalis to myclobutanil was positively related linearly to the number of DMI applications. ED50 values ranged from 0.028 to 1.017 mg L?1 (average = 0.292) for the baseline population, whereas isolates from two other orchards had much greater ED50 values, ranging from 0.085 to 5.213 mg L?1 (average = 1.852). There was significant variation in fungal sensitivity to myclobutanil among fungal isolates from different locations within a single orchard. CONCLUSIONS: Spatial spread of insensitive isolates of V. inaequalis to myclobutanil is likely to be limited in distance. Conidia may be an important source of primary inoculum. Myclobutanil should still be effective for most field isolates, but its use should be strategically integrated with other groups of fungicides. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
Pfeufer EE  Ngugi HK 《Phytopathology》2012,102(3):272-282
Orchard management practices, such as destroying of overwintered inoculum and limiting the number of fungicide applications, are often recommended as tactics for slowing the development of resistance to sterol demethylation-inhibitor (DMI) fungicides in populations of Venturia inaequalis. However, there is little quantitative evidence relating the use of such practices to levels of resistance in orchards. The aim of this study was to evaluate the sensitivity of V. inaequalis isolates from Pennsylvania to DMI fungicides, and to identify orchard management factors related to the incidence of resistant isolates. In total, 644 single-spore V. inaequalis cultures obtained from 20 apple orchards in 2008 or 2009 were tested for sensitivity to myclobutanil, fenbuconazole, or difenoconazole. Growers provided management history of the sampled plots. Widespread shifts toward resistance to the three fungicides were noted, with mean effective concentration for 50% inhibition (EC(50)) values of 2.136, 0.786, and 0.187 μg/ml for myclobutanil, fenbuconazole, and difenoconazole, respectively. Cross resistance to the three fungicides was documented in high correlation (Spearman's r > 0.6) between mean EC(50) values for 14 orchards. Based on a 0.5-μg/ml threshold, 66 and 26% of isolates were resistant to myclobutanil and fenbuconazole, respectively, and 22% were cross resistant to the two fungicides. A significant between-year shift toward increased resistance was noted in two of three orchards surveyed in both years. Failure to use dormant copper sprays, older trees, larger orchards, orchards with ≤10 cultivars, and application of >4 DMI sprays were positively correlated (0.0001 < P < 0.05) with the incidence of resistant isolates. Isolates from orchards with >4 DMI sprays were four times as likely to be resistant to fenbuconazole (odds ratio = 4.57; P = 0.015). Isolates from orchards without dormant copper sprays were twice as likely to be cross-shifted toward resistance to all three fungicides (odds ratio = 1.76; P = 0.048). Results identify management practices that can reduce the risk of V. inaequalis developing resistance to DMI fungicides.  相似文献   

6.
Monoconidial strains of Venturia nashicola Tanaka et Yamamoto were isolated from Japanese or Chinese white pear trees which had never been treated with sterol demethylation inhibitors (DMIs) and their baseline sensitivities to fenarimol were determined by mycelial growth tests on fungicide-amended culture media. Strains were also obtained from Japanese pear orchards, which had been intensively treated with DMIs for several years and monitored for the shifts of fenarimol sensitivity in comparison with the baseline sensitivity. Results suggested slight shifts to lower fenarimol sensitivity in strains isolated from DMI-treated Japanese pear orchards. However, in inoculation tests on pear seedlings, fenarimol still provided adequate control of V. nashicola strains with reduced sensitivity to fenarimol in vitro, suggesting that the performance of this fungicide will still be maintained in the field. © 1998 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Cucurbit powdery mildew elicited by Podosphaera fusca (Fr.) U Braun & N Shishkoff limits crop production in Spain. Disease control is largely dependent on fungicides such as sterol demethylation inhibitors (DMIs). Fungicide resistance is an increasing problem in this pathogen. To overcome such risk, it is necessary to design rational control programmes based upon knowledge of field resistance. The aim of this study was to investigate the state of DMI sensitivity of Spanish P. fusca populations and provide tools for improved disease management. RESULTS: Using a leaf‐disc assay, sensitivity to fenarimol, myclobutanil and triadimenol of 50 isolates of P. fusca was analysed to determine discriminatory concentrations between sensitive and resistant isolates. As no clearly different groups of isolates could be identified, discriminatory concentrations were established on the basis of maximum fungicide field application rate, 100 mg L?1 for the three fungicides tested. Subsequently, a survey of DMI resistance was carried out in different provinces located in the south central area of Spain during the cucurbit growing seasons in 2002, 2003 and 2004. Examination of a collection of 250 isolates revealed that 23% were resistant to fenarimol and 7% to triadimenol, the provinces of Almería, Badajoz and Murcia being the locations with the highest frequencies of resistance. By contrast, no resistance to myclobutanil was found. CONCLUSION: Results show that fenarimol and, to a lesser extent, triadimenol have become less efficient for controlling cucurbit powdery mildew in Spain. These are important observations that should lead to reconsideration of the current disease management programmes. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Four hundred and thirty-five isolates of Sclerotinia homoeocarpa from eight populations in southern Ontario were tested for sensitivity to the demethylation-inhibiting (DMI) fungicides, propiconazole, myclobutanil, fenarimol and tebuconazole. The isolates were collected in summer 1994 just prior to legal DMI fungicide use on turfgrass in Ontario. There were wide variations in sensitivities, and seven of the eight populations were very sensitive to the fungicides. Based on mean EC50 and the distribution of DMI sensitivity, one population near the U.S. border was suspected of having been previously exposed to DMI fungicide. Pairwise comparisons of EC50 values for the different fungicides showed low to moderate correlations between fungicides. EC50 values of myclobutanil and propiconazole had the best correlation, followed by the pair of tebuconazole and fenarimol. Other pairwise comparisons were not statistically significant except for a barely significant relationship between EC50 values of myclobutanil and tebuconazole. For field populations of plant pathogens, cross-resistance to different DMI fungicides may not be as strong as conventionally thought. The data collected here will allow comparison to subsequent years to look for detectable shifts in S. homoeocarpa sensitivity to DMI fungicides as they become more frequently used in Ontario.  相似文献   

9.
ABSTRACT We identified the cytochrome P450 sterol 14alpha-demethylase (CYP51A1) gene from Venturia inaequalis and optional insertions located upstream from CYP51A1 and evaluated their potential role in conferring resistance to the sterol demethylation-inhibitor (DMI) fungicide my-clobutanil. The CYP51A1 gene was completely sequenced from one my-clobutanil sensitive (S) and two myclobutanil-resistant (R) strains. No nucleotide variation was found when the three sequences were aligned. Allele-specific polymerase chain reaction (PCR) analysis indicated that a previously described single base pair mutation that correlated with resistance to DMI fungicides in strains of other filamentous fungi was absent in 19 S and 32 R strains of V. inaequalis from Michigan and elsewhere. The sequencing results and PCR analyses suggest that resistance in these strains was not due to a mutation in the sterol demethylase target site for DMI fungicides. Expression of CYP51A1 was determined for strains from an orchard that had never been sprayed with DMI fungicides (baseline orchard), and the data provided a reference for evaluating the expression of strains collected from a research orchard and from three commercial Michigan apple orchards with a long history of DMI use and a high frequency of R strains. Overexpression of CYP51A1 was significantly higher in 9 of 11 R strains from the research orchard than in S strains from the baseline orchard. The high expression was correlated with the presence of a 553-bp insertion located upstream of CYP51A1. Overexpression of the CYP51A1 gene was also detected in eight of eight, five of nine, and nine of nine R strains from three commercial orchards, but the insertion was not detected in the majority of these strains. The results suggest that overexpression of the target-site CYP51A1 gene is an important mechanism of resistance in some field resistant strains of V. inaequalis, but other mechanisms of resistance also appear to exist.  相似文献   

10.
In the United States, populations of the apple scab pathogen Venturia inaequalis have progressed through three consecutive rounds of fungicide resistance development, first to dodine, then to the benzimidazoles, and most recently to the sterol demethylation inhibitors (DMIs). Analysis of extensive monitoring data have to date provided no indication of detectable cross-resistance or partial cross-resistance of V. inaequalis populations to the three unrelated classes of fungicides prior to the selection of resistant subpopulations. However, in this study, resistance to both benomyl and DMIs developed to significantly higher frequencies within the previously established dodine-resistant population than in the population sensitive to dodine. Accelerated selection of phenotypes double resistant to dodine and the DMI fenarimol was apparent over the course of distinct seasons of apple scab management with either dodine or fenarimol. The data provide evidence for an accelerated speed of resistance development among phenotypes of V. inaequalis already resistant to an unrelated fungicide. This finding represents a departure from the previous model, which assumed entirely independent rounds of resistance developments. The data indicate that phenotypes of V. inaequalis might not only be selected for the trait of fungicide resistance but also for traits allowing a more flexible response to changes in the environment where they compete.  相似文献   

11.
BACKGROUND: Management of strawberry powdery mildew, Podopshaera aphanis (Wallr.), requires numerous fungicide treatments. Limiting epidemics is heavily dependent on sterol demethylation inhibitors (DMIs) such as myclobutanil or penconazole. Recently, a noticeable reduction in the efficacy of these triazole fungicides was reported by strawberry growers in France. The goal of this study was to investigate the state of DMI sensitivity of French P. aphanis and provide tools for improved pest management. RESULTS: Using leaf disc sporulation assays, sensitivity to myclobutanil and penconazole of 23 isolates of P. aphanis was monitored. Myclobutanil EC50 ranged from less than 0.1 to 14.67 mg L?1 and for penconazole from 0.04 to 4.2 mg L?1. A cross‐analysis and a Venn diagram showed that there was reduced sensitivity and a positive correlation between the less sensitive myclobutanil and penconazole isolates; 73.9% of isolates were less sensitive to a DMI and 47.8% exhibited less sensitivity to both fungicides. CONCLUSION: The results show that sensitivity to myclobutanil and, to a lesser extent, penconazole has become less efficient in strawberry powdery mildew in France. Therefore, urgent action is required in order to document its appearance and optimise methods of control. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
Differential accumulation of [14C]imazalil and [14C]fenarimol by germlings of wild-type and DMI-resistant isolates ofPenicillium italicum was studied at various pH values. At pH 7 and 8 the low-resistant isolate E300–3 accumulated 22% and 35%, respectively, less imazalil than the wild-type isolate W5. Imazalil accumulation at pH 5 and 6 was similar. Isolate E300–3 also accumulated less fenarimol as compared with the wild-type isolate. This difference was much more obvious than for imazalil and was observed at all pH values tested. Differences in accumulation of both imazalil and fenarimol between low (E300–3), medium (H17) and high resistant (I33) isolates were not observed. These results suggest that decreased accumulation of DMIs is responsible for a low level of resistance only and that additional mechanisms of resistance might operate in isolates with a medium and high degree of resistance. With all isolates fenarimol accumulation was energy-dependent. This was not obvious for imazalil.The wild-type and DMI-resistant isolates had a similar plasma membrane potential as determined with the probe [14C]tetraphenylphosphonium bromide ([14C]TPP+). Various test compounds, among which ATPase inhibitors, ionophoric antibiotics and calmodulin antagonists, affected the accumulation of [14C]TPP+, [14C]imazalil and [14C]fenarimol. No obvious correlation between the effects of the test compounds on accumulation levels of the fungicides and [14C]TPP+ could be observed. These results indicate that the plasma membrane potential does not mediate the efflux of DMI fungicides byP. italicum.  相似文献   

13.
The hemibiotrophic fungus Cercospora beticola causes leaf spot of sugar beet. Leaf spot control measures include the application of sterol demethylation inhibitor (DMI) fungicides. However, reduced sensitivity to DMIs has been reported recently in the Red River Valley sugar beet-growing region of North Dakota and Minnesota. Here, we report the cloning and molecular characterization of CbCyp51, which encodes the DMI target enzyme sterol P450 14α-demethylase in C. beticola. CbCyp51 is a 1,632-bp intron-free gene with obvious homology to other fungal Cyp51 genes and is present as a single copy in the C. beticola genome. Five nucleotide haplotypes were identified which encoded three amino acid sequences. Protein variant 1 composed 79% of the sequenced isolates, followed by protein variant 2 that composed 18% of the sequences and a single isolate representative of protein variant 3. Because resistance to DMIs can be related to polymorphism in promoter or coding sequences, sequence diversity was assessed by sequencing >2,440 nucleotides encompassing CbCyp51 coding and flanking regions from isolates with varying EC(50) values (effective concentration to reduce growth by 50%) to DMI fungicides. However, no mutations or haplotypes were associated with DMI resistance or sensitivity. No evidence for alternative splicing or differential methylation of CbCyp51 was found that might explain reduced sensitivity to DMIs. However, CbCyp51 was overexpressed in isolates with high EC(50) values compared with isolates with low EC(50) values. After exposure to tetraconazole, isolates with high EC(50) values responded with further induction of CbCyp51, with a positive correlation of CbCyp51 expression and tetraconazole concentration up to 2.5 μg ml(-1).  相似文献   

14.
Monilia yunnanensis was recently identified as a new species causing brown rot of peach in China. Sterol 14α-demethylase inhibitors (DMIs) continue to be important in the management of brown rot of Monilinia spp. worldwide. Tebuconazole and triadimefon are two kinds of DMI fungicides that may be used for brown rot control in China. To establish the baseline sensitivity of M. yunnanensis to these two DMI fungicides, 203 M. yunnanensis single spore isolates were collected. Measurements of sensitivity to the two fungicides were based on inhibition of mycelial growth. For both fungicides, the sensitivity distribution was a unimodal curve, with an EC50 range (the effective concentration to inhibit mycelial growth by 50 %) of 0.0001–0.0644 μg/ml for tebuconazole and 0.2311–1.7477 μg/ml for triadimefon. The M. yunnanensis isolates were obtained from orchards where DMI fungicides have not been used for peach brown rot control, thus the fungicide sensitivity distribution established in this study can be considered as the baseline for monitoring the resistance development in M. yunnanensis once the DMI fungicides are used to control peach brown rot.  相似文献   

15.
Since the occurrence and spread of resistance to quinone outside inhibitors (QoI) in Mycosphaerella graminicola in the early 2000s in Europe, demethylation inhibitors (DMIs) form the backbone for control of Septoria leaf blotch. European monitoring studies, carried out by various research institutes and DMI manufacturers, have shown a shift of the European M. graminicola population towards increased ED50 values for DMI fungicides. Populations of M. graminicola consist of very heterogeneous isolates within a region, and even within a field, in terms of DMI sensitivity. Sensitivity to DMIs is influenced by the haplotype of CYP51, the target of DMIs. New CYP51‐haplotypes have emerged and the frequency of less sensitive haplotypes in Europe has increased in recent years. Studies with efflux transporter inhibitors showed that not only CYP51, but also enhanced efflux, may play a role in the DMI sensitivity response. Sensitivity studies with 5 DMIs registered for Septoria leaf blotch control indicated that sensitivity of isolates to the 5 DMIs is heterogeneous and the overall correlation of sensitivity to the different DMIs is poor. A key requirement for sustainable control and resistance management of Septoria leaf blotch is therefore the continued availability of different DMIs.  相似文献   

16.
BACKGROUND: Septoria leaf blotch is the most important disease of wheat in Europe. To control this disease, fungicides of the 14α‐demethylase inhibitor group (DMIs) have been widely used for more than 20 years. However, resistance towards DMIs has increased rather quickly in recent years. The objective of this study was to evaluate, on plants and under controlled conditions, the protective and curative efficacy of the DMI fungicide prothioconazole against three current isolates of M. graminicola, chosen to belong to different DMI‐resistant phenotypes. Fungicide efficacy was assessed by visual symptoms and by quantitative real‐time polymerase chain reaction (PCR). RESULTS: With a protective fungicide application, prothioconazole was always effective against each isolate. This was in accordance with the EC50 results. However, curative efficacy differed between the isolates. It remained at a good level, between 60 and 70% against one isolate, whereas it was strongly affected by late applications from 7 days post‐inoculation with the two other isolates. CONCLUSION: A protective application of prothioconazole in wheat crops could be the best strategy to keep a high efficacy against Septoria leaf blotch. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
Stem rot caused by Lasiodiplodia theobromae is an important postharvest disease of papaya in Brazil, responsible for reducing the quality and quantity of fruits. Fungicide use is one of the main disease management measures. However, there are no estimates available of pathogen sensitivity to commonly employed fungicides. Therefore, the EC50 from 120 isolates of L. theobromae from northeastern Brazil, representative of six populations of the pathogen, was estimated in vitro for fungicides of the methyl benzimidazole carbamates—MBC (benomyl and thiabendazole) and demethylation-inhibiting—DMI (imazalil, prochloraz, tebuconazole) groups. Mycelial growth on fungicide-free media and virulence on papaya fruits of the MBC-sensitive and non-sensitive isolates were compared. For MBCs, 8.4% of isolates were non-sensitive to fungicides. For the remaining 91.6%, the mean EC50 ranged from 0.002 to 0.13 μg ml−1 and 0.36 to 1.27 μg ml−1 for benomyl and thiabendazole, respectively. For DMIs, the mean EC50 range for imazalil was 0.001 to 2.27 μg ml−1, 0.04 to 1.75 μg ml−1 for prochloraz, and 0.14 to 4.05 μg ml−1 for tebuconazole. The EC50 values of non-sensitive isolates were significantly (P≤0.05) higher those for the sensitive isolates for each of the DMI fungicides. Differences (P≤0.05) were found in the levels of sensitivity to DMI fungicides among the isolate populations associated with orchards. The populations from two orchards were less sensitive to DMIs. No solid evidence was found for fitness costs relating to MBC non-sensitive isolates because mycelial growth in fungicide-free media and virulence on papaya fruits were similar to those of sensitive isolates.  相似文献   

18.
Isolates of Venturia inaequalis were sampled from monoculture and mixed orchards of three apple cultivars: Bramley, Cox and Worcester. In addition, single-ascospore progeny isolates were obtained from three crosses between pairs of isolates originating from the three cultivars in monoculture orchards. These field isolates and single-ascospore progenies were inoculated onto each of the three cultivars in a glasshouse. The patterns of infection showed that all three cultivars, commonly regarded as susceptible to scab, contained some specific resistance factors and that scab isolates from both mixed and monoculture orchards appeared to have co-evolved with cultivars. A much higher proportion of isolates from cv. Worcester in the mixed orchard were unable to infect any of the three cultivars than isolates from any other combination of cultivar and orchard type, but there was no other difference between isolates from mixed vs. monoculture orchards. Many isolates could infect both Bramley and Cox, or Cox and Worcester; but only a single isolate could infect both Bramley and Worcester. Results from the testing of 61 single-ascospore progeny isolates suggested that virulence towards Bramley, Cox and Worcester was controlled by at least one, two and three factors, respectively. Moreover, the exact nature of the interactions between these factors in determining virulence depended on the particular pair of isolates concerned.  相似文献   

19.
In France, as in many other European countries, Mycosphaerella graminicola (Fuckel) Schr?ter in Cohn (anamorph Septoria tritici), the causal agent of wheat leaf blotch, is controlled by foliar applications of fungicides. With the recent generalization of resistance to strobilurins (QoIs), reliable control is mainly dependent upon inhibitors of sterol 14 alpha-demethylation (DMIs). To date, strains with reduced sensitivity to DMIs are widespread, but disease control using members of this class of sterol biosynthesis inhibitors has not been compromised. In this study, sensitivity assays based on in vitro effects of fungicides towards germ-tube elongation allowed the characterization of seven DMI-resistant phenotypes. In four of them, cross-resistance was not observed between all tested DMIs; this characteristic concerned prochloraz, triflumizole, fluquinconazole and tebuconazole. Moreover, the highest resistant factors to most DMIs were found only in recent isolates; according to their response towards prochloraz, they were classified into two categories. Molecular studies showed that DMI resistance was associated with mutations in the CYP51 gene encoding the sterol 14 alpha-demethylase. Alterations at codons 459, 460 and 461 were related to low resistance levels, whereas, at position 381, a valine instead of an isoleucine, in combination with the previous changes, determined the highest resistance levels to all DMIs except prochloraz. Mutations in codons 316 and 317 were also found in some isolates exhibiting low resistance factors towards most DMIs.  相似文献   

20.
系统比较了从云南省主要葡萄产区采集的57株葡萄胶胞炭疽菌Colletotrichum gloeosporioides对三唑类脱甲基抑制剂烯唑醇、腈菌唑及咪唑类脱甲基抑制剂咪鲜胺的敏感性、交互敏感性及敏感性与生存适合度的相关性等指标。结果表明:供试菌株对咪鲜胺的EC50值在0.01~1.58 mg/L之间,高于其对烯唑醇(EC50值为0.05~25.45 mg/L)和腈菌唑(EC50值为0.49~192.93 mg/L)的敏感性;部分菌株对烯唑醇和腈菌唑的敏感性显著降低,而对咪鲜胺仍保持较高的敏感性;供试菌株对烯唑醇和腈菌唑的敏感性具有显著的相关性,而对咪鲜胺的敏感性与对烯唑醇和腈菌唑的敏感性之间则无显著相关性。低敏感性菌株的致病力和菌落生长速率与敏感菌株无显著差异,具有较高的生存适合度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号