首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT Cultivar mixtures can reduce potato late blight severity on susceptible cultivars. While alternating rows of susceptible and resistant cultivars would be more acceptable than random mixtures for commercial use, they increase the genotype unit area, which is an unfavorable factor for mixture efficiency, and have been minimally efficient when disease pressure is high. The effects of disease pressure on the performance of alternating rows of cultivars possessing various types and levels of resistance were investigated in 2000 and 2001 near Quito, Ecuador, where natural pressure of late blight is high. The experiments included the highly susceptible cvs. Cecilia in 2000 and LBr37 in 2001, as well as C114 (moderately resistant) and PAN (highly resistant), planted as pure stands and as the three possible two-way combinations. Different disease pressures were obtained with three spraying schedules of a contact fungicide: nontreated, one spray every second week, and one spray weekly. The area under the disease progress curve (AUDPC) on the susceptible cultivar was 0 to 20% less in mixed than in pure plots when no fungicide was applied, 13 to 26% less with a biweekly application of fungicide, and 32 to 53% less with a weekly application. These values are comparable to those obtained in previous experiments in smaller plots with designs maximizing the distance between susceptible plants. No significant differences in mixture performance were observed according to the resistant cultivar included. Effects on yield were minimal, because of the impact of factors other than late blight. Disease pressure therefore appears as a major factor conditioning the efficiency of potato cultivar mixtures against late blight.  相似文献   

2.
许韬  徐志  徐媛  段霞瑜 《植物保护》2014,40(3):87-93
对品种混合种植控制小麦白粉病的效果以及对小麦穗重、千粒重、蛋白质等指标的影响进行了研究,为混合种植控制白粉病提供理论依据和品种组合。在对37个小麦品种进行SSR多样性分析的基础上,选用8个生产品种(后备品种),按品种数3、4、5、6、8进行组合,在田间以随机区组设计种植混播组合和单播小区,人工接种白粉菌,比较各小区中小麦白粉病的AUDPC值、穗重、千粒重和粗蛋白差异。结果表明,8个品种亲缘关系较远;4品种混种时AUDPC最小,穗重最重。26个品种混种组合中有防治效果的组合占到73.08%,相对防效为1.23%~56.65%;混种未对穗重和粗蛋白含量造成负面影响。品种多样性种植可以用做调控小麦白粉病的一项措施。  相似文献   

3.
Garrett KA  Mundt CC 《Phytopathology》2000,90(12):1307-1312
ABSTRACT The use of host diversity as a tool for management of potato late blight has not been viewed as promising in the past. But the increasing importance of late blight internationally has brought new consideration to all potential management tools. We studied the effect of host diversity on epidemics of potato late blight in Oregon, where there was little outside inoculum. The experimental system consisted of susceptible potato cv. Red LaSoda and a highly resistant breeding selection, inoculated with local isolates of US-8 Phytophthora infestans. Potatoes were grown in single-genotype plots and also in a mixture of 10 susceptible and 26 resistant potato plants. Half of the plots received inoculation evenly throughout the plot (general inoculation) and half received an equal quantity of inoculum in only one corner of the plot (focal inoculation). The area under the disease progress curve (AUDPC) was greater in single genotype stands of susceptible cv. Red LaSoda inoculated throughout the plot than with stands inoculated in one focus. The host-diversity effect on foliar late blight was significant in both years of the investigation; the AUDPC was reduced by an average of 37% in 1997 and 36% in 1998, compared with the mean disease level for the potato genotypes grown separately. Though the evidence for influence of inoculum pattern on host-diversity effects was weak (P = 0.15), in both years there was a trend toward greater host-diversity effects for general inoculation. Statistical significance of host-diversity effects on tuber yield and blight were found only in one of the two years. In that year, tuber yield from both the resistant and susceptible cultivar was increased in mixtures compared with single genotype stands and tuber blight was decreased in mixtures for susceptible cv. Red LaSoda.  相似文献   

4.
The use of cultivar mixtures is increasingly practical in wheat stripe rust management. Field experiments with wheat cultivar mixtures were conducted to determine their effects on temporal and spatial patterns of stripe rust epidemics in three regions. In the Beijing and Gangu fields, where the epidemics were caused by artificial inoculation, disease incidence and the area under the disease progress curve (AUDPC) of the cultivar mixtures were significantly lower (P < 0.05) than those of the susceptible pure stands. We defined the relative effectiveness of cultivar mixture on disease development related to that in pure stands (REM). The results demonstrated that in many treatments of mixtures of susceptible cultivar with resistant cultivars at various ratios in different locations, their effects on disease reduction were positive (REM < 1). The reduction of epidemic rate in cultivar mixtures expressed in either early season or late season depended on the initial pattern of disease and cultivar mixture treatments. Semivariograms were used to determine the spatiotemporal patterns of disease in the Gangu field. The spatial analysis showed clear spatial patterns of the disease in all four directions of the fields on susceptible pure stands but not on cultivar mixtures. The results implied that the mechanisms of cultivar mixture on disease management might include the interruption of disease spatial expansion and a physical barrier to pathogen inoculum by resistant cultivars.  相似文献   

5.
Late blight, caused by Phytophthora infestans , is the most severe disease of potato worldwide. Controlling late blight epidemics is difficult, and resistance of host cultivars is either not effective enough, or too easily overcome by the pathogen to be used alone. In field trials conducted for 3 years under natural epidemics, late blight severity was significantly lower in a susceptible cultivar growing in rows alternating with partially resistant cultivars (mixtures) than in unmixed plots of the susceptible cultivar alone. Partially resistant cultivars behaved similarly in unmixed and mixed plots. Mixtures of cultivars reduced disease progress rates and sometimes delayed disease onset over unmixed plots, but did so significantly only for the slowest epidemic. This suggests that reduction of area under the disease progress curve (AUDPC) in mixtures resulted from the cumulative action of minor effects. Disease distribution was focal in all plots at all dates, as shown by Morisita's index values significantly exceeding 1. Significant yield increases for the susceptible cultivar, and occasionally for the partially resistant ones, were observed in mixed-cultivar plots compared with single-cultivar plots. These results show that cultivar mixtures can significantly reduce natural, polycyclic epidemics in broadleaved plants attacked by pathogens causing rapidly expanding lesions.  相似文献   

6.
Five winter wheat cultivars, six two-component cultivar mixtures, and one four-way mixture were grown in the presence of yellow rust, eyespot, both diseases, and neither disease for three seasons. On average, mixtures reduced the severity of yellow rust relative to their component pure stands by 53%. The four-component mixture provided better yellow rust control than did the two-way mixtures. Eyespot severity was reduced through mixing only in the absence of yellow rust and by only three of the seven mixtures (mean reduction = 13%). Yellow rust was 13% less severe in the presence of eyespot, and eyespot was 10% more severe in the presence of yellow rust. Averaged over all years, the mixtures increased yield relative to the pure stands by 6·2, 1·7, 7·1, and 1·3% in the presence of yellow rust, eyespot, both diseases, and neither disease, respectively. Two mixtures provided significant yield increases over the means of their component pure stands (7% and 9%) in the presence of eyespot even though one of them did not significantly reduce eyespot severity. Accounting for all disease treatments and years, four mixtures provided distinctly higher yield increases than the other three. In mixtures containing a resistant cultivar and a cultivar susceptible to eyespot, yield loss by the susceptible cultivar was not compensated for by increased yield of the resistant cultivar. The mixtures showed improved yield stability relative to the pure stands, with the four-component mixture being particularly stable.  相似文献   

7.
Research on Xanthomonas oryzae pv. oryzae, the bacterial blight of rice pathogen, was initiated at the Institute of Agriculture and Animal Science (IAAS) with the main objective of assessing the population structure of X. o. pv. oryzae through the use of both conventional and molecular markers in combination with virulence typing. A high DNA polymorphism was detected in the pathogen populations using different DNA probes and rep-PCR primers. Most strains were avirulent to cultivars containing the bacterial blight resistance gene Xa-21, which suggested the strategy that targets gene deployment is feasible in Nepal.  相似文献   

8.
Integrating cultivars that are partially resistant with reduced fungicide doses offers growers an opportunity to decrease fungicide input but still maintain disease control. To use integrated control strategies in practice requires a method to determine the combined effectiveness of particular cultivar and fungicide dose combinations. Simple models, such as additive dose models (ADM) and multiplicative survival models (MSM), have been used previously to determine the joint action of two or more pesticides. This study tests whether a model based on multiplicative survival principles can predict the joint action of fungicide doses combined with cultivars of differing partial host resistance. Data from eight field experiments on potato late blight (Phytophthora infestans) were used to test the model; the severity of foliar blight was assessed and scores used to calculate the area under the disease progress curve (AUDPC). A subset of data, derived from the most susceptible cultivar, King Edward, was used to produce dose–response curves from which parameter values were estimated, quantifying fungicide efficacy. These values, along with the untreated values for the more resistant cultivars, Cara and Sarpo Mira, were used to predict the combined efficacy of the remaining cultivar by fungicide dose combinations. Predicted efficacy was compared against observations from an independent subset of treatments from the field experiments. The analysis demonstrated that multiplicative survival principles can be applied to describe the joint efficacy of host resistance and fungicide dose combinations.  相似文献   

9.
小麦品种多样性对白粉病及产量和蛋白质的影响   总被引:1,自引:0,他引:1  
 对品种多样性控制小麦白粉病的效果以及对产量和蛋白质的影响进行了研究,为利用品种多样性控制白粉病提供理论依据和技术支持。采用SSR技术分析5个小麦品种的亲缘关系;2008年和2009年按组合所含品种数为2、3、4和5个进行组合,在田间种植混种组合和单播小区,人工接种白粉菌,比较各小区中小麦白粉病的AUDPC值、产量和蛋白质变化。结果表明,5个品种亲缘关系相对较近;2个品种混合时以抗感搭配较好,随着抗病品种比例增加控病效果增强;2008年混合种植中有防治效果的组合占54.55%,相对防效为10.02%~47.58%,2009年有防治效果的组合占23.08%,相对防效在1.85% 到18.96 % 之间;在适当的组合中,如京冬8号/轮选987、京双16/京411/京冬8号对小麦白粉病有控制效果,混种不会影响产量和蛋白质含量;当有大量能克服本地品种抗性的外来菌源时混合种植的控病效果降低。品种多样性可以用做防治小麦白粉病的一项措施。  相似文献   

10.
Four winter wheat ( Triticum aestivum ) cultivars and three two-component cultivar mixtures were planted in a replacement series both inoculated with or protected from yellow rust ( Puccinia striiformis ) in three environments. Each cultivar was susceptible to one or two of the rust races used. Mixtures yielded, on average, 7 and 4% more than their component pure stand means under inoculated and rust-free conditions, respectively. Though all yield components were affected by yellow rust, seed weight was the component that was most consistently influenced. The component genotypes within mixtures varied considerably with respect to yield, and the yield of the same component cultivar included in different mixtures sometimes differed significantly. The correlation between yellow rust severity/tiller and grain yield/tiller in mixture differed among cultivars and depended on their companion cultivar. Variance component analysis indicated that yellow rust was the most important experimental variable influencing grain yield. There was no relationship between yield of the cultivars in pure stands and their yields or competitive abilities in mixture. Disease did not change the competitive ranking of cultivars in mixture. Mixtures with complementary, negative, and overcompensatory interactions were identified. On average, mixtures showed no greater yield stability than did pure stands.  相似文献   

11.
Cultivar mixtures slow polycyclic epidemics but may also affect the evolution of pathogen populations by diversifying the selection pressures exerted by their plant hosts at field scale. We compared the dynamics of natural populations of the fungal pathogen Zymoseptoria tritici in pure stands and in three binary mixtures of wheat cultivars (one susceptible cultivar and one cultivar carrying the recently broken-down Stb16q gene) over two annual field epidemics. We combined analyses of population “size” based on disease severity, and of population “composition” based on changes in the frequency of virulence against Stb16q in seedling assays with more than 3000 strains. Disease reductions were observed in mixtures late in the epidemic, at the whole-canopy scale and on both cultivars, suggesting the existence of a reciprocal protective effect. The three cultivar proportions in the mixtures (0.25, 0.5, and 0.75) modulated the decrease in (a) the size of the pathogen population relative to the two pure stands, (b) the size of the virulent subpopulation, and (c) the frequency of virulence relative to the pure stand of the cultivar carrying Stb16q. Our findings suggest that optimal proportions may differ slightly between the three indicators considered. We argue potential trade-offs that should be taken into account when deploying a resistance gene in cultivar mixtures: between the dual objectives “efficacy” and “durability,” and between the “size” and “frequency” of the virulent subpopulation. Based on current knowledge, it remains unclear whether virulent subpopulation size or frequency has the largest influence on interepidemic virulence transmission.  相似文献   

12.
This study follows on from a previous study showing that binary mixtures of wheat cultivars affect the evolution of Zymoseptoria tritici populations within a field epidemic from the beginning (t1) to the end (t2) of a growing season. Here, we focused on the impact of interseason sexual reproduction on this evolution. We studied mixtures of susceptible and resistant cultivars (carrying Stb16q, a recently broken-down resistance gene) in proportions of 0.25, 0.5 and 0.75, and their pure stands. We determined the virulence status of 1440 ascospore-derived strains collected from each cultivar residue by phenotyping on seedlings. Virulence frequencies in the ascospore-derived population were lower in mixtures than in pure stands of the resistant cultivar, especially in the susceptible cultivar residues, as at t2, revealing that the impact of mixtures persisted until the next epidemic season (t3). Surprisingly, after sexual reproduction the avirulence frequencies on the resistant cultivar residues increased in mixtures where the proportion of the susceptible cultivar was higher. Our findings highlight two epidemiological processes: selection within the pathogen population between t1 and t2 driven by asexual cross-contamination between cultivars (previous study) and sexual crosses between avirulent and virulent strains between t2 and t3 driven by changes in the probabilities of physical encounters (this study). Mixtures therefore appear to be a promising strategy for the deployment of qualitative resistances, not only to limit the intensity of Septoria tritici blotch epidemics, but also to reduce the erosion of resistances by managing evolution of the pathogen population at a pluriannual scale.  相似文献   

13.
Wheat yellow rust (WYR), caused by Puccinia striiformis f. sp. tritici (PST), is a major disease of wheat, and deployment of a single cultivar often leads to disease epidemics. Effect of inoculum level, foliar fungicide spray, and wheat cultivar mixtures were evaluated on disease development in the field and greenhouse in Nepal. Treatments were arranged in a split–split plot design with three replications in both experiments. Two inoculum levels of PST (low and high) were main plot factors; nontreated control and foliar spray of fungicides (Mancozeb and Bayleton) were subplot factors; and two-component cultivar mixtures, composed of different ratios of a susceptible (S) and a resistant (R) cultivars (90:10, 80:20, and 50:50, 100:0, and 0:100) were sub–subplot factors. WYR severity was assessed at different time intervals, and disease development was calculated as area under the disease progress curve (AUDPC). Inoculum level did not cause significant differences in AUDPC in the field but did in the greenhouse. Foliar spray of fungicides reduced the AUDPC in the greenhouse and field. In both experiments, AUDPC values were low in cultivar mixtures compared with a pure stand of a susceptible cultivar. As the proportion of resistant cultivar increased compared with the susceptible cultivar in the S:R mixture component, disease severity decreased with a consequent increase in grain yield. The greater yield obtained with cultivar mixtures compared with only the susceptible cultivar, independent of inoculum level and fungicide spray in the field, revealed a promising strategy to manage WYR in Nepal.  相似文献   

14.
The multiplication of Soil-borne wheat mosaic virus (SBWMV) was studied in mixtures of two winter wheat (Triticum aestivum) cultivars, one susceptible (Soissons) and the other resistant (Trémie). Two seed mixtures of susceptible and resistant varieties in ratios of 1 : 1 and 1 : 3 and their component pure stands, i.e. each variety grown separately, were grown in a field infected with SBWMV. The presence of the virus was detected using DAS-ELISA from January to May. The resistant cultivar Trémie showed no foliar symptoms nor could the virus be detected in the leaves or roots. In May, about 88% of plants of susceptible cultivar Soissons grown in pure stands were infected. At this time, the disease reduction relative to pure stands was 32.2% in the 1 : 1 mixture and 39.8% in the 1 : 3 mixture. Optical density (OD) values from ELISA of the infected plants in the two mixtures were consistently lower than that of the infected plants in cultivar Soissons in pure stands. The ELISA index (EI) calculated using three scales of OD values was 65.5% in the susceptible cultivar in pure stands. The value for this index was 19.1% in the 1 : 1 mixture and 7.9% in the 1 : 3 mixture. The plants of the resistant cultivar Trémie infected in the same field and transferred in January to a growth cabinet at 15 °C multiplied the virus and produced viruliferous zoospores. These results show that the resistant cultivar Trémie plays a role in disease reduction in the cultivar mixtures in field conditions. Possible reasons for this are discussed.  相似文献   

15.
Cassava bacterial blight, caused by Xanthomonas axonopodis pv. manihotis ( Xam ) is a destructive disease occurring in most cassava growing-areas. Although Colombian isolates of Xam differ in DNA polymorphism and pathogenicity, no suitable host differentials have been identified to demonstrate physiological specialization. A set of 26 Xam isolates from three edaphoclimatic zones (ECZs) in Colombia was selected for inoculation on a set of 17 potential cassava differentials. Leaf inoculation and stem puncture were used in order to detect possible specific interactions between cultivars and isolates. Cultivar × isolate interaction was highly significant ( P  < 0·001) after stem inoculation, but not after leaf inoculation. The stem inoculation technique was selected as a method for resistance screening of cassava cultivars for bacterial blight resistance. A highly significant interaction was also detected when cultivar behaviour was rated as area under the disease progress curve (AUDPC) after stem inoculation. Different pathotypes were defined among the 26 isolates and differential cultivars were proposed to define the pathotypic composition of Xam populations in three ECZs in Colombia. The results should help to improve selection of sources of resistance to cassava bacterial blight.  相似文献   

16.
The vertical distribution of leaf blast lesions caused by the fungus Pyricularia grisea was studied to estimate the degree of leaf blast suppression in rice multilines in experimental paddy fields for 4 years. Leaf blast in 1 : 1 and 1 : 3 mixtures of susceptible rice cultivar Sasanishiki and its resistant near-isogenic line, Sasanishiki BL7, developed slower than that in pure stands of Sasanishiki. The average distance of lesions on leaves from the ground in the 1 : 3 mixtures was significantly lower than that in the pure stands at the end of leaf blast epidemics (at booting stage). This result shows that the distribution of leaf blast lesions in the upper layer differs between the susceptible pure stands and the 1 : 3 mixtures at the end of leaf blast epidemics.  相似文献   

17.
A series of experiments was conducted with wheat stripe rust to analyse competition between simple and complex pathotypes in host mixtures. Two different pathotype combinations were tested, with different host components. Each combination included a complex (able to infect two host components) and two simple pathotypes. For one of the combinations, induced resistance was tested in a separate experiment as a possible interaction among pathotypes. Disease severity and pathotype frequencies were measured three times during the epidemic, on each host component grown in pure stands and in mixtures. In one of the experiments, pathotype frequencies were also measured within secondary foci. One of the complex pathotypes appeared to have a low fitness on one of the host components and did not significantly increase in frequency in host mixtures relative to pure stands. The average frequency of the other complex pathotype increased during the first epidemic cycles, but remained stable afterwards, below expected values. The results suggest that the development of complex pathotypes in host mixtures may be influenced by differential aggressiveness on the host components, by induced resistance and by random effects resulting from the formation of disease foci, and depends on pathogen autoinfection rate and dispersal mechanisms.  相似文献   

18.
The effect of two‐component rice cultivar mixtures on the control of rice blast disease was studied in three different experiments under rainfed upland conditions in the Madagascar Highlands. The mixtures involved a susceptible cultivar (either susceptible or very susceptible) and a resistant cultivar in different mixture arrangements (random or row mixtures) and with different proportions of the susceptible cultivar (50, 20 and 16·7%), which were compared to the susceptible cultivar grown in a pure stand. The effect of these mixtures on the incidence and severity of leaf and panicle blast was measured weekly, and on yield and yield components at harvest time. The mixture effect was more efficient in reducing disease with a proportion of 16·7% susceptible component than with a proportion of 50%. Blast epidemic was significantly reduced in all three experiments. However, under high blast pressure, there was no reduction in the disease by the end of the epidemic and yields of the susceptible cultivar were almost zero whatever the mixture. In two other experiments performed under lower blast pressure, disease incidence and severity were significantly lower in mixtures, and yields of the susceptible cultivars grown in mixtures were higher than those of their respective pure stands. Cultivar mixtures are a promising strategy that could contribute to a more sustainable cultivation of rice under upland conditions in the context of subsistence agriculture in Madagascar, where all cropping operations are manual.  相似文献   

19.
Mixtures of cultivars with contrasting levels of resistance can suppress infectious diseases in wheat, as demonstrated in numerous field experiments. Most studies focus on airborne pathogens in bread wheat, while splash-dispersed pathogens have received less attention, and no studies have been conducted in durum wheat. We conducted a 2-year field experiment in Tunisia to evaluate the performance of cultivar mixtures with varying proportions of resistance (0%–100%) in controlling the polycyclic, splash-dispersed disease septoria tritici blotch (STB) in durum wheat. To measure STB severity, we used a high-throughput method based on digital image analysis of 3,074 infected leaves collected from 42 and 40 experimental plots during the first and second years, respectively. This allowed us to quantify pathogen reproduction on wheat leaves and to acquire a large data set that exceeds previous studies with respect to accuracy and precision. Our analyses show that introducing only 25% of a disease-resistant cultivar into a pure stand of a susceptible cultivar provides a substantial reduction of almost 50% in disease severity compared to the susceptible pure stand. However, incorporating two resistant cultivars instead of one did not further improve disease control, contrary to predictions of epidemiological theory. Susceptible cultivars can be agronomically superior to resistant cultivars or be better accepted by growers for other reasons. Hence, if mixtures with only a moderate proportion of the resistant cultivar provide a similar degree of disease control as resistant pure stands, as our analysis indicates, such mixtures are more likely to be accepted by growers.  相似文献   

20.
Pathotypes of Erysiphe graminis f.sp. hordei were monitored at fortnightly intervals in pure and mixed stands of spring barley during the course of mildew epidemics in two field trials. Mixtures were composed of cultivars with Arabische (gene Mla12 ), Laevigatum ( Ml(La) ), and Monte Cristo ( Mla9 ) resistance, respectively. The three-way mixtures were either random or, in 1989, laid out as one-row mixtures (i.e., regularly alternating rows of different genotypes) or three-row mixtures (i.e., regularly alternating three-row strips of different genotypes), respectively. In 1990 only random mixtures and six-row mixtures were compared with pure stands. The virulence complexity (i.e., the average number of virulence factors per isolate with reference to Mla12, Ml(La) , and Mla9 ) was always maximal in the random mixtures. In 1989, linear regression of complexity on mildew generations gave significant b -values (slopes) of 0·049, 0·031, and 0·025 in the random mixture, one-row mixture, and three-row mixture, respectively; the b -value from pure stands was not significant. In 1990, another sampling technique allowed selection to be observed on each genotype in the mixtures separately. In the random mixture b -values were 0·048, 0·064 and 0·017 (not significant) on Mla12, Ml(La) , and Mla9 cultivars respectively. In six-row mixtures and in pure stands, there was no significant increase in complexity ( b > 0) on any of the mixture components. Although the frequency and relative fitness of complex pathotypes were higher in all types of mixtures than in pure stands, selection towards complex races was much less intense in row mixtures than in random mixtures in both field trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号