首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT The interaction between the oomycete Pythium oligandrum and various soilborne oomycete and fungal plant pathogens (P. ultimum, P. aphanidermatum, Fusarium oxysporum f. sp. radicis-lycopersici, Verticillium albo-atrum, Rhizoctonia solani, and Phytophthora megasperma) was studied by light and electron microscopy in order to assess the relative contribution of mycoparasitism and antibiosis in the antagonistic process. Scanning electron microscope investigations of the interaction regions showed that structural alterations of all pathogenic fungi and oomycetes (except for Phytophthora megasperma) occurred soon after contact with the antagonist. Light and transmission electron microscope studies of the interaction region between the antagonist and P. ultimum revealed that intimate contact between both partners preceded a sequence of degradation events including aggregation of host cytoplasm and penetration of altered host hyphae. Localization of the host wall cellulose component showed that cellulose was altered at potential penetration sites. A similar scheme of events was observed during the interaction between P. oligandrum and F. oxysporum f. sp. radicis-lycopersici, with the exception that complete loss of host protoplasm was associated with antagonist invasion. The interaction between P. oligandrum and R. solani resulted in an abnormal deposition of a wall-like material at potential penetration sites for the antagonist. However, the antagonist displayed the ability to circumvent this barrier and penetrate host hyphae by locally altering the chitin component of the host hyphal wall. Interestingly, antagonist cells also showed extensive alteration as evidenced by the frequent occurrence of empty hyphal shells. In the case of Phytophthora megasperma, hyphal interactions did not occur, but hyphae of the plant pathogen were damaged severely. At least two distinct mechanisms appear to be involved in the process of oomycete and fungal attack by P. oligandrum: (i) mycoparasitism, mediated by intimate hyphal interactions, and (ii) antibiosis, with alteration of the host hyphae prior to contact with the antagonist. However, the possibility that the antagonistic process may rely on the dual action of antibiotics and hydrolytic enzymes is discussed.  相似文献   

2.
ABSTRACT The potential of a pulp and paper mill residues compost for the control of crown and root rot of greenhouse-grown tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici was ultrastructurally investigated. Peat moss amended with compost substantially reduced disease-associated symptoms. Addition of Pythium oligandrum to either peat moss alone or peat moss amended with compost resulted in a considerable reduction in disease incidence compared with controls grown in peat moss alone. Histological and cytological observations of root samples from Fusarium-inoculated plants revealed that the beneficial effect of compost in reducing disease symptoms is associated with increased plant resistance to fungal colonization. One of the most prominent facets of compost-mediated induced resistance concerned the formation of physical barriers at sites of attempted fungal penetration. These structures, likely laid down to prevent pathogen ingress toward the vascular elements, included callose-enriched wall appositions and osmiophilic deposits around the sites of potential pathogen ingress. Invading hyphae, coated by the osmiophilic material, showed marked cellular disorganization. The use of the wheat germ agglutinin-ovomucoid-gold complex provided evidence that the wall-bound chitin was altered in severely damaged hyphae. A substantial increase in the extent and magnitude of the cellular changes induced by compost was observed when P. oligandrum was supplied to the potting substrate. This finding corroborates the current concept that amendment of composts with specific antagonists may be a valuable option for amplifying their beneficial properties in terms of plant disease suppression.  相似文献   

3.
无致病性腐霉的生防作用和诱导防卫反应   总被引:7,自引:5,他引:7       下载免费PDF全文
寡雄腐霉Pythium oligandrum作为一种重要的土传病害生防因子越来越受到关注,它能在多种重要农作物根围定殖,对20多种病原真菌或其它卵菌具有拮抗或寄生作用,并能诱导植物产生防卫反应.寡雄腐霉产生的拟激发素寡雄蛋白诱导番茄系统获得抗性,抵抗寄生疫霉Phytophthora parasitica和尖孢镰刀菌羽扇豆-番茄枯萎病菌Fusarium oxysporum f.sp.radicis-lycopersici侵入,显著降低病害的发生率.作者对寡雄腐霉的分离与鉴定、寄主种类、寄生作用、抗生作用和拟激发素寡雄蛋白诱导番茄系统获得抗性等方面的研究进行了综述.  相似文献   

4.
ABSTRACT The spatial distribution and temporal development of tomato crown and root rot, caused by Fusarium oxysporum f. sp. radicis-lycopersici, were studied in naturally infested fields in 1996 and 1997. Disease progression fit a logistic model better than a monomolecular one. Geostatistical analyses and semivariogram calculations revealed that the disease spreads from infected plants to a distance of 1.1 to 4.4 m during the growing season. By using a chlorate-resistant nitrate nonutilizing (nit) mutant of F. oxysporum f. sp. radicis-lycopersici as a "tagged" inoculum, the pathogen was found to spread from one plant to the next via infection of the roots. The pathogen spread to up to four plants (2.0 m) on either side of the inoculated focus plant. Root colonization by the nit mutant showed a decreasing gradient from the site of inoculation to both sides of the inoculated plant. Simulation experiments in the greenhouse further established that this soilborne pathogen can spread from root to root during the growing season. These findings suggest a polycyclic nature of F. oxysporum f. sp. radicis-lycopersici, a deviation from the monocyclic nature of many nonzoosporic soilborne pathogens.  相似文献   

5.
Tomato cultivar Moneymaker was independently inoculated with Alternaria alternata, Cunninghamella elegans, Fusarium culmorum, F. oxysporum f.sp. lycopersici, F. oxysporum f.sp. pisi and Stromatinia gladioli and analysed ultrastructurally. The extent and amount of superficial fungal growth on tomato roots was similar but C. elegans , a saprophyte, was exceptional in that hyphae were not closely appressed to plant surfaces and did not adhere to plant cell walls.
In general, the type of plant responses to fungal colonization and infection were similar in all of the interactions studied, with the exception of C. elegans which did not infect tomato root tissue. The failure to penetrate tomato roots by C. elegans may have been associated with the lack of hyphal adhesion to plant cell walls. Migration of cytoplasm and wall apposition/penetration papilla formation were regularly observed in tomato root tissue beneath appressed hyphae and at sites of fungal infection. Specific cellular reactions in the exodermis, namely the formation of wall 'inclusions' and appearance of 'sensitive' cells, indicated that exodermal cells were particularly responsive to fungal challenge.
Fusarium oxysporum f.sp. lycopersici , a pathogen of tomato, invaded tomato root tissue more extensively than the other fungi inoculated onto tomato roots. Infection of tomato by the other fungi studied was variable, and the extent and success of fungal invasion was tentatively associated with their necrotrophic capability and typical host range.  相似文献   

6.
7.
Rekah Y  Shtienberg D  Katan J 《Phytopathology》2000,90(12):1322-1329
ABSTRACT Fusarium oxysporum f. sp. radicis-lycopersici, the causal agent of Fusarium crown and root rot of tomato, and F. oxysporum f. sp. basilici, the causal agent of Fusarium wilt in basil, are soilborne pathogens capable of producing conspicuous masses of macroconidia along the stem. The role of the airborne propagules in the epidemics of the disease in tomato plants was studied. In the field, airborne propagules of F. oxysporum f. sp. radicis-lycopersici were trapped with a selective medium and their prevalence was determined. Plants grown in both covered and uncovered pots, detached from the field soil, and exposed to natural aerial inoculum developed typical symptoms (82 to 87% diseased plants). The distribution of inoculum in the growth medium in the pots also indicated the occurrence of foliage infection. In greenhouse, foliage and root inoculations were carried out with both tomato and basil and their respective pathogens. Temperature and duration of high relative humidity affected rate of colonization of tomato, but not of basil, by the respective pathogens. Disease incidence in foliage-inoculated plants reached 75 to 100%. In these plants, downward movement of the pathogens from the foliage to the crown and roots was observed. Wounding enhanced pathogen invasion and establishment in the foliage-inoculated plants. The sporulation of the two pathogens on stems, aerial dissemination, and foliage infection raise the need for foliage protection in addition to soil disinfestation, in the framework of an integrated disease management program.  相似文献   

8.
The ability of nonpathogenic Fusarium oxysporum, strain Fo47, to trigger plant defense reactions was investigated using Ri T-DNA-transformed pea roots. Cytological investigations of strain Fo47-inoculated roots showed that the fungus grew actively at the root surface and colonized a number of epidermal and cortical cells, inducing marked host cell metabolic changes. In roots inoculated with pathogenic F. oxysporum f. sp. pisi, the pathogen multiplied abundantly through much of the tissues, whereas in Fo47-inoculated roots, fungal growth was restricted to the epidermis and the outer cortex. Invading cells of strain Fo47 suffered from serious alterations, a phenomenon that was not observed in control roots in which F. oxysporum f. sp. pisi grew so actively that the vascular stele was invaded within a few days. Strain Fo47 establishment in the root tissues resulted in a massive elaboration of hemispherical wall appositions and in the deposition of an electron-opaque material frequently encircling pathogen hyphae and accumulating in the noninfected xylem vessels. This suggests that the host roots were signaled to defend themselves through the rapid stimulation of a general cascade of nonspecific defense responses. The specific relationship established between strain Fo47 and the root tissues is discussed in relation to other types of plant-fungus interactions, including pathogenic and symbiotic associations.  相似文献   

9.
It recently has been reported that the non-plant-pathogenic oomycete Pythium oligandrum suppresses bacterial wilt caused by Ralstonia solanacearum in tomato. As one approach to determine disease-suppressive mechanisms of action, we analyzed the colonization of P. oligandrum in rhizospheres of tomato using real-time polymerase chain reaction (PCR) and confocal laser-scanning microscopy. The real-time PCR specifically quantified P. oligandrum in the tomato rhizosphere that is reliable over a range of 0.1 pg to 1 ng of P. oligandrum DNA from 25 mg dry weight of soil. Rhizosphere populations of P. oligandrum from tomato grown for 3 weeks in both unsterilized and sterilized field soils similarly increased with the initial application of at least 5 x 10(5) oospores per plant. Confocal microscopic observation also showed that hyphal development was frequent on the root surface and some hyphae penetrated into root epidermis. However, rhizosphere population dynamics after transplanting into sterilized soil showed that the P. oligandrum population decreased with time after transplanting, particularly at the root tips, indicating that this biocontrol fungus is rhizosphere competent but does not actively spread along roots. Protection over the long term from root-infecting pathogens does not seem to involve direct competition. However, sparse rhizosphere colonization of P. oligandrum reduced the bacterial wilt as well as more extensive colonization, which did not reduce the rhizosphere population of R. solanacearum. These results suggest that competition for infection sites and nutrients in rhizosphere is not the primary biocontrol mechanism of bacterial wilt by P. oligandrum.  相似文献   

10.
Pythium aphanidermatum antagonized several other fungi after hyphal contact on films of water agar, recorded by video microscopy. It sometimes coiled round, penetrated and caused cytoplasmic coagulation of hyphae of the mycoparasites P. oligandrum, P. acanthophoron, P. mycoparasiticum and P. periplocum , but was not affected by them. It also coiled round, penetrated and coagulated P. ultimum, P. vexans, P. catenulatum, P. dissotocum and (infrequently) P. graminicola. It caused cytoplasmic coagulation of Fusarium oxysporum and Trichoderma aureoviride after contact, but without coiling. Six isolates of P. aphanidermatum behaved similarly, with a mode of action like that of the mycoparasite P. oligandrum but less rapid and consistent than this species. The results are discussed in relation to possible ecological roles of P. aphanidermatum.  相似文献   

11.
ABSTRACT Histochemical staining, beta-glucuronidase (GUS) activity, or placing roots on agar were methods used to characterize interactions between the pathogenic fungus, Fusarium oxysporum f. sp. lycopersici, and the nonpathogenic biocontrol F. oxysporum strain 70T01 with respect to colonization behaviors, interaction sites, and population densities on tomato roots. Mycelia of strain 70T01, a genetic transformant expressing stable GUS activity, hygromycin B resistance, and effective disease control, were localized in epidermal and cortex cell layers of tomato roots in a discontinuous and uneven pattern. In contrast, mycelia of F. oxysporum f. sp. lycopersici were found in the vascular bundles. Thus, direct interactions between the two fungi likely happen in the root surface cell layers. Colonization density of strain 70T01 was related to the inoculation density but decreased with distance from the inoculation site. Host defense reactions, including increased cell wall thickness or papilla deposits, were adjacent to 70T01 hyphae. Experiments done in soil showed that strain 70T01 densities in roots were highest at inoculation zones and barely detectable for root segments more than 2 cm away from the inoculation sites. F. oxysporum f. sp. lycopersici densities were lowest at 70T01 inoculation zones and highest (>10 times) where strain 70T01 was not directly applied. Newly elongating roots where strain 70T01 did not reach were available for infection by the pathogen. The higher strain 70T01 density was always found when the plants were simultaneously infected by F. oxysporum f. sp. lycopersici, suggesting that F. oxysporum f. sp. lycopersici has as much influence in predisposing the plant to colonization by strain 70T01 as strain 70T01 has on providing disease protection against the pathogen.  相似文献   

12.
Katan T  Shlevin E  Katan J 《Phytopathology》1997,87(7):712-719
ABSTRACT Plants exhibiting symptoms of wilt and xylem discoloration typical of Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici were observed in greenhouses of cherry tomatoes at various sites in Israel. However, the lower stems of some of these plants were covered with a pink layer of macroconidia of F. oxysporum. This sign resembles the sporulating layer on stems of tomato plants infected with F. oxysporum f. sp. radicis-lycopersici, which causes the crown and root rot disease. Monoconidial isolates of F. oxysporum from diseased plants were assigned to vegetative compatibility group 0030 of F. oxysporum f. sp. lycopersici and identified as belonging to race 1 of F. oxysporum f. sp. lycopersici. The possibility of coinfection with F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici was excluded by testing several macroconidia from each plant. Airborne propagules of F. oxysporum f. sp. lycopersici were trapped on selective medium in greenhouses in which plants with a sporulating layer had been growing. Sporulation on stems was reproduced by inoculating tomato plants with races 1 and 2 of F. oxysporum f. sp. lycopersici. This phenomenon has not been reported previously with F. oxysporum f. sp. lycopersici and might be connected to specific environmental conditions, e.g., high humidity. The sporulation of F. oxysporum f. sp. lycopersici on plant stems and the resultant aerial dissemination of macroconidia may have serious epidemiological consequences. Sanitation of the greenhouse structure, as part of a holistic disease management approach, is necessary to ensure effective disease control.  相似文献   

13.
Incorporation of the aggressive mycoparasite Pythium oligandrum into a carboxymethyl cellulose-based seed coating decreased damping-off of cress seedlings by Pythium ultimum in both naturally infested soil and artificially infested sand. This effect is attributed to the germination of P. oligandrum oospores on the seed surface with subsequent generation of a protectant mycelium around the seedling.
P. oligandrum oospores survived storage periods of 10—20 weeks at zero relative humidity both on glass slides and within seed coatings. The mycoparasite also survived an 18–month burial in natural soil, probably in the form of oospores.
The implications of these observations for biocontrol of seedling diseases by P. oligandrum are discussed.  相似文献   

14.
The tomato line IRB-301-31, resistant to fusarium crown and root rot ( Fusarium oxysporum f.sp. radicis-lycopersici ) was crossed with two susceptible cultivars, Motelle and Earlypak No. 7. When F1, F2 and backcross progenies were inoculated at the one-leaf stage with a suspension of spores of the pathogen, all could be classified as either resistant (healthy) or susceptible (dead). The ratios of resistant to susceptible plants indicated that resistance was conferred by a single dominant gene, designated Fr1.  相似文献   

15.
Pythium oligandrum Drechsler is a mycoparasite which parasitizes hyphae of many fungal species. A detailed study of the interactions between P. oligandrum and the sclerotia of the plant pathogen Sclerotinia sclerotiorum (Lib.) de Bary is presented. Pythium oligandrum was present in Danish soils at concentrations between 4 and 26 cfu g–1 soil. An increase in the natural population of P. oligandrum by addition of P. oligandrum zoospores to a soil reduced the ability of sclerotia of S. sclerotiorum to germinate myceliogenically and the sclerotia were colonized internally by P. oligandrum. This colonization and reduction of germination of sclerotia were also seen when sclerotia and P. oligandrum were incubated together in water. Small sclerotia were significantly more susceptible to parasitism by P. oligandrum than large sclerotia, and increasing the incubation time caused a further reduction in the germination ability of the sclerotia. P. oligandrum was able to pass through its entire life-cycle from zoospores to oogonia both with sclerotia as sole nutrient-source and in water containing exudates from the sclerotia. The cell wall degrading enzymes N-acetyl--D-glucosaminidase (NAGase), endo-chitinase, protease, -glucanase, -glucosidase and cellobiohydrolase were detected in culture filtrates of P. oligandrum cultivated with S. sclerotiorum. These findings suggest that P. oligandrum has a potential to reduce the survival of S. sclerotiorum sclerotia present naturally in soils, through mycoparasitic activity.  相似文献   

16.
ABSTRACT The associations of Pythium oligandrum with the root cortex, rhizoplane, and rhizosphere were measured with 11 crop species. This work was expedited by the use of a semiselective technique for isolation of P. oligandrum from soil and plant material. Cortical colonization of roots by P. oligandrum was not detected, and the rhizoplanes of the roots of most crops were free of the fungus. However, P. oligandrum was detected in large quantities with every crop tested when roots with adhering soil (rhizosphere soil) were assayed. Different crop species and cultivars of cantaloupe, cauliflower, and tomato varied in rhizosphere densities of P. oligandrum, but rhizosphere population densities of the fungus were consistently higher than in nonrhizosphere soils with plants grown in P. oligandrum-infested sterilized potting mix or an unsterilized mineral soil. After transplanting tomatoes into potting mix infested with P. oligandrum, increases in CFU occurred over time in the rhizosphere but not in the nonrhizosphere soil. In trials on delivery methods of inoculum of P. oligandrum, the rhizosphere populations of tomato plants grown in potting mix were about sixfold higher compared to seed-coat treatments when ground, alginate pelleted oospores were applied to seedlings growing in plug containers prior to transplanting or to pots containing potting mix before direct seeding.  相似文献   

17.
Xue AG 《Phytopathology》2003,93(3):329-335
ABSTRACT Pea root rot complex (PRRC), caused by Alternaria alternata, Aphanomyces euteiches, Fusarium oxysporum f. sp. pisi, F. solani f. sp. pisi, Mycosphaerella pinodes, Pythium spp., Rhizoctonia solani, and Sclerotinia sclerotiorum, is a major yield-limiting factor for field pea production in Canada. A strain of Clonostachys rosea (syn. Gliocladium roseum), ACM941 (ATCC 74447), was identified as a mycoparasite against these pathogens. When grown near the pathogen, ACM941 often was stimulated to produce lateral branches that grew directly toward the pathogen mycelium, typically entwining around the pathogen mycelium. When applied to the seed, ACM941 propagated in the rhizosphere and colonized the seed coat, hypocotyl, and roots as the plant developed and grew. ACM941 significantly reduced the recovery of all fungal pathogens from infected seed, increased in vitro seed germination by 44% and seedling emergence by 22%, and reduced root rot severity by 76%. The effects were similar to those of thiram fungicide, which increased germination and emergence by 33 and 29%, respectively, and reduced root rot severity by 65%. When soil was inoculated with selected PRRC pathogens in a controlled environment, seed treatment with ACM941 significantly increased emergence by 26, 38, 28, 13, and 21% for F. oxysporum f. sp. pisi, F. solani f. sp. pisi, M. pinodes, R. solani, and S. sclerotiorum, respectively. Under field conditions from 1995 to 1997, ACM941 increased emergence by 17, 23, 22, 13, and 18% and yield by 15, 6, 28, 6, and 19% for the five respective pathogens. The seed treatment effects of ACM941 on these PRRC pathogens were greater or statistically equivalent to those achieved with thiram. Results of this study suggest that ACM941 is an effective bioagent in controlling PRRC and is an alternative to existing chemical products.  相似文献   

18.
19.
Fusarium crown and root rot of tomatoes in the UK   总被引:1,自引:0,他引:1  
Fusarium crown and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici was found in the UK in 1988 and 1989 mainly in rockwool-grown tomato crops. Up to 14% of plants were affected in individual crops. In experiments, leaf and stem symptoms did not appear until the time of first fruit harvest even when the plants were inoculated at planting, first flowers or fruit set. Conidial inoculum at 106 spores/plant applied at seed sowing killed 70–83% of tomato seedlings, whereas similar levels of inoculum applied to young plants caused root and basal stem decay, and eventually death but only after fruit harvest began. Disease incidence and symptom severity increased with inoculum concentration. Experimentally, the disease was more severe in peat- or compost-grown plants than in rockwool. Disease spread was only a few centimetres in 50 days in experimental rockwool-grown plants. All tomato cultivars tested were highly susceptible. Prochloraz-Mn was highly effective against the pathogen in vitro and controlled the disease in the glasshouse, but only when applied preventively. Non-pathogenic Fusarium oxysporum isolates and Trichoderma harzianum also reduced FCRR disease levels.  相似文献   

20.
ABSTRACT Chronological events of the intercellular interaction between Verticillium lecanii and the postharvest pathogen Penicillium digitatum were investigated by transmission electron microscopy and gold cytochemistry. Growth inhibition of P. oligandrum as a response to V. lecanii attack correlated with striking host changes including retraction of the plasma membrane and cytoplasm disorganization. Such changes were associated with the deposition on the inner host cell surface of a chitin- and cellulose-enriched material which appeared to be laid down as a structural defense reaction. The accumulation of chitin in the newly formed material correlated with a decrease in the amount of wallbound chitin. However, the deposition of cellulose appeared to correspond to a de novo synthesis, as evidenced by the occurrence of cellulose-containing vesicles which released their content in the space between the invaginated plasma membrane and the host cell wall. Results of the present study provide the first ultrastructural and cytochemical evidence that antagonism, triggered by V. lecanii, is a multifaceted process in which antibiosis, with alteration of the host hyphae prior to contact with the antagonist, appears to be the key process in the antagonism against P. digitatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号