首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Restriction fragment length polymorphisms (RFLPs) were used to assess genetic diversity of mitochondrial DNA (mtDNA) among standard isolates of seven lineages of Fusarium graminearum. The mtDNA patterns within each lineage were very similar (>89%), whereas significant differences were observed between the isolates belonging to different lineages, with the exception of lineages 1 and 4 where strong similarity was found between the RFLPs. Analysis of different band patterns resulted in characteristic HhaI and HaeIII bands that were suitable for identification of members of lineages 7, 6, 5, 3 and 2. Investigation of lineage distribution of 144 European isolates revealed that 142 belong to lineage 7. These data, therefore, confirmed the hypothesis that members of lineage 7 are predominant in Europe. Further analysis of isolates belonging to lineage 7 resulted in five haplotypes. These haplotypes have arisen as different combinations of three RFLP patterns for both HaeIII and HhaI restriction enzymes. Two isolates from Hungary, however, shared the same mtDNA RFLP profiles with a standard isolate of lineage 3, indicating that members of lineage 3, at a lower frequency, may also occur in Europe.  相似文献   

2.
通过对粳籼89的穗颈瘟分离菌株的致病力及遗传宗谱研究,结果表明:(1)粳籼89分离菌株的小种类型复杂,既有籼型小种如ZA1、ZB1、ZB5、ZB13、ZC13等,又有粳型小种如ZD5、ZG1等;(2)该类菌株的致病力存在不稳定性,同一菌株不同时间接种,鉴别寄主上表现的小种类型不同,对其他主栽水稻品种或抗源的致病力也表现不同,但这些菌株无论何时接种到粳籼89上均能使其表现感病,病级在4级以上;(3)该类菌株接种到粳籼89衍生品种或其他粳籼杂交后代上,一般能侵染这类品种;(4)利用RFLP技术,采用探针MGR586与限制性内切酶EcoRI组合对病菌进行DAN指纹分析,结果16个粳籼89分离菌株被分在2个相邻的遗传宗谱里,即宗谱1(9个菌株)和宗谱2(7个菌株),这两个宗谱恰好是广东的优势宗谱。  相似文献   

3.
ABSTRACT We applied DNA markers to determine whether parasexual recombination may contribute to the extreme genetic diversity and variability observed in Magnaporthe grisea, the causal agent of rice blast disease. Dispersed repetitive elements and mapped, low-copy restriction fragment length polymorphism (RFLP) probes were used to detect transfers of DNA between cultured isolates of M. grisea. Low-copy RFLP probes also were used to detect putative recombinants among isolates from well-characterized field populations of the pathogen. Microscopic examination of tufted mycelium between cocultured isolates revealed frequent hyphal fusions. Hyphal tips and conidia were recovered without selection from tufted zones in two separate vegetative pairings involving isolates with dissimilar haplotypes, based on the repetitive element MGR586. Haplotypic changes were observed at a higher frequency in tuft derivatives than in subcultures of each isolate alone. From 136 tuft derivatives analyzed, 5 putative recombinant haplotypes were identified. Introgression was demonstrated with two independent repetitive elements, fosbury and MGR586, as probes on DNA digested with several restriction enzymes. Introgressions were characterized by addition of 1 to 10 MGR586 bands, and 1 to 3 fosbury bands from one parent into the background of the other. Polymorphic single-copy probes were used to analyze putative recombinants. One probe detected an introgression event as predicted by analysis with MGR586. To assess the possible role of parasexual recombination in field populations of the pathogen, isolates in the Philippines previously grouped based on DNA fingerprinting were analyzed with low-copy RFLP markers. Polymorphism in single-copy loci typically was seen between, but not within, putative pathogen lineages. One lineage (designated lineage 4), however, was polymorphic for several probes. For some isolates, alleles at these loci comigrated with alleles characteristic of other lineages, suggesting the transfer of DNA fragments between lineages. One isolate was apparently a merodiploid, carrying an allele typical of lineage 4 plus another allele characteristic of a different lineage. In a survey of isolates from the Indian Himalayas, a merodiploid also was found with single- or low-copy probes. Examination of MGR586 profiles of the putative recombinant and its putative donor strains showed the expected introgression of MGR586 bands. The detection of parasexual DNA exchanges in wild-type strains under unselected conditions and the existence of merodiploids in nature suggest that parasexual recombination occurs in field populations of M. grisea. This raises questions concerning exclusive clonality in the blast fungus.  相似文献   

4.
To determine the potential of sexual reproduction among host-adapted populations of Phytophthora infestans sensu lato in Ecuador, 13 A1 isolates belonging to clonal lineages US-1, EC-1 and EC-3, and 11 A2 isolates belonging to the clonal lineage EC-2, were paired on agar plates to induce crossing. In the first experiment, six A1 isolates (three US-1, two EC-1 and one EC-3) were each crossed with three A2 isolates (total = 18 crosses). Matings involving isolates of the EC-1 lineage produced more oospores of healthy appearance than did matings with isolates of US-1 or EC-3. In the second experiment, the oospores of 35 crosses (21 EC-1 × EC-2; 10 US-1 × EC-2; four EC-3 × EC-2) were dispersed on water agar to assess oospore germination. Overall, germination percentages were low. Only one cross produced enough progeny for evaluation. Twenty-three single-oospore offspring were isolated and evaluated for mating type; electrophoretic patterns of glucose-6-phosphate isomerase ( Gpi ) and peptidase ( Pep ) alloenzyme loci; mitochondrial DNA haplotype; and genomic DNA fingerprint. Multilocus genotype data indicated that all 23 isolates resulted from meiotic recombination. Four progeny with homothallic phenotype appeared to be unstable heterokaryons. Markers at several loci segregated according to simple Mendelian expectations for a diploid organism, but the ratios of three RFLP loci and the Pep locus were not consistent with Mendelian expectations. All progeny were nonpathogenic on hosts of the parental genotypes. Reduced mating success and reduced pathogenic fitness of progeny appear to be postmating mechanisms of reproductive isolation in populations of P. infestans sensu lato in Ecuador.  相似文献   

5.
ABSTRACT Pathogenicity assays were combined with restriction fragment length polymorphism (RFLP) markers in the mitochondrial and nuclear genomes to compare Mycosphaerella graminicola populations adapted to bread wheat (Triticum aestivum) and durum wheat (T. turgidum) in the Mediterranean Basin. The majority of isolates had unique nuclear DNA fingerprints and multilocus haplotypes. Only six mitochondrial DNA (mtDNA) haplotypes were identified among 108 isolates assayed. There were minor differences in frequencies of alleles at nuclear RFLP loci between the two host-adapted populations, but differences in the frequencies of mtDNA haplotypes were highly significant (P < 0.0001). mtDNA haplotype 1 dominated on the isolates adapted to bread wheat, and its frequency was twice as high as for the isolates adapted to durum wheat. mtDNA haplotype 4, which contained a unique approximately 3-kb insertion, was detected only in isolates showing specificity toward durum wheat and was the dominant haplotype on this species. We propose that the low mitochondrial diversity in this pathogenic fungus is due to a selective sweep and that differences in the frequencies of mtDNA haplotypes between the two host-adapted populations were due to natural selection according to host species.  相似文献   

6.
Microsatellite genotyping of a large sample of isolates of Verticillium dahliae from diverse locations recently identified seven distinct genotypic clusters. However, these clusters were not put in the context of phenotypes known to be correlated with clonal lineages in V. dahliae. The objective of this study was to compare clusters defined by microsatellite markers with clonal lineages defined by single‐nucleotide polymorphisms (SNPs) and vegetative compatibility groups (VCGs). Genotyping isolates known to belong to specific clonal lineages (based on SNPs) with microsatellite markers determined the correspondence of clusters and lineages. All but one cluster corresponded to a known clonal lineage, allowing analysis of correlations of phenotypes with microsatellite genotypes from other studies. As shown previously, most race 1 isolates are in lineage 2A, and most isolates with the defoliating pathotype are in lineage 1A. Phylogenetic incompatibility was used to test for recombination or homoplasy caused by hypervariable microsatellite loci; incompatibility was highly correlated with the number of alleles per locus, suggesting that homoplasy caused by parallel evolution of microsatellite alleles is the cause of incompatibility. Microsatellite genotyping of lineage 1A isolates from cotton and olive in Spain over a 29‐year period revealed remarkably little variation; these markers did not mutate enough to provide insight on the spatial and temporal expansion of this clone. Overall, this study showed that microsatellite genotyping can be used to identify clonal lineages in V. dahliae, which has predictive power for inferring phenotypes of phytopathological relevance such as race and pathotype.  相似文献   

7.
Isolates of Xanthomonas oryzae pv. oryzae (causal agent of bacterial blight of rice) from the Philippines representing two phylogenetic lineages, and five haplotypes within those two lineages, were evaluated for aggressiveness in two glasshouse trials. Aggressiveness was determined by clip-inoculating leaves of a rice cultivar lacking known, effective major genes for resistance and measuring the lengths of resulting lesions. Variance components analysis indicated that 55 and 46% of the lesion length variation were genetic in origin for the first and second trials, respectively. Variation of lesion length among isolates within haplotypes was highly significant in both trials ( P  = 0·002 and 0·027), but the effects of lineage and haplotype within lineage were not ( P  = 0·08 and 0·30 for lineage and P = 0·23 and 0·07 for haplotype). These results suggest that substantial heritable variation for aggressiveness exists within Philippine populations of X. oryzae pv. oryzae . This variation appears to be more prevalent within than among known phylogenetic groups, although mean differences among phylogenetic groups may still be of significant biological importance.  相似文献   

8.
Phaeomoniella chlamydospora, (Chaetothyriales, Herpotrichiellaceae) is one of the main causal agents of Petri disease and esca on grapevines. We have used AFLP markers to study the population genetic structure of 74 isolates collected at different spatial scales: 56 isolates originated from vines with esca disease sampled from four French vineyards (Poitou-Charentes, Aquitaine, Languedoc-Roussillon, Alsace); 18 isolates were collected from a single plot (Aquitaine vineyard). Significant linkage disequilibrium indicated that P. chlamydospora populations are not panmictic, whereas the level of haplotypic diversity observed, 72 single multilocus haplotypes identified in total among the 74 isolates analysed, suggest that reproduction in this species may not be strictly clonal. Clustering analyses suggests the presence of two genetically differentiated but sympatric clusters of isolates. The level of differentiation between the two clusters is high (F ST = 0.23) and significant at 13 out of the 21 loci analyzed. The most plausible explanation for this pattern of admixture is the coexistence in P. chlamydospora French populations of two predominant clonal lineages. Finally, the low level of spatial genetic differentiation in this study is consistent with the spread of this fungus through the transport of infected plant material by human activities.  相似文献   

9.
10.
Martin FN  Coffey MD 《Phytopathology》2012,102(2):229-239
Although Phytophthora cinnamomi is heterothallic, there are few instances of successful crossing in laboratory experiments, and analysis of field populations indicates a clonally reproducing population. In the absence of sexual recombination, the ability to monitor mitochondrial haplotypes may provide an additional tool for identification of clonal isolates and analysis of population structure. To determine mitochondrial haplotypes for this species, seven mitochondrial loci spanning a total of 6,961 bp were sequenced for 62 isolates representing a geographically diverse collection of isolates with A1 and A2 mating type. Three of the regions were primarily intergenic regions between trnG and rns, rns and nad3, and nad6 and cox1, while the remaining loci spanned cox2, nad9, rps10, and secY coding regions and some of the flanking spacer regions. In total, 45 mitochondrial haplotypes were identified (75% of the total isolates examined) with differences due to single-nucleotide polymorphisms (SNPs, totaling 152 bp) and length mutations (17 indels >2 bp representing a total of 910 bp in length). SNPs were the predominate mutation in the four coding regions and their flanking intergenic regions, while both SNPs and length mutations were observed in the three primarily intergenic regions. Some of the length mutations in these regions were due to addition or loss of unique sequences while others were due to variable numbers of subrepeats (in the trnG-rns region, there were 3 to 12 copies of a 24-bp subrepeat sequence that differentiated 17 haplotypes). Network analysis of the haplotypes identified eight primary clades, with the most divergent clade representing primarily A1 isolates collected from Papua New Guinea. The isolate grouping in the network corresponded to mating type and previously published isozyme classifications, with three exceptions: a haplotype representing an A1 mating type (H29) was placed well within the A2 mating type haplotype grouping, one haplotype (H26) had isolates with two isozyme classifications, and one isozyme group was represented on separate network clades, suggesting that recombination has occurred in the past. Among the 62 isolates examined, several examples were identified of isolates recovered from different geographic regions having the same mitochondrial haplotype, suggesting movement of isolates via plant material. Analysis of the data set to determine whether fewer loci could be sequenced to classify haplotypes indicated that the trnG-rns and rns-nad6 loci would classify 87% of the haplotypes identified in this study, while additional sequencing of the nad9 or secY loci would further differentiate the remaining six haplotypes. Based on conservation of gene order in Phytophthora spp., the trnG-rns locus should be useful for mitochondrial haplotype classification in other species, as should the cox2, nad9, rps10, and secY loci. However, the rns-nad3 and nad6-cox1 loci span regions that can have a different gene order in some Phytophthora spp.  相似文献   

11.
ABSTRACT Gibberella zeae (anamorph Fusarium graminearum) causes Fusarium head blight (FHB) of wheat and barley and has been responsible for several billion dollars of losses in the United States since the early 1990s. We isolated G. zeae from the top, middle, and bottom positions of wheat spikes collected from 0.25-m(2) quadrats during severe FHB epidemics in a single Kansas (KS) field (1993) and in a single North Dakota (ND) field (1994). Three amplified fragment length polymorphism (AFLP) primer pairs were used to resolve 94 polymorphic loci from 253 isolates. Members of a subset of 26 isolates also were tested for vegetative compatibility groups (VCGs). Both methods indicated high levels of genotypic variability and identified the same sets of isolates as probable clones. The mean number of AFLP multilocus haplotypes per head was approximately 1.8 in each population, but this value probably underestimates the true mean due to the small number of samples taken from each head. Isolates with the same AFLP haplotype often were recovered from different positions in a single head, but only rarely were such apparently clonal isolates recovered from more than one head within a quadrat, a pattern that is consistent with a genetically diverse initial inoculum and limited secondary spread. The KS and ND samples had no common AFLP haplotypes. All G. zeae isolates had high AFLP fingerprint similarity (>70%, unweighted pair group method with arithmetic means similarity) to reference isolates of G. zeae lineage 7. The genetic identity between the KS and ND populations was >99% and the estimated effective migration rate was high (Nm approximately 70). Tests for linkage disequilibrium provide little evidence for nonrandom associations between loci. Our results suggest that these populations are parts of a single, panmictic population that experiences frequent recombination. Our results also suggest that a variety of population sampling designs may be satisfactory for assessing diversity in this fungus.  相似文献   

12.
Understanding pathogenic variation in plant pathogen populations is key for the development and use of host resistance for managing verticillium wilt diseases. A highly virulent defoliating (D) pathotype in Verticillium dahliae has previously been shown to occur only in one clonal lineage (lineage 1A). By contrast, no clear association has yet been shown for race 1 with clonal lineages. Race 1 carries the effector gene Ave1 and is avirulent on hosts that carry resistance gene Ve1 or its homologues. The hypothesis tested was that race 1 arose once in a single clonal lineage, which might be expected if V. dahliae acquired Ave1 by horizontal gene transfer from plants, as hypothesized previously. In a diverse sample of 195 V. dahliae isolates from nine clonal lineages, all race 1 isolates were present only in lineage 2A. Conversely, all lineage 2A isolates displayed the race 1 phenotype. Moreover, 900‐bp nucleotide sequences from Ave1 were identical among 27 lineage 2A isolates and identical to sequences from other V. dahliae race 1 isolates in GenBank. The finding of race 1 in a single clonal lineage, with identical Ave1 sequences, is consistent with the hypothesis that race 1 arose once in V. dahliae. Molecular markers and virulence assays also confirmed the well‐established finding that the D pathotype is found only in lineage 1A. Pathogenicity assays indicated that cotton and olive isolates of the D pathotype (lineage 1A) were highly virulent on cotton and olive, but had low virulence on tomato.  相似文献   

13.
ABSTRACT Since 1991, dramatic changes have occurred in the genetic composition of populations of Phytophthora infestans in the United States. Clonal lineages recently introduced into the United States (US-7 and US-8) are more common now than the previously dominant lineage (US-1). To help determine why these changes occurred, four clonal lineages of P. in-festans common during the early 1990s in the United States and Canada were evaluated for sensitivity to the protectant fungicides mancozeb and chlorothalonil using amended agar assays for isolates collected from 1990 to 1994. No isolate or lineage was resistant to either mancozeb or chlorothalonil. There were significant differences among isolates for degree of sensitivity to one fungicide individually, but there were no significant (P = 0.05) differences among the US-1, US-6, US-7, and US-8 clonal lineages for degree of sensitivity to both fungicides. Therefore, resistance to protectant fungicides cannot explain the rapid increase in frequency of the US-7 and US-8 clonal lineages. Three components of pathogenic fitness (latent period, lesion area, and sporulation after 96 h) were tested for the three clonal lineages that were detected most commonly during 1994 (US-1, US-7, and US-8). All but one of the isolates in this analysis were collected during 1994 and evaluated within 10 months of collection by inoculating detached leaflets of the susceptible potato cultivar Norchip. There were significant differences between the US-1 and US-8 clonal lineages for lesion area and sporulation, and between US-1 and US-7 for latent period. The US-6 clonal lineage was excluded from the pathogenic fitness experiments, because no isolates of this lineage were collected during 1994. Compared with US-7 and US-8, US-1 had the longest latent period and the smallest lesions with the least sporulation. Incorporation of the differences between US-1 and US-8 in computer simulation experiments revealed that significantly more protectant fungicide (e.g., 25%) would be required to suppress epidemics caused by the US-8 clonal lineage compared with US-1. These differences in pathogenic fitness components probably contribute to the general predominance of the "new" clonal lineages (especially US-8) relative to the "old" US-1 lineage.  相似文献   

14.
The populations of Phytophthora infestans (Pi) in southern Brazil in 2004 and 2005 are characterized herein. The isolates were collected from potato and tomato plants in the states of Paraná (PR), Santa Catarina (SC), and Rio Grande do Sul (RS). The mating type of 131 potato and 32 tomato isolates was determined. Forty-nine isolates from potatoes and 11 from tomatoes were analyzed for their Gpi phenotype. A subset of 35 isolates was evaluated for mitochondrial (mtDNA) polymorphisms. A sample of 146 isolates was tested for sensitivity to the fungicide metalaxyl, and most isolates (64%) were moderately sensitive. Fifty-nine isolates were classified as A1 mating type and 103 as A2. One isolate behaved as both A1 and A2 mating type. All tomato isolates were A1 mating type and presented the 86/100 pattern for the enzyme GPI and mtDNA Ib, indicating that these isolates belong to the US-1 clonal lineage. Of the 131 potato isolates, 103 were A2, 27 were A1 and one was A1/A2 mating type. Among the potato isolates 27 exhibited the Gpi phenotype 100/100, the same as BR-1, and 20 were 86/100, the same as US-1. Potato isolates presented the mitochondrial haplotypes Ia (74%) and IIa (26%). The data suggest the presence of only the BR-1 clonal lineage on potatoes in the states of PR and SC. However, in the state of RS, more than one clonal lineage was observed infecting potatoes, and there may be sexual reproduction between the lineages.  相似文献   

15.
ABSTRACT Sixty Ecuadorian isolates of Phytophthora infestans from potato and 60 isolates from tomato were compared for dilocus allozyme genotype, mitochondrial DNA haplotype, mating type, and specific virulence on 11 potato R-gene differential plants and four tomato cultivars, two of which contained different Ph genes. Restriction fragment length polymorphism (RFLP) fingerprints of subsamples of isolates from each host were compared by using RG57 as the probe. All potato isolates had the allozyme genotype, haplotype, and mating type of the clonal lineage EC-1, which had been previously described in Ecuador. With the same markers, only one isolate from tomato was classified as EC-1; all others belonged to the globally distributed US-1 clonal lineage. RFLP fingerprints of isolate subsets corroborated this clonal lineage classification. Specific virulence on potato differentials was broadest among potato isolates, while specific virulence on tomato cultivars was broadest among tomato isolates. Some tomato isolates infected all tomato differentials but no potato differentials, indicating that specific virulence for the two hosts is probably controlled by different avirulence genes in P. infestans. In two separate experiments, the diameters of lesions caused by nine isolates from potato and 10 from tomato were compared on three tomato and three potato cultivars. All isolates produced larger lesions on the host from which they were isolated. No isolates were found that were highly aggressive on both tomato and potato. We conclude that there are two different populations of P. infestans in Ecuador and that they are separated by host.  相似文献   

16.
To characterize the evolutionary lineages of the Golovinomyces cichoracearum complex on introduced plants in Australia, the rDNA ITS regions from 47 herbarium specimens were compared by RFLPs and sequencing. Six RFLP groups were found, each corresponding to a previously reported evolutionary lineage in the complex. The largest of these groups (Group 1) contained 15 specimens infecting a range of tribes in the Asteraceae, despite a previous report that this lineage is largely restricted to the Tribe Heliantheae (Asteraceae). This group contained the only specimens with ascomata. Curved foot cells were formed by two lineages; one (Groups 5 & 6) containing specimens from a range of host families including the Asteraceae (Tribe Lactucae only), the other (Groups 2 & 3) containing members of the Asteraceae (Tribe Anthemidae only). Group 5 may represent G. orontii sensu stricto , while Group 6 is currently unnamed. Golovinomyces cichoracearum sensu stricto (specimens from Scorzonera ) formed a distinct group that did not contain any specimens from Australia. Suggestions are made for future species delimitation in the complex.  相似文献   

17.
ABSTRACT Wheat heads showing symptoms of Fusarium head blight were collected from four commercial fields in Zhejiang Province, China, an area where epidemics occur regularly. A total of 225 isolates were subjected to population-level analyses using restriction fragment length polymorphism (RFLP) as markers. Diagnostic RFLP markers established that all isolates belonged to Fusarium graminearum lineage 6. Nine polymorphic probes were hybridized to all isolates, resulting in 65 multilocus RFLP haplotypes (MRH). Probing with the telomeric clone pNla17, which reveals differences among isolates in the hypervariable subtelomeric region, differentiated the 65 MRH further into 144 clones. Mean gene diversity for the four field populations was similar, ranging from H = 0.306 - 0.364 over the nine RFLP loci for clone-corrected data. High levels of gene flow were inferred from a low level of population subdivision among all field populations, indicating that they were part of the same population. Pairwise linkage disequilibrium measures did not unequivocally support a random mating population, because one-third of locus pairs were significantly different from the null hypothesis of no-association between alleles. We speculate therefore that sexual recombination may not be frequent and that high levels of genotypic diversity may be maintained by relatively low selection pressure acting on a highly diverse population.  相似文献   

18.
ABSTRACT Cephalosporium maydis, the causal agent of late wilt of maize, was first described in Egypt in the 1960s, where it can cause yield losses of up to 40% in susceptible plantings. We characterized 866 isolates of C. maydis collected from 14 governates in Egypt, 7 in the Nile River Delta and 7 in southern (Middle and Upper) Egypt, with amplified fragment length polymorphism (AFLP) markers. The four AFLP primer-pair combinations generated 68 bands, 25 of which were polymorphic, resulting in 52 clonal haplotypes that clustered the 866 isolates into four phylogenetic lineages. Three lineages were found in both the Nile River Delta and southern Egypt. Lineage IV, the most diverse group (20 haplotypes), was recovered only from governates in the Nile River Delta. In some locations, one lineage dominated (up to 98% of the isolates recovered) and, from some fields, only a single haplotype was recovered. Under field conditions in Egypt, there is no evidence that C. maydis reproduces sexually. The nonuniform geographic distribution of the pathogen lineages within the country could be due to differences in climate or in the farming system, because host material differs in susceptibility and C. maydis lineages differ in pathogenicity.  相似文献   

19.
The population structure of the grape powdery mildew fungus, Erysiphe necator (formerly Uncinula necator), has been hypothesized to vary from being clonal to highly diverse and recombining. We report here on the structure of an E. necator population sampled during a 4-year period from an isolated vineyard in northern Italy (Voghera, Pavia Province). We obtained 54 isolates of E. necator that overwintered asexually as mycelium in grapevine buds and caused severe symptoms on the emerging shoots, known as flag shoots. All isolates were genotyped for mating type, four multilocus polymerase chain reaction (PCR)-based markers (a total of 64 loci were scored), and two single-copy loci designed to identify genetic subgroups in E. necator. All isolates had the same mating type and single-locus alleles that correlate to isolates from flag shoots in other areas. Only 2 of the 64 loci scored from multilocus markers were polymorphic; 46 of the 54 isolates had the same multilocus haplotype. Seven isolates had a second haplotype that was recovered over 3 years, and only a single isolate was found with a third haplotype. Both variant haplotypes differed from the main clonal haplotype by single loci. Spatial autocorrelation analyses showed that vines with flag shoots were not aggregated within years, but they were aggregated between consecutive years. These results demonstrate that this subpopulation of E. necator on flag shoots is composed of a single clonal lineage that has persisted for at least 4 years. We speculate that the lack of diversity in the flag shoot subpopulation in this vineyard is the result of restricted immigration from surrounding areas and genetic drift operating through founder effects and periodic bottlenecks. We propose a model that integrates epidemiology and population genetics to explain the variation observed in genetic structure of E. necator flag shoot subpopulations from different vineyards or viticultural regions.  相似文献   

20.
ABSTRACT Isolates of Colletotrichum spp. from diseased strawberry fruit and crowns were evaluated to determine their genetic diversity and the etiology of the diseases. Isolates were identified to species using polymerase chain reaction primers for a ribosomal internal transcribed spacer region and their pathogenicity was evaluated in bioassays. Isolates were scored for variation at 40 putative genetic loci with random amplified polymorphic DNA and microsatellite markers. Only C. acutatum was recovered from diseased fruit. Nearly all isolates from crowns were C. gloeosporioides. In crown bioassays, only isolates of C. gloeosporioides from strawberry caused collapse and death of plants. A dendrogram generated from the genetic analysis identified several primary lineages. One lineage included isolates of C. acutatum from fruit and was characterized by low diversity. Another lineage included isolates of C. gloeosporioides from crowns and was highly polymorphic. The isolates from strawberry formed distinctive clusters separate from citrus isolates. Evaluation of linkage disequilibrium among polymorphic loci in isolates of C. gloeosporioides from crowns revealed a low level of disequilibrium as would be expected in sexually recombining populations. These results suggest that epidemics of crown rot are caused by Glomerella cingulata (anamorph C. gloeosporioides) and that epidemics of fruit rot are caused by C. acutatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号