首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Robust embryonic stem cell (ESC) lines from livestock species have been difficult to derive and maintain, and unlike mouse ESC, have not contributed to our ability to understand directed differentiation in vitro. Nor have such cells yet provided a simpler means than pronuclear injection to manipulate the genomes of agriculturally important species, such as cattle, sheep and pigs. Induced pluripotent stem cells (iPSC) generated by reprogramming somatic cells, such as fibroblasts, with a set of stemness genes, most usually but not exclusively POU5F1, SOX2, KLF4 and c-MYC, offer an alternative to ESC in these regards, as they exhibit a pluripotent phenotype resembling that of ESC, yet are readily generated in the laboratory. Accordingly, such cells, in association with cloning technologies, may be useful for introducing complex genetic changes into livestock, although this potential has yet to be demonstrated. Porcine iPSC may be especially valuable because the pig is a prime biomedical model for tissue transplantation. In general, iPSC from livestock, like those from humans, are of the epiblast type and depend upon FGF2 and activin/nodal signalling systems to maintain their pluripotency and growth. Recent experiments, in which newly reprogrammed porcine and bovine cells were selected on a LIF-based medium in presence of specific protein kinase inhibitors, have allowed iPSC cells of the na?ve type, resembling the more amenable blastocyst-derived mouse ESC and iPSC to be isolated. However, hurdles still remain if such cells are to achieve their biotechnological promise.  相似文献   

2.
Huge amounts of work have been dedicated to the establishment of embryonic stem cell lines from farm animal species since the successful isolation of embryonic stem cells from the mouse and from the human. However, no conclusive results have been obtained so far, and validated lines have yet to be established in domestic animals. Many limiting factors have been suggested and need to be studied further to isolate truly pluripotent cell lines from livestock. In this review, we will discuss the difficulties in deriving and maintaining embryonic stem cell lines from farm animal embryos and how can this lack of success be explained. We will summarize results obtained in our laboratory regarding derivation of pluripotent cells in the pigs. Problems related to the identification of standard methods for derivation, maintenance and characterization of cell lines will also be examined. We will focus our attention on the need for appropriate stemness-related marker molecules that can be used to reliably investigate pluripotency in domestic species. Finally, we will review data presently available on functional key pluripotency-maintaining pathways in farm animals.  相似文献   

3.
Mechanisms that direct reprogramming of differentiated somatic cells to induced pluripotent stem cells (iPSCs), albeit incomplete in understanding, are highly conserved across all mammalian species studied. Equally, proof of principle that iPSCs can be derived from domestic cattle has been reported in several publications. In our efforts to derive and study bovine iPSCs, we encountered inadequacy of methods to generate, sustain, and characterize these cells. Our results suggest that iPSC protocols optimized for mouse and human somatic cells do not effectively translate to bovine somatic cells, which show some refractoriness to reprogramming that also affects sustenance. Moreover, methods that enhance reprogramming efficiency in mouse and human cells had no effect on improving bovine cell reprogramming. Although use of retroviral vectors coding for bovine OCT4, SOX2, KLF4, cMYC, and NANOG appeared to produce consistent iPSC‐like cells from both fibroblasts and cells from the Wharton's jelly, these colonies could not be sustained. Use of bovine genes could successfully reprogram both mouse and human cells. These findings indicated either incomplete reprogramming and/or discordant/inadequate culture conditions for bovine pluripotent stem cells. Therefore, additional studies that advance core knowledge of bovine pluripotency are necessary before any anticipated iPSC‐driven bovine technologies can be realized.  相似文献   

4.
5.
Pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are able to differentiate into all cell lineages of the embryo proper, including germ cells. This pluripotent property has a huge impact on the fields of regenerative medicine, developmental biology and reproductive engineering. Establishing the germ cell lineage from ESCs/iPSCs is the key biological subject, since it would contribute not only to dissection of the biological processes of germ cell development but also to production of unlimited numbers of functional gametes in vitro. Toward this goal, we recently established a culture system that induces functional mouse primordial germ cells (PGCs), precursors of all germ cells, from mouse ESCs/iPSCs. The successful in vitro production of PGCs arose from the study of pluripotent cell state, the signals inducing PGCs and the technology of transplantation. However, there are many obstacles to be overcome for the robust generation of mature gametes or for application of the culture system to other species, including humans and livestock. In this review, we discuss the requirements for a culture system to generate the germ cell lineage from ESCs/iPSCs.  相似文献   

6.
Pluripotent stem cells have the unique capacity to contribute to all the tissues of an adult animal after transfer into a host embryo. How pluripotency is acquired during early development and how it is maintained in stem cells have attracted the interest of many scientists for over three decades. Much progress in our understanding of how stem cells arise in culture and the signals required for homoeostasis has enabled the derivation of pluripotent cells in multiple species. Here, we discuss recent developments in stem cell biology that will impact the generation of pluripotent cells from different embryonic origins and will contribute to increase our capacity for generating transgenic animals.  相似文献   

7.
试验在体外分离培养1月龄绵羊胚胎成纤维细胞(sheep embryonic fibroblast,SEF),经丝裂霉素C处理后探讨其作为诱导性多能干细胞(induced pluripotent stem cells,iPSC)体外培养饲养层的可行性。试验以SNL饲养层细胞为对照,人iPSC(hiPSC)为培养对象,通过形态学观察、碱性磷酸酶(AP)染色、以及实时荧光定量PCR和免疫细胞化学对hiPSC标志基因mRNA和蛋白表达的检测,比较了SEF细胞和SNL细胞作为干细胞饲养层的效果。结果表明,在试验期内,与SNL饲养层体外培养的hiPSC相似,SEF饲养层体外培养的hiPSC在形态上呈集落样生长,增殖速度快;AP染色呈蓝紫色,能够维持未分化状态;能正常表达多能性标志基因。两种饲养层细胞培养的hiPSC多能性标志基因c-MycKlf4、OCT4和SOX2 mRNA的表达以及OCT4、SOX2、SSEA4和TRA-1-60蛋白的表达并无显著差异(P>0.05)。本研究结果初步表明SEF可作为体外培养iPSC的饲养层细胞,为进一步建立可表达促生长因子的基因修饰SEF细胞系奠定了基础。  相似文献   

8.
9.
Embryonic stem (ES) cells are pluripotent cell lines with the capacity of self-renewal and a broad differentiation plasticity. They are derived from pre-implantation embryos and can be propagated as a homogeneous, uncommitted cell population for an almost unlimited period of time without losing their pluripotency and their stable karyotype. Murine ES cells are able to reintegrate fully into embryogenesis when returned into an early embryo, even after extensive genetic manipulation. In the resulting chimeric offspring produced by blastocyst injection or morula aggregation, ES cell descendants are represented among all cell types, including functional gametes. Therefore, mouse ES cells represent an important tool for genetic engineering, in particular via homologous recombination, to introduce gene knock-outs and other precise genomic modifications into the mouse germ line. Because of these properties ES cell technology is of high interest for other model organisms and for livestock species like cattle and pigs. However, in spite of tremendous research activities, no proven ES cells colonizing the germ line have yet been established for vertebrate species other than the mouse (Evans and Kaufman, 1981; Martin, 1981) and chicken (Pain et al., 1996). The in vitro differentiation capacity of ES cells provides unique opportunities for experimental analysis of gene regulation and function during cell commitment and differentiation in early embryogenesis. Recently, pluripotent stem cells were established from human embryos (Thomson et al., 1998) and early fetuses (Shamblott et al., 1998), opening new scenarios both for research in human developmental biology and for medical applications, i.e. cell replacement strategies. At about the same time, research activities focused on characteristics and differentiation potential of somatic stem cells, unravelling an unexpected plasticity of these cell types. Somatic stem cells are found in differentiated tissues and can renew themselves in addition to generating the specialized cell types of the tissue from which they originate. Additional to discoveries of somatic stem cells in tissues that were previously not thought to contain these kinds of cells, they also appear to be capable of developing into cell types of other tissues, but have a reduced differentiation potential as compared to embryo-derived stem cells. Therefore, somatic stem cells are referred to as multipotent rather than pluripotent. This review summarizes characteristics of pluripotent stem cells in the mouse and in selected livestock species, explains their use for genetic engineering and basic research on embryonic development, and evaluates their potential for cell therapy as compared to somatic stem cells.  相似文献   

10.
11.
猪多潜能干细胞是在体外建立起来的具有自我更新及三胚层分化潜能的一类干细胞,可应用于发育生物学研究、基因组编辑和疾病模型建立等各方面,在畜牧业生产及再生医学研究中具有重要的应用价值。培养体系对多潜能干细胞的成功构建具有重要意义,其包含多种成分,包括基础培养液、氨基酸等营养成分、小分子化合物(信号通路激活剂/抑制剂及细胞因子)共同维持细胞的多能性并抑制其分化。目前已有诸多关于猪多潜能干细胞的报道,但尚未获得高效的培养体系可以维持猪多潜能干细胞的长期传代并完成生殖嵌合。猪多潜能干细胞可分为原始态(Na6ve)、形成态(Formative)及始发态(Primed)3种不同多能性的状态特点,根据建系来源的不同分为猪扩展多潜能干细胞、猪胚胎干细胞、猪前原肠胚上胚层干细胞、猪诱导多能干细胞4种干细胞类型。作者综述了猪多潜能干细胞培养体系中常用的细胞因子和信号通路激活剂/抑制剂对猪多潜能干细胞的多能性和分化能力的影响和作用,为进一步建立具有真正生殖嵌合能力的Na6ve多能性的猪多潜能干细胞系提供研究思路。  相似文献   

12.
Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The ChariotTM reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.  相似文献   

13.
Notable distinctions between an embryonic stem cell (ESC) and somatic cell are that an ESC can maintain an undifferentiated state indefinitely, self-renew, and is pluripotent, meaning that the ESC can potentially generate cells representing all the three primordial germ layers and contribute to the terminally differentiated cells of a conceptus. These attributes make the ESC an ideal source for genome editing for both agricultural and biomedical applications. Although, ESC lines have been successfully established from rodents and primates, authentic ungulate stem cell lines on the contrary are still not available. Outstanding issues including but not limited to differences in pluripotency characteristics among the existing ESC lines, pre-implantation embryo development, pluripotency pathways, and culture conditions plague our efforts to establish authentic ESC lines from farm animals. In this review, we highlight some of these issues and discuss how the recent derivation of induced pluripotent stem cells (iPSCs) might augur the establishment of robust authentic ESC lines from farm animals.  相似文献   

14.
Overall efficiency of cell reprogramming for porcine fibroblasts into induced pluripotent stem cells (iPSCs) is currently poor, and few cell lines have been established. This study examined gene expression during early phase of cellular reprogramming in the relationship to the iPSC colony morphology and in vitro pluripotent characteristics. Fibroblasts were reprogrammed with OCT4, SOX2, KLF4 and c-MYC. Two different colony morphologies referred to either compact (n = 10) or loose (n = 10) colonies were further examined for proliferative activity, gene expression and in vitro pluripotency. A total of 1,697 iPSC-like colonies (2.34%) were observed after gene transduction. The compact colonies contained with tightly packed cells with a distinct-clear border between the colony and feeder cells, while loose colonies demonstrated irregular colony boundary. For quantitative expression of genes responsible for early phase cell reprogramming, the Dppa2 and EpCAM were significantly upregulated while NR0B1 was downregulated in compact colonies compared with loose phenotype (p < .05). Higher proportion of compact iPSC phenotype (5 of 10, 50%) could be maintained in undifferentiated state for more than 50 passages compared unfavourably with loose morphology (3 of 10, 30%). All iPS cell lines obtained from these two types of colony morphologies expressed pluripotent genes and proteins (OCT4, NANOG and E-cadherin). In addition, they could aggregate and form three-dimensional structure of embryoid bodies. However, only compact iPSC colonies differentiated into three germ layers. Molecular signature of early phase of cell reprogramming coupled with primary colony morphology reflected the in vitro pluripotency of porcine iPSCs. These findings can be simply applied for pre-screening selection of the porcine iPSC cell line.  相似文献   

15.
Stem cells have an intrinsic capacity to self-renew and can differentiate to at least one specialized cell type. Different types of stem cells exist that can be cultured in vitro. The identity of the stem cells is marked by their origin and differentiation potential. Germ cells have similarities with pluripotent stem cells but are of a special order: They do not self-renew and are already differentiated, but they have the capacity to form a complete new organism after fertilization. This review focuses on pluripotent stem cells and discusses possibilities of generating pluripotent stem cells from germ cell precursors and possibilities of generating germ cells from stem cells. As it accompanies a plenary lecture at the 15th annual ESDAR Conference 2011, the overview is focused on stem cells from farm animal species and on results from my own research group.  相似文献   

16.
精原干细胞移植技术是一种新兴的动物繁殖技术,可以提高雄性动物的生殖能力.该技术是从适龄雄性供体动物采集精原干细胞,注射入适龄受体动物的生精小管中使其产生精子的技术.精原干细胞移植首先在小鼠试验中获得成功,接着人们将这项技术应用到家畜等大中型动物中并获得成功.随着这项技术的不断深入研究,精原干细胞不但可以在同种间进行移植,而且在异种间的移植也获得成功.通过对培养体系的不断完善,筛选、移植方法的不断改进,可以获得更高的移植成功率.精原干细胞移植为提高优良品种家畜的生产效率、保护野生动物资源、转基因动物的生产及不育症的治疗提供了一种新的方法.  相似文献   

17.
In the area of stem cell research, fusion of somatic cells into pluripotent cells such as mouse embryonic stem (ES) cells induces reprogramming of the somatic nucleus and can be used to study the effect of trans-acting factors from the pluripotent cell on the pluripotent state of somatic nucleus. As many other groups, we previously established a porcine pluripotent cell line at a low potential. Therefore, here, we performed experiments to investigate if the fusion with mouse ES cell could improve the pluripotent state of porcine pluripotent cell. Our data showed that resultant mouse–porcine interspecies fused cells are AP positive, and could be passaged up to 20 passages. Different degrees of increases in expression of porcine pluripotent genes proved that pig-origin gene network can be programmed by mouse ES. Further differentiation study also confirmed these fused cells’ potential to form three germ layers. However, unexpectedly, we found that chromosome loss and aberrant (especially in porcine chromosomes) is severe after the cell fusion, implying that interspecies cell fusion may be not suitable to study porcine pluripotency without additional supportive conditions for genome stabilization.  相似文献   

18.
Induced pluripotent stem cells (iPSCs) are thought to be highly beneficial in the field of regenerative medicine and are believed to overcome immunogenic barriers to cell transplantation. However, issues remain regarding their safety and efficiency for medical use. Furthermore, some recent reports have suggested that iPSCs could be targeted by the autologous immune system. To promote practical applications of iPSCs, in depth research using appropriate animal models is needed and porcine species appear to provide an ideal model. Recent studies have focused on the generation of porcine iPSC cells, but no investigations of their immunological properties have been conducted to date. In the present study, we generated putative iPSCs from porcine somatic cells and measured major histocompatibility complex (MHC) expression on the iPSCs and their derivatives. Compact colonies that expressed pluripotent markers appeared 11 days after viral infection. Embryonic bodies (EB) were produced and differentiated into three germ layers in vitro. Karyotyping and swine leukocyte antigen (SLA) typing showed that the iPSCs were identical to parental somatic cells. Porcine iPSCs expressed only low levels of MHC class I and moderately increased levels on their differentiated derivatives, whereas MHC class II was rarely expressed. In the presence of interferon-gamma (IFN-γ), the expression of MHC class I was elevated on differentiated iPSCs, and gradually decreased after withdrawal of the cytokine. Our data suggest that porcine iPSCs could be useful for preclinical studies of the efficiency and viability of iPSCs, and for devising strategies to rescue transplanted cells from the autologous immune system.  相似文献   

19.
研究脂肪生成的机理及其调控过程对于防治动物肥胖引起的相关疾病、改善肉品风味和质量以及畜牧生产效率具有重要意义。脂肪细胞起源于多能性骨髓间充质干细胞(MSCs),接受细胞外刺激因子后迅速引起早期脂肪调节因子、C/EBPβ和C/EBPδ的表达,并传递信息至PPARγ和C/EBPα等转录因子,促进细胞的分化和脂滴形成。在此过程中,众多转录因子和细胞周期蛋白参与前体脂肪细胞到脂肪细胞的分化与成脂过程。植物来源的多种天然产物,如多酚类、生物碱、萜类、醌类化合物在脂肪细胞分化和抑制脂肪生成过程中发挥重要的调控作用,对这些天然化合物的深入和成药研究有望成为具有抑制细胞内脂滴聚集的潜在药物。  相似文献   

20.
类器官(organoids)来源于自组织和自我更新的干细胞,是利用干细胞的自组织特性进行体外3D培养后形成的细胞团,与来源器官密切相关,再现了来源器官的三维细胞结构,并为探索来源器官的发病机制提供了新的模型。类器官系统是由自分泌、旁分泌或邻分泌信号调节下的细胞,或者外源性添加的细胞外基质(extracellular matrix,ECM)底物、小分子和生长因子等衍生而来,这些因素的相互作用创造了一个动态的环境,指导干细胞的自我更新和分化,以及细胞在类器官中的自我组装。诱导多能干细胞(induced pluripotent stem cells,iPSC)重编程方法结合3D类器官工具,使患者来源的类器官作为动物模型和人类临床试验之间的桥梁,是对细胞研究和在体试验的补充。在研究来源器官发育、生物学和病理生理学方面,类器官不仅是一种比传统细胞培养更具生理相关性的体外模型,而且还是再生医学和个性化医学领域中的新模型,有望成为研究营养素、药物、毒物及毒素等的作用机制及药物的筛选、再生医学等领域的重要模型。总之,类器官技术的发展增强了人们对器官和组织生理生化功能的认知。作者对肠、脑、肺脏、肝脏、子宫、卵巢等类器官培养和应用的研究进展进行综述,以期为类器官相关科研及应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号