首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 380 毫秒
1.
ObjectiveTo determine if a nerve stimulation test (NST) could act as a monitoring technique to confirm sacrococcygeal epidural needle placement in cats.Study designProspective experimental trial in a clinical setting.AnimalsTwenty-four adult cats, scheduled for a therapeutic procedure where epidural anesthesia was indicated.MethodsUnder general anesthesia, an insulated needle was inserted through the S3-Cd1 intervertebral space guided by the application of a fixed electrical current (0.7 mA) until a motor response was obtained. The NST was considered positive when the epidural nerve stimulation produced a motor response of the muscles of the tail, whereas it was considered negative when no motor response was evoked. In the NST positive cases, 0.3 mL kg−1 of 0.5% bupivacaine was administrated before needle withdrawal. Ten minutes after injection, epidural blockade was confirmed by the loss of perineal (anal), and pelvic limbs reflexes (patellar and withdrawal).ResultsThe use of a fixed electrical stimulation current of 0.7 mA resulted in correct prediction of sacrococcygeal epidural injection, corroborated by post bupivacaine loss of perineal and pelvic limb reflexes, in 95.8% of the cases.Conclusion and clinical relevanceThis study demonstrates the feasibility of using, in a clinical setting, an electrical stimulation test as an objective and in real-time method to confirm sacrococcygeal epidural needle placement in cats.  相似文献   

2.
ObjectiveTo determine the minimal electrical threshold (MET) necessary to elicit appropriate muscle contraction when the tip of an insulated needle is positioned epidurally or intrathecally at the L5-6 intervertebral space (phase-I) and to determine whether the application of a fixed electrical current during its advancement could indicate needle entry into the intrathecal space (phase-II) in dogs.Study designProspective, blinded study.AnimalsThirteen (phase-I) and seventeen (phase-II) dogs, scheduled for a surgical procedure where L5-6 intrathecal administration was indicated.MethodsUnder general anesthesia, an insulated needle was first inserted into the L5-6 epidural space and secondly into the intrathecal space and the MET necessary to obtain a muscular contraction of the pelvic limb or tail at each site was determined (phase-I). Under similar conditions, in dogs of phase-II an insulated needle was inserted through the L5-6 intervertebral space guided by the use of a fixed electrical current (0.8 mA) until muscular contraction of the pelvic limb or tail was obtained. Intrathecal needle placement was confirmed by either free flow of cerebrospinal fluid (CSF) or myelography.ResultsThe current required to elicit a motor response was significantly lower (p < 0.0001) when the tip of the needle was in the intrathecal space (0.48 ± 0.10 mA) than when it was located epidurally (2.56 ± 0.57). The use of a fixed electrical stimulation current of 0.8 mA resulted in correct prediction of intrathecal injection, corroborated by either free flow of CSF (n = 12) or iohexol distribution pattern (n = 5), in 100% of the cases.Conclusion and clinical relevanceNerve stimulation may be employed as a tool to distinguish epidural from intrathecal insulated needle position at the L5-6 intervertebral space in dogs. This study demonstrates the feasibility of using an electrical stimulation test to confirm intrathecal needle position in dogs.  相似文献   

3.
ObjectiveTo determine the needle‐to‐nerve distances during electrical nerve location in dogs at different currents and pulse duration using a peripheral nerve stimulator (PNS) under ultrasound control (US), and the minimal electrical thresholds (MET) necessary to obtain a motor response (MR) after achieving needle‐to‐nerve contact.Study designProspective in vivo experimental trial in a clinical settingAnimalsThirty dogs, scheduled for locoregional anaesthesia of the sciatic nerve.MethodsNeedle‐to‐nerve distance was measured ultrasonographically after obtaining the MR of sciatic nerve with 2, 1 and 0.5 mA and pulse duration 0.1 ms (NS0.1). Thereafter the needle was placed in contact with the nerve and MET was determined. The procedure was repeated with 0.3 ms (NS0.3). Finally the needle was reintroduced to contact the sciatic nerve guided only by US, thus MET‐US was determined. Data were analysed using Kruskal–Wallis or Mann–Whitney tests.ResultsNeedle‐to‐nerve distances were greater when MR was obtained with 2 mA than with 1 and 0.5 mA at 0.1 and 0.3 ms. No significant differences were observed between the needle‐to‐nerve distances using 0.1 or 0.3 ms.The MET [median (range)] was 0.4 (0.18–1.3) mA in NS0.1, 0.32 (0.12–0.8) mA in NS0.3; while MET‐US was 0.7 (0.32–1.5) mA. When the needle contacted the nerve, the MR achieved with currents below 0.3 mA was obtained in 17.2, 40 and 0% of cases using NS0.1, NS0.3 and US respectively.Conclusions and clinical relevanceThe electrical current necessary to obtain a MR decreased as the needle moved towards the nerve. However when the needle tip contacted the nerve, an MR with low current intensity could not be obtained. Thus the absence of motor response at currents below 0.3 mA cannot rule out needle‐epineurium contact. When ultrasound is combined with PNS, it is more important to assess the correct needle position than searching for an MR at low currents.  相似文献   

4.
ObjectiveTo determine the minimal electrical threshold (MET) necessary to elicit muscle contraction of the pelvic limb or tail when an insulated needle is positioned outside (METout) and inside (METin) the lumbosacral epidural space in cats.Study designProspective, blinded study.AnimalsTwelve mixed-breed healthy adult cats, scheduled for a therapeutic procedure where lumbosacral epidural administration was indicated.MethodsUnder general anesthesia, an insulated needle was advanced through tissues of the lumbosacral interspace until its tip was thought to be just dorsal to the interarcuate ligament. An increasing electrical current (0.1 ms, 2 Hz) was applied through the stimulating needle in order to determine the MET necessary to obtain a muscle contraction of the pelvic limb or tail (METout), and then 0.05 mL kg?1 of iohexol was injected. The needle was further advanced until its tip was thought to be in the epidural space. The MET was determined again (METin) and 0.2 mL kg?1 of iohexol was injected. The cats were maintained in sternal position. Contrast medium spread was determined through lateral radiographic projections.ResultsThe radiographic study confirmed the correct needle placement dorsal to the interarcuate ligament in all cats. When the needle was placed ventrally to the interarcuate ligament, iohexol was injected epidurally in ten and intrathecally in two cats. The METout and METin was 1.76 ± 0.34 mA and 0.34 ± 0.07 mA, respectively (p < 0.0001).Conclusion and clinical relevanceNerve stimulation can be employed as a tool to determine penetration of the interarcuate ligament but not the piercing of the dura mater at the lumbosacral space in cats.  相似文献   

5.
Caudal epidural anesthesia is useful when anesthesia of the lumbar and sacral dermatomes is needed. Its success relies on the proper placement of the needle in the epidural space. However, accurate positioning of the needle can be difficult in certain patients (i.e.obesity). The purpose of this preliminary study was to document the use of nerve stimulation as a means of confirming accurate needle positioning in the epidural space prior to drug administration. Twenty large breed dogs undergoing hindlimb or perineal surgery were enrolled. Following induction of general anesthesia, patients were prepared for routine epidural drug administration. A 17 ga, 3.5” shielded Tuohy needle was used and was connected to a peripheral nerve stimulator set to deliver a current at 1 Hz, with a pulse width of 0.2 m sec. Initial current was set at 1.2 mA as the needle was advanced into position. Confirmation of epidural needle placement was confirmed when twitches were observed in the hindlimbs and/or tail. Current setting was then decreased incrementally by 0.2 mA until no further twitches were observed. Success of epidural drug placement was confirmed subjectively by motor blockade to the blocked dermatomes and clinical signs of balanced anesthesia (lack of sympathetic response to surgical stimulation while maintained at light plane of anesthesia). Lowest mean (range) current to elicit hindlimb twitches was 0.72 mA (0.4–1.0 mA). Lowest mean (range) current to elicit tail twitches was 0.58 mA (0.4–1.0 mA). Tail twitches were reliably lost at mean current of 0.37 mA (0.2–0.8). Epidural anesthesia was considered to be successful in 19/20 dogs. In only 9/20 dogs, needle placement would have been correct based on using ‘classic’ indicators alone (‘pop’ as enter epidural space, loss of resistance to injection). The results of this study suggest that nerve stimulation may be useful in confirming correct epidural needle placement prior to drug administration.  相似文献   

6.
ObjectiveTo evaluate the accuracy of epidural catheter placement at different levels of the spinal cord guided solely by electrical nerve stimulation and resultant segmental muscle contraction.Study designProspective, experiment.AnimalsSix male and two female Beagles, age (1 ± 0.17 years) and weight (12.9 ± 1.1 kg).MethodsAnimals were anesthetized with propofol and maintained with isoflurane. An insulated epidural needle was used to reach the lumbosacral epidural space. A Tsui epidural catheter was inserted and connected to a nerve stimulator (1.0 mA, 0.1 ms, 2 Hz) to assess positioning of the tip at specific spinal cord segments. The catheter was advanced to three different levels of the spinal cord: lumbar (L2–L5), thoracic (T5–T10) and cervical (C4–C6). Subcutaneous needles were previously placed at these spinal levels and the catheter was advanced to match the needle location, guided only by corresponding muscle contractions. Catheter position was verified by fluoroscopy. If catheter tip and needle were at the same vertebral body a score of zero was assigned. When catheter tip was cranial or caudal to the needle, positive or negative numbers, respectively, corresponding to the number of vertebrae between them, were assigned. The mean and standard deviation of the number of vertebrae between catheter tip and needle were calculated to assess accuracy. Results are given as mean ± SD.ResultsThe catheter position in relation to the needle was within 0.3 ± 2.0 vertebral bodies. Positive predictive values (PPV) were 57%, 83% and 71% for lumbar, thoracic and cervical regions respectively. Overall PPV was 70%. No significant difference in PPV among regions was found.Conclusion and clinical relevancePlacement of an epidural catheter at specific spinal levels using electrical nerve stimulation was feasible without radiographic assistance in dogs. Two vertebral bodies difference from the target site may be clinically acceptable when performing segmental epidural regional anesthesia.  相似文献   

7.
Objective-To determine the minimal electric threshold of neurostimulation dorsally and ventrally to the interarcuate ligament in the lumbosacral area necessary to cause muscle contraction of the hind limb or tail and determine whether a continuous electrical stimulation applied to an insulated needle during lumbosacral epidural needle placement could be used to distinguish the epidural from the intrathecal space in rabbits. Animals-24 New Zealand white rabbits. Procedures-Rabbits received iohexol (0.2 mL/kg) either dorsally (group 1) or ventrally to the interarcuate ligament in the lumbosacral area (groups 2 and 3). Correct placement of the needle was determined by use of the loss of resistance to injection technique (group 2) or a continuous electrical stimulation (group 3) and confirmed by examination of the iohexol distribution pattern on radiographs. Results-In all rabbits of group 1, iohexol was injected in the lumbosacral area, outside the epidural space. In groups 2 and 3, iohexol was injected intrathecally. No pure iohexol epidural migration of iohexol was observed. Mean ± SD minimal electric threshold to elicit a motor response was 1.2 ± 0.3 mA, 0.3 ± 0.1 mA, and 0.3 ± 0.1 mA in groups 1, 2, and 3, respectively. Conclusions and Clinical Relevance-Neurostimulation was a useful technique to determine correct intrathecal needle placement in rabbits but failed to detect the lumbosacral epidural space when the common technique, used in dogs and cats for the lumbosacral epidural approach, was used.  相似文献   

8.
ObjectiveTo compare the epidural anesthesia device (EPIA), which facilitates an automatic approach to location of the epidural space, with the performance of clinicians using tactile sensation and differences in pressure when inserting an epidural needle into the epidural space of a dog.Study designProspective, crossover experiment.AnimalsA total of 14 Beagle dogs weighing 7.5 ± 2.4 kg (mean ± standard deviation).MethodsEach dog was anesthetized three times at 2 week intervals for three anesthesiologists (two experienced, one novice) to perform 14 epidural injections (seven manual and EPIA device each). The sequence of methods was assigned randomly for each anesthesiologist. The dogs were anesthetized with medetomidine (10 μg kg–1), alfaxalone (2 mg kg–1) and isoflurane and positioned in sternal recumbency with the pelvic limbs extended cranially. Epidural puncture in the manual method was determined by pop sensation, hanging drop technique and reduced injection pressure, whereas using the device a sudden decrease in reaction force on the device was detected. A C-arm identified needle placement in the epidural space, and after administration of iohexol (0.3 mL), the needle length in the epidural space was defined as the mean value measured by three radiologists. Normality was tested using the Kolmogorov–Smirnov test, and significant differences between the two methods were analyzed using an independent sample t test.ResultsIn both methods, the success rates of epidural insertion were the same at 95.2%. The length of the needle in the epidural space using the device and manual methods was 1.59 ± 0.50 and 1.68 ± 0.88 mm, respectively, with no significant difference (p = 0.718).Conclusions and clinical relevanceEPIA device was comparable to human tactile sense for an epidural needle insertion in Beagle dogs. Further research should be conducted for application of the device in clinical environments.  相似文献   

9.
ObjectiveTo compare the nerve stimulation test (group NS) with the running-drip method (group RUN) for successful identification of the sacrococcygeal (SCo) epidural space prior to drug administration in dogs.AnimalsA total of 62 dogs.Study designA randomized clinical study.MethodsDogs requiring an epidural anaesthetic as part of the multimodal anaesthetic plan were randomly allocated to one of the two study groups. In group NS, the epidural space was located using an insulated needle connected to a nerve stimulator; in group RUN, the epidural space was identified using a Tuohy needle connected to a fluid bag elevated 60 cm above the spine via an administration set. The success of the technique was assessed 5 minutes after epidural injection by the disappearance of the patella reflex. Data were checked for normality, nonparametric data was analysed using a Mann–Whitney U test and success rate was analysed using a Fisher’s exact test. The significance level was set at p < 0.05, and the results are presented in absolute values, percentage (95% confident interval) and median (range).ResultsThe success in identification of the epidural space did not differ between groups NS and RUN [87.1% (70.2%–96.4%) versus 90.3% (74.2%–98%); p = 1.000]. The time required for identification of the epidural space was shorter in group RUN [26 (15–53) seconds] than in group NS [40 (19–137) seconds] (p = 0.0225). No other differences were found in any studied variables.Conclusionand clinical relevance In this study, both RUN and NS techniques were successful in identifying the epidural space at the SCo intervertebral space. RUN requires no specialised equipment, can be performed rapidly and offers an alternative to the NS for use in general veterinary practice.  相似文献   

10.
ObjectiveTo evaluate the use of ultrasound for identifying the site for needle puncture and to determine the depth to the epidural space in obese dogs.Study designProspective study in dogs undergoing elective orthopedic surgery.AnimalsA group of seven obese Labrador male dogs aged 6.93 ± 2.56 years and weighing 46.5 ± 4.1 kg (mean ± standard deviation).MethodsThe anesthetic protocol for these dogs included epidural anesthesia. With the dogs anesthetized and positioned in sternal recumbency with the pelvic limbs flexed forward, ultrasound imaging was used to locate the lumbosacral intervertebral space. Intersection of dorsal and transverse lines about the probe identified the point of needle insertion. A 17 gauge, 8.9 cm Tuohy needle was inserted perpendicularly through the skin and advanced to the lumbosacral intervertebral space. The number of puncture attempts was recorded and needle depth was compared with skin to ligamentum flavum distance.ResultsEpidural injection was performed in all dogs at the first attempt of needle insertion. The distance from skin to epidural space was 5.95 ± 0.62 cm measured by ultrasound and 5.89 ± 0.64 cm measured with the Tuohy needle. These measurements were not different (p = 0.26). A highly significant correlation coefficient of 0.966 between measurement techniques was obtained (p < 0.001).Conclusions and clinical relevanceUltrasound imaging identified the point of needle insertion for lumbosacral epidural injection in seven obese dogs. The results indicate that ultrasound can be used to locate the lumbosacral intervertebral space and identify an appropriate point for needle insertion to perform epidural injection.  相似文献   

11.
ObjectiveTo determine the effect of injection speed on epidural pressure (EP), injection pressure (IP), epidural distribution (ED) of solution, and extent of sensory blockade (SB) during lumbosacral epidural anesthesia in dogs.Study designProspective experimental trial.AnimalsTen healthy adult Beagle dogs weighing 8.7 ± 1.6 kg.MethodsGeneral anesthesia was induced with propofol administered intravenously and maintained with isoflurane. Keeping the dogs in sternal recumbency, two spinal needles connected to electrical pressure transducers were inserted into the L6-L7 and the L7-S1 intervertebral epidural spaces for EP and IP measurements, respectively. Bupivacaine 0.5% diluted in iohexol was administered epidurally to each dog via spinal needle at L7-S1 intervertebral space, at two rates of injection (1 and 2 mL minute?1 groups), with a 1-week washout period. Epidural distribution was verified with computed tomography, and SB was evaluated after arousal by pinching the skin with a mosquito hemostatic forceps over the vertebral dermatomes. The results were analyzed according to each injection speed, using paired t- and Wilcoxon signed-rank tests.ResultsMean ± SD of baseline EP and IP values were 2.1 ± 6.1 and 2.6 ± 7.1 mmHg, respectively. Significant differences were observed between 1 and 2 mL minute?1 groups for peak EP (23.1 ± 8.5 and 35.0 ± 14.5 mmHg, p = 0.047) and peak IP (68.5 ± 10.7 and 144.7 ± 32.6 mmHg, p <0.001). However, the median (range) of the ED, 11.5 (4–22) and 12 (5–21) vertebrae, and SB, 3.5 (0–20) and 1 (0–20) dermatomes, values of the two groups were not related to injection speed.Conclusions and clinical relevanceThe EP profile during injection was measured by separating the injection and pressure monitoring lines. The increase in epidural injection speed increased the EP, but not the ED or the SB in dogs.  相似文献   

12.
An epidural puncture was performed using the lumbosacral approach in 18 dogs, and the lack of resistance to an injection of saline was used to determine that the needle was positioned correctly. The dogs' arterial blood pressure and epidural pressure were recorded. They were randomly assigned to two groups: in one group an injection of a mixture of local anaesthetic agents was made slowly over 90 seconds and in the other it was made over 30 seconds. After 10 minutes contrast radiography was used to confirm the correct placement of the needle. The mean (sd) initial pressure in the epidural space was 0.1 (0.7) kPa. After the injection the mean maximum epidural pressure in the group injected slowly was 5.5 (2.1) kPa and in the group injected more quickly it was 6.0 (1.9) kPa. At the end of the period of measurement, the epidural pressure in the slow group was 0.8 (0.5) kPa and in the rapid group it was 0.7 (0.5) kPa. Waves synchronous with the arterial pulse wave were observed in 15 of the dogs before the epidural injection, and in all the dogs after the epidural injection.  相似文献   

13.
ObjectivesTo assess the accuracy of the ‘hanging drop method’ for identifying the extradural space in anaesthetized dogs positioned in sternal or lateral recumbency.Study designProspective randomized-experimental study.AnimalsSeventeen clinically healthy adult dogs, 10 females and seven males weighing 8.4–26.2 kg.MethodsDogs were positioned in either sternal (n = 8) or lateral (n = 9) recumbency under general anaesthesia. A 20 SWG spinal needle pre-filled with 0.9% saline was advanced through the skin into the lumbosacral extradural space and the response of the saline drop recorded, i.e. whether it: 1) was aspirated from the hub into the needle; 2) remained within the hub, or 3) moved synchronously with i) spontaneous respiration, ii) heart beat or iii) manual lung inflation. The position of the needle tip was ultimately determined by positive contrast radiography.ResultsOne dog positioned in lateral recumbency was excluded from the study because bleeding occurred from the needle hub. Saline was aspirated into the needle in seven of eight dogs held in sternal recumbency but in none of the dogs positioned in lateral recumbency. Accurate needle tip placement in the extradural space was confirmed by positive contrast radiography in all dogs.Conclusion and clinical relevanceThe ‘hanging drop’ method, when performed with a spinal needle, appears to be a useful technique for identifying the location of the extradural space in anaesthetized medium-sized dogs positioned in sternal, but not in lateral recumbency. The technique may yield ‘false negative’ results when performed in dogs positioned in sternal recumbency.  相似文献   

14.
ObjectiveTo describe the landmarks and methodology to approach the thoracic paravertebral space in dogs; to evaluate if intercostal muscular response could be evoked by a nerve-stimulator; to radiographically assess the distribution pattern of a radio-opaque contrast medium after thoracic paravertebral injections.Study designRandomized, controlled, experimental trial.AnimalsTwo mongrel dog cadavers (anatomical study) and 24 mongrel dogs (experimental study).MethodsFor the anatomic study 0.2 mL kg?1 of new methylene blue (NMB) was injected at the 5th thoracic paravertebral space; for the experimental study dogs were divided into three groups and received 1 (T5), 2 (T4 and T6) or 4 (T4, T5, T6 and T7) paravertebral injections of iohexol. The paravertebral approach was performed with insulated needles using landmarks and a blind technique. When the needle tip reached the respective thoracic paravertebral space, the nerve-stimulator was switched-on and the presence/absence of intercostal muscular twitch was registered, thus a total volume of 0.2 mL kg?1 of iohexol, divided into equal parts for each injection point, was administered. Radiological studies were performed with two orthogonal projections at different times. Positive injection was confirmed when the paravertebral space was occupied by iohexol in both projections.ResultsNMB was distributed in the T5 paraverterbal space. In the experimental study, when the needle tip reached the respective paravertebral space, intercostal twitching was obtained in 80% of the total injections with a stimulating current of 0.5 mA. The incidence of positive cases when the intercostal twitch was obtained with 0.5 mA was 83.3%. The main distribution pattern observed was cloud like without longitudinal diffusion.Conclusion and clinical relevanceIntercostal muscular responses obtained with a stimulating current of 0.5 mA could be useful to locate thoracic spinal nerves in dogs and in our study the injected solution was confined to one thoracic paravertebral space.  相似文献   

15.
ObjectiveTo evaluate the extent sensory and motor blocks produced by the epidural injection of different volumes of 0.25% bupivacaine (Bu) with methylene blue (MB), in dogs.Study designProspective experimental trial.AnimalsTwenty healthy adult mongrel dogs, weighing 9.9 ± 1.9 kg.MethodsDogs were randomly allocated into one of four groups that received 0.2, 0.4, 0.6 or 0.8 mL kg?1 of an epidural solution containing 0.25% Bu and MB. Sensory block was evaluated against time by pinching the tail, hind limb interdigital web, toenail bases and the skin over the vertebral dermatomes. Motor block was assessed by ataxia, hind limb weight-bearing ability and by loss of muscle tone of the tail and pelvic limbs. Data were collected at 2, 5, 10, 15 and 30 minutes after the end of epidural injection. After the final time point, dogs were euthanatized and laminectomies were conducted to expose the extent of the dural dye staining.ResultsThe volumes 0.2, 0.4, 0.6 and 0.8 mL kg?1 of 0.25% Bu and MB blocked a mean of 5, 14.2, 20.2 and 21 dermatomes, respectively. The extent of the senory block increased up to a volume of 0.6 mL kg?1. Motor block was longer-lasting and more intense than sensory block. Complete dyeing of the spinal cord with MB was achieved in some dogs at 0.4 mL kg?1 and all dogs at 0.6 mL kg?1.ConclusionsThe volume of anesthetic injected into the epidural space plays an important role in the quality of the epidural anesthesia. At 0.25%, bupivacaine provided an efficient sensory block at 0.6 mL kg?1.Clinical relevanceRelatively high volumes (0.6 mL kg?1) of 0.25%, BU and MB were needed to produce an effective sensory and motor block caudal to the umbilicus, but all spinal cord segments were reached by MB at this dose.  相似文献   

16.
The patellar tendon reflex is a clinical parameter commonly used to assess neurological status. Factors such as quadriceps muscle fiber composition, femur length, and patient age have been reported to influence total and fractionated reflex times in human beings. The purpose of this blinded, cross-sectional study was to examine the effect of age on the patellar reflex in the dog. Eighty-six dogs without evidence of neurological impairment or orthopedic disease of the stifle (eg, patellar luxation or cranial cruciate ligament rupture) were assigned to 1 of 2 groups on the basis of age: group 1, <10 years old (n = 72); or group 2, > or =10 years old (n = 14). Patellar reflexes were elicited in both pelvic limbs by a reflex hammer while the dog was in lateral recumbency. The reflex was scored as present or absent by a blinded individual. Two dogs in group I had reflexes absent in both limbs, 3 dogs in group 2 had reflexes absent in both limbs, and 1 dog in group 2 lacked a response in 1 limb. The proportion of dogs with absent patellar reflexes in group 2 (4 of 14, 95% CI, 8-58%) was significantly higher than the proportion of dogs with absent patellar reflexes in group 1 (2 of 72, 95% CI, 0-10%) (P < .006). Furthermore, dogs lacking at least 1 patellar reflex were older than those having both reflexes present (P = .04). Weight was not related to the presence of both reflexes (P = .49). These findings suggest that neurologically normal dogs may have an age-dependent decline in patellar reflex magnitude or a prolongation of total reflex time (TRT).  相似文献   

17.
Twelve healthy cattle (weighing 188–835 kg) were placed in stocks and sedated with xylazine. Caudal epidural puncture was performed using an acoustic device that indicated a decrease in resistance with a change in pitch. Lidocaine was injected to verify correct needle placement by assessing needle prick stimuli applied on the left and right side of the tail root and the perineal region, and the loss of tail and anal sphincter tone. Pressure measurements were recorded during penetration of the different tissue layers and in the epidural space. A clear and sudden decrease in the pitch of the acoustic signal was audible in all 12 cattle. All cows showed clinical effects indicating successful epidural anaesthesia. The pressure in the epidural space after puncture was ?19 ± 10 mm Hg. The device may be of assistance in identifying the epidural space in cattle.  相似文献   

18.
ObjectiveTo evaluate perfusion index (PI) as a noninvasive tool to determine effectiveness and onset of epidural anesthesia in dogs.Study designProspective clinical trial.AnimalsA total of 21 adult dogs, aged 6.5 ± 3 years and weighing 34.9 ± 6.4 kg, undergoing a tibial plateau leveling osteotomy.MethodsDogs were premedicated intramuscularly with acepromazine (0.03 mg kg–1) and hydromorphone (0.1 mg kg–1) and anesthetized with intravenous propofol (to effect) and isoflurane in oxygen. A surface transflectance probe was secured to the tail base to monitor PI and a dorsal pedal artery catheter was placed for invasive blood pressure monitoring. A lumbosacral epidural was performed with the dog in sternal recumbency. Dogs were randomly assigned for inclusion of epidural morphine (0.1 mg kg–1) or morphine (0.1 mg kg–1) and lidocaine (4 mg kg–1). PI was recorded following instrumentation of each dog just prior to the epidural (baseline), at 10 minute intervals for 30 minutes, before and after the surgical skin incision and before and after completion of the osteotomy. Physiological variables and end-tidal isoflurane were recorded at the same time points.ResultsThere was no significant difference in PI between the groups at any time point. There was a significant change in end-tidal isoflurane before and after the skin incision in the epidural morphine and epidural morphine–lidocaine groups (p = 0.04, p = 0.05, respectively) and before and after the osteotomy in each group for heart rate (p = 0.001, p = 0.04), diastolic (p = 0.01, p = 0.01) and mean arterial blood pressure (p = 0.03, p = 0.05).Conclusions and clinical relevancePI did not provide an objective means for determining the onset or effectiveness of epidural anesthesia in anesthetized dogs and alternate methods of noninvasive assessment should be investigated.  相似文献   

19.
ObjectiveTo examine the influence of a low dose dexmedetomidine infusion on the nociceptive withdrawal reflex and temporal summation in dogs during isoflurane anaesthesia.Study designProspective experimental blinded cross-over study.AnimalsEight healthy mixed breed dogs, body weight Mean ± SD 26.5 ± 8.4 kg and age 25 ± 16 months.MethodsAnaesthesia was induced with propofol and maintained with isoflurane (Fe′ISO 1.3%) delivered in oxygen and air. After stabilization, baseline recordings (time 0) were obtained, then a dexmedetomidine bolus (1 μg kg?1 IV) followed by a continuous rate infusion (1 μg kg?1 hour?1) or saline placebo were administered. At times 10, 30 and 60 minutes after the initial bolus, electrical stimulations of increasing intensity were applied over the lateral plantar digital nerve, and administered both as single and as repeated stimuli. The resulting reflex responses were recorded using electromyography. Data were analysed using a multivariable linear regression model and a Kruskal Wallis test for single stimulation data, and repeated measures anova and paired t-test for repeated stimulation data.ResultsThe AUC for the stimulus-response curves after single stimulation were similar for both treatments at time 0. At times 10, 30 and 60 the AUCs for the stimulus-response curves were significantly lower with dexmedetomidine treatment than with placebo. Temporal summation was evident in both treatments at times 0, 10, 30 and 60 starting from a stimulation intensity of 10 mA. The magnitude of temporal summation was smaller in dexmedetomidine than in placebo treated dogs at time 10, 30 and 60, but not at time 0.ConclusionsDuring isoflurane anaesthesia, low dose dexmedetomidine suppresses the nociceptive reflex responses after single and repeated electrical stimulation.Clinical relevanceThis experimental study confirms previous reports on its peri-operative efficacy under clinical conditions, and further indicates that dexmedetomidine might reduce the risk of post-operative chronic pain development.  相似文献   

20.

Objectives

To review the methods for verifying the needle position while performing epidural anaesthesia in dogs, and to discuss the advantages, disadvantages, usefulness and reliability of each technique in the experimental and clinical research setting.

Databases used

PubMed, Scopus, Google Scholar and the Basel University Library online catalogues; the latter, which was provided by the University of Berne, were used as databases. The results were filtered manually based on the titles and abstracts in order to narrow the field.

Conclusions

Besides some drawbacks, including the potential side effects of contrast medium injection, which may limit its routine use in clinical patients, epidurography should still be regarded as one of the most reliable techniques to verify needle position in dogs. Ultrasonography, electrical nerve stimulation, loss of resistance and the hanging drop technique are regarded as less invasive than epidurography and, for this reason, their use may be more applicable to clinical patients. However, these methods have been described in only a few published reports, all of which involved a limited number of dogs. Finally, the detection of epidural pressure waves has been investigated more extensively in dogs, and the findings of these studies suggest that this technique may be used to verify epidural needle placement for experimental and clinical research, on condition that all the negative subjects are excluded from the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号