首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Context

Species distribution modelling is a common tool in conservation biology but two main criticisms remain: (1) the use of simplistic variables that do not account for species movements and/or connectivity and (2) poor consideration of multi-scale processes driving species distributions.

Objectives

We aimed to determine if including multi-scale and fine-scale movement processes in SDM predictors would improve accuracy of SDM for low-mobility amphibian species compared with species-level analysis.

Methods

We tested and compared different SDMs for nine amphibian species with four different sets of predictors: (1) simple distance-based predictors; (2) single-scale compositional predictors; (3) multi-scale compositional predictors with a priori selection of scale based on knowledge of species mobility and scale-of-effect; and (4) multi-scale compositional predictors calculated using a friction-based functional grain to account for resource accessibility with landscape resistance to movement.

Results

Using friction-based functional grain predictors produced slight to moderate improvements of SDM performance at large scale. The multi-scale approach, with a priori scale selection, led to ambiguous results depending on the species studied, in particular for generalist species.

Conclusion

We underline the potential of using a friction-based functional grain to improve SDM predictions for species-level analysis.

  相似文献   

2.

Context

Landscape-scale studies of ecosystem services (ES) have increased, but few consider land-use history. Historical land use may be especially important in cultural landscapes, producing legacies that influence ecosystem structure, function, and biota that in turn affect ES supply.

Objectives

Our goal was to generate a conceptual framework for understanding when land-use legacies matter for ES supply in well-studied agricultural, urban, and exurban US landscapes.

Methods

We synthesized illustrative examples from published literature in which landscape legacies were demonstrated or are likely to influence ES.

Results

We suggest three related conditions in which land-use legacies are important for understanding current ES supply. (1) Intrinsically slow ecological processes govern ES supply, illustrated for soil-based and hydrologic services impaired by slowly processed pollutants. (2) Time lags between land-use change and ecosystem responses delay effects on ES supply, illustrated for biodiversity-based services that may experience an ES debt. (3) Threshold relationships exist, such that changes in ES are difficult to reverse, and legacy lock-in disconnects contemporary landscapes from ES supply, illustrated by hydrologic services. Mismatches between contemporary landscape patterns and mechanisms underpinning ES supply yield unexpected patterns of ES.

Conclusions

Today’s land-use decisions will generate tomorrow’s legacies, and ES will be affected if processes underpinning ES are affected by land-use legacies. Research priorities include understanding effects of urban abandonment, new contaminants, and interactions of land-use legacies and climate change. Improved understanding of historical effects will improve management of contemporary ES, and aid in decision-making as new challenges to sustaining cultural landscapes arise.
  相似文献   

3.
Context

Worldwide, anthropogenic habitat loss and degradation have led to substantial biodiversity declines. Preserving biodiversity requires an understanding of how habitat loss and degradation interact to impact species populations, and how land-use decisions can limit these losses.

Objectives

We present a mathematical partitioning of changes in landscape-level population abundance in response to land-use change using a modified version of the Price equation from evolutionary biology.

Methods

The Price equation partitions changes in species abundance into multiple drivers related to habitat loss, habitat degradation, and their interaction. We describe its development and exemplify its applicability using simulated data.

Results

Applying the Price equation to simulated data reveals the roles of habitat loss, habitat degradation, and their interaction in driving population change in patchy landscapes undergoing complex land-use change processes.

Conclusions

The Price equation is a theoretical tool that may enhance our understanding of the effects of land-use change on populations by accounting for the specific processes by which land-use change operates across landscapes.

  相似文献   

4.
Species distributions are influenced by many processes operating over varying spatial scales. The development of species distribution models (SDMs), also known as ecological niche models, has afforded the opportunity to predict the distributions of diverse taxa across broad geographic areas and identify variables that are potentially important in regulating these distributions. However, the integration of site-specific habitat data with broad scale climate and landcover data has received limited attention in an SDM framework. We investigate whether SDMs developed with breeding pond, landcover, and climate variables can accurately predict the distributions of nine pond-breeding amphibians in eastern Missouri, USA. Additionally we investigate the relative influences of each environmental variable on the distribution predictions for each study species, and whether the most influential variables are shared among multiple taxa. Boosted regression tree (BRT) SDMs were developed for each species with 38 abiotic and biotic environmental variables, including data from the breeding ponds, surrounding landcover, and climate. To test the models, field surveys were performed in 2007 and 2008 at 103 ponds for nine amphibian species. BRT models developed with breeding pond, landcover, and climate data accurately predicted the occurrences of six of nine species across the study area. Furthermore, the presence of each species was best predicted by a unique combination of environmental variables. Results also suggest that landcover and climate factors may be more influential for species near the edge of their geographic ranges, while local breeding pond factors may be more important for species nearer to the center of their ranges.  相似文献   

5.
Gamboa-Badilla  Nancy  Segura  Alfonso  Bagaria  Guillem  Basnou  Corina  Pino  Joan 《Landscape Ecology》2020,35(12):2745-2757
Context

It is known that land-use and land-cover (LULC) changes affect plant community assembly for decades. However, both the short- and the long-term effects of contrasting LULC change pathways on this assembly are seldom explored.

Objectives

To assess how LULC change pathways affect woody plant community parameters (i.e. species richness, diversity and evenness) and species’ presence and abundance, compared with environmental factors and neutral processes.

Methods

The study was performed in Mediterranean limestone scrublands in NE Spain. Cover of each woody species was recorded in 150 scrubland plots belonging to five LULC change pathways along the past century, identified using land-cover maps and fieldwork. For each plot, total woody and herbaceous vegetation cover, local environmental variables and geographical position were recorded. Effects of these pathways and factors on plant community parameters and on species presence and abundance were assessed, considering spatial effects potentially associated to neutral processes.

Results

Species richness and diversity were associated with LULC change pathways and elevation, while evenness was only associated with this last. Pathways and environmental variables explained similar variance in both species’ presence and cover. In general, while community parameters were affected by recent-past (1956) use, species presence and abundance were associated with far-past (pre-1900) cropping. No relevant spatial effect was detected for any studied factor.

Conclusions

Historical LULC changes and current environmental factors drive local-scale community assembly in Mediterranean scrublands to an equal extent, while contrasting time-scale effects are found at community and species level. Neutral, dispersal-based processes are found to be non-relevant.

  相似文献   

6.
Context

One approach to maintain the resilience of biotic communities is to protect the variability of abiotic characteristics of Earth’s surface, i.e. geodiversity. In terrestrial environments, the relationship between geodiversity and biodiversity is well recognized. In streams, the abiotic properties of upstream catchments influence stream communities, but the relationships between catchment geodiversity and aquatic biodiversity have not been previously tested.

Objectives

The aim was to compare the effects of local environmental and catchment variables on stream biodiversity. We specifically explored the usefulness of catchment geodiversity in explaining the species richness on stream macroinvertebrate, diatom and bacterial communities.

Methods

We used 3 geodiversity variables, 2 land use variables and 4 local habitat variables to examine species richness variation across 88 stream sites in western Finland. We used boosted regression trees to explore the effects of geodiversity and other variables on biodiversity.

Results

We detected a clear effect of catchment geodiversity on species richness, although the traditional local habitat and land use variables were the strongest predictors. Especially soil-type richness appeared as an important factor for species richness. While variables related to stream size were the most important for macroinvertebrate richness and partly for bacterial richness, the importance of water chemistry and land use for diatom richness was notable.

Conclusions

In addition to traditional environmental variables, geodiversity may affect species richness variation in streams, for example through changes in water chemistry. Geodiversity information could be used as a proxy for predicting stream species richness and offers a supplementary tool for conservation efforts.

  相似文献   

7.

Context

Ecological impacts of past land use can persist for centuries. While present-day land use is relatively easy to quantify, characterizing historical land uses and their legacies on biodiversity remains challenging. Southern Transylvania in Romania is a biodiversity-rich area which has undergone major political and socio-economic changes, from the Austro-Hungarian Empire to two World Wars, communist dictatorship, capitalist democracy, and EU accession—all leading to widespread land-use changes.

Objectives

We investigated whether present-day community composition of birds, plants, and butterflies was associated with historical land use.

Methods

We surveyed birds, plants, and butterflies at 150 sites and classified those sites as forest, arable land, or managed grassland for six epochs using historical maps from the 1870s, 1930s, and 1970s, satellite imagery from 1985 to 2000, and field visits in 2012. Sites were labelled permanent if they had the same land use at all epochs and non-permanent otherwise. We used clustering and PERMANOVA based on community similarity to test for associations between community composition and land-use history.

Results

We found significant differences (p = 0.030) in bird communities between permanent and non-permanent forest sites, and permanent and non-permanent grassland sites (p = 0.051). No significant associations were found among plants or butterflies and land-use history.

Conclusions

Bird communities were associated with historical land use, though plants and butterflies were not. Historical land-use change in our study area was likely not sufficiently intense to cross relevant ecological thresholds that would lead to legacy effects in present-day plant and butterfly communities.
  相似文献   

8.
Context

Global pollinator decline has motivated much research to understand the underlying mechanisms. Among the multiple pressures threatening pollinators, habitat loss has been suggested as a key-contributing factor. While habitat destruction is often associated with immediate negative impacts, pollinators can also exhibit delayed responses over time.

Objectives

We used a trait-based approach to investigate how past and current land use at both local and landscape levels impact plant and wild bee communities in grasslands through a functional lens.

Methods

We measured flower and bee morphological traits that mediate plant–bee trophic linkage in 66 grasslands. Using an extensive database of 20 years of land-use records, we tested the legacy effects of the landscape-level conversion of grassland to crop on flower and bee trait diversity.

Results

Land-use history was a strong driver of flower and bee trait diversity in grasslands. Particularly, bee trait diversity was lower in landscapes where much of the land was converted from grassland to crop long ago. Bee trait diversity was also strongly driven by plant trait diversity computed with flower traits. However, this relationship was not observed in landscapes with a long history of grassland-to-crop conversion. The effects of land-use history on bee communities were as strong as those of current land use, such as grassland or mass-flowering crop cover in the landscape.

Conclusions

Habitat loss that occurred long ago in agricultural landscapes alters the relationship between plants and bees over time. The retention of permanent grassland sanctuaries within intensive agricultural landscapes can offset bee decline.

  相似文献   

9.
Investigations of spatial patterns in forest tree species composition are essential in the understanding of landscape dynamics, especially in areas of land-use change. The specific environmental factors controlling the present patterns, however, vary with the scale of observation. In this study we estimated abundance of adult trees and tree regeneration in a Southern Alpine valley in Ticino, Switzerland. We hypothesized that, at the present scale, spatial pattern of post-cultural tree species does not primarily depend on topographic features but responds instead to small-scale variation in historical land use. We used multivariate regression trees to relate species abundances to environmental variables. Species matrices were comprised of single tree species abundance as well as species groups. Groups were formed according to common ecological species requirements with respect to shade tolerance, soil moisture and soil nutrients. Though species variance could only be partially explained, a clear ranking in the relative importance of environmental variables emerged. Tree basal area of formerly cultivated Castanea sativa (Mill.) was the most important factor accounting for up to 50% of species’ variation. Influence of topographic attributes was minor, restricted to profile curvature, and partly contradictory in response. Our results suggest the importance of biotic factors and soil properties for small-scale variation in tree species composition and need for further investigations in the study area on the ecological requirements of tree species in the early growing stage.  相似文献   

10.
Context

African production landscapes are diverse, with multiple cassava cultivars grown in small patches amongst a diversity of other crops. Studies on how diverse smallholder landscapes impact herbivore pest outbreak risk have not been carried out in sub-Saharan Africa.

Objectives

Bemisia tabaci is a cryptic pest species complex that cause damage to cassava through feeding and vectoring plant-virus diseases and are known to reach very high densities in certain contexts. However, the factors driving this phenomenon are unclear.

Methods

Bemisia density data in cassava across a large number of sites representing a geographic gradient across Uganda, Tanzania and Malawi were collected. We tested whether in-field or landscape factors associated with land-use patterns underpinned Bemisia density variability and parasitism.

Results

We found the B. tabaci SSA1 species dominated our study sites, although other species were also common in some cassava fields. Factors associated with the surrounding landscape were unimportant for explaining variability in adult density, but the in-field variables of cassava age and cultivar were very important. The density of nymphs and the parasitism of nymphs was heavily influenced by a diversity of landscape factors surrounding the field, including the size of focal cassava field, and area of cassava in the landscape. However, unlike the trend from many other studies on drivers of natural enemy populations, this pattern was not solely related to the amount of non-crop vegetation, or the diversity of crops grown in the landscape.

Conclusions

Our findings provide management options to reduce whitefly abundance, including describing the characteristics of landscapes with high parasitism. The choice of cassava cultivar by the farmer is critical to reduce whitefly outbreak risk at the landscape-scale.

  相似文献   

11.

Context

Species site-occupancy patterns may be influenced by habitat variables at both local and landscape scales. Although local habitat variables influence whether the site is suitable for a given species, the broader landscape context can also influence site occupancy, particularly for species that are sensitive to land-use change.

Objectives

To examine the relative importance of local versus landscape variables in explaining site occupancy of eight bat species within the Brazilian Cerrado, a Neotropical savanna that is experiencing widespread habitat loss and fragmentation.

Methods

Bats were surveyed within 16 forest patches over two years. We used a multi-model information-theoretic approach, adjusted for species detection bias, to assess whether landscape variables (percent cover and number of patches of natural vegetation within a 2- and 8-km radius of each forest site) or local site variables (canopy cover, understory height, number of trees, and number of lianas) best explained site occupancy in each species.

Results

Landscape variables were among the best models (ΔAICc or ΔQAICc < 2) for four species (top-ranked model for black myotis), whereas local variables were among the best for five species (top-ranked model for vampire bats). Neither local nor landscape variables explained site occupancy in two frugivorous species.

Conclusion

Species associated with a particular habitat type will not respond similarly to the amount, distribution or relative suitability of that habitat, or even at the same scale. This reinforces the challenge of species distribution modelling, especially in the context of forecasting species’ responses to future land-use or climate-change scenarios.
  相似文献   

12.
Context

Biodiversity in tropical region has declined in the last decades, mainly due to forest conversion into agricultural areas. Consequently, species occupancy in these landscapes is strongly governed by environmental changes acting at multiple spatial scales.

Objectives

We investigated which environmental predictors best determines the occupancy probability of 68 bird species exhibiting different ecological traits in forest patches.

Methods.

We conducted point-count bird surveys in 40 forest sites of the Brazilian Atlantic forest. Using six variables related to landscape composition and configuration and local vegetation structure, we predicted the occupancy probability of each species accounting for imperfect detections.

Results

Landscape composition, especially forest cover, best predicted bird occupancy probability. Specifically, most bird species showed greater occupancy probability in sites inserted in more forested landscapes, while some species presented higher occurrence in patches surrounded by low-quality matrices. Conversely, only three species showed greater occupancy in landscapes with higher number of patches and dominated by forest edges. Also, several species exhibited greater occupancy in sites harbouring either larger trees or lower number of understory plants. Of uttermost importance, our study revealed that a minimum of 54% of forest cover is required to ensure high (> 60%) occupancy probability of forest species.

Conclusions

We highlighted that maintaining only 20% of native vegetation in private property according to Brazilian environmental law is insufficient to guarantee a greater occupancy for most bird species. We recommend that policy actions should safeguard existing forest remnants, expand restoration projects, and curb human-induced disturbances to minimise degradation within forest patches.

  相似文献   

13.
Context

Wild flowering plants and their wild insect visitors are of great importance for pollination. Montane meadows are biodiversity hotspots for flowering plants and pollinators, but they are contracting due to tree invasion.

Objectives

This study quantified flowering plants and their flower-visitor species in montane meadows in the western Cascade Range of Oregon. Species diversity in small, isolated meadows was expected to be lower and nested relative to large meadows. Alternatively, landform features may influence richness and spatial turnover.

Methods

Flowering plants and their visitors were sampled in summers of 2011–2017 in twelve montane meadows with varying soil moisture. All flowering plants and all flower-visitors were recorded during five to seven 15 min watches in ten 3?×?3 m plots in each meadow and year.

Results

A total of 178 flowering plant species, 688 flower-visitor species and 137,916 interactions were identified. Richness of flower-visitors was related to meadow patch size, but neither plant nor flower-visitor richness was related to isolation measured as meadow area within 1000 m. Species in small meadows were not nested subsets of those in large meadows. Species replacement accounted for more than 78% of dissimilarity between meadows and was positively related to differences in soil moisture.

Conclusions

Although larger meadows contained more species, landform features have influenced meadow configuration, persistence, and soil moisture, contributing to high plant and insect species diversity. Hence, conservation and restoration of a variety of meadow types may promote landscape diversity of wild plants and pollinators.

  相似文献   

14.
Species distribution models (SDMs) are commonly used in ecology to map the probability of species occurrence on the basis of predictive factors describing the physical environment. We propose an improvement on SDMs by using graph methods to quantify landscape connectivity. After (1) mapping the habitat suitable for a given species, this approach consists in (2) building a landscape graph, (3) computing patch-based connectivity metrics, (4) extrapolating the values of those metrics to any point of space, and (5) integrating those connectivity metrics into a predictive model of presence. For a given species, this method can be used to interpret the significance of the metrics in the models in terms of population structure. The method is illustrated here by the construction of an SDM for the European tree frog in the region of Franche-Comté (France). The results show that the connectivity metrics improve the explanatory power of the SDM and emphasize the important role of the habitat network.  相似文献   

15.
Context

Cultivated lands have undergone a shift towards intensification and increased productivity, favoring provisioning services at the expense of regulating and cultural services. Cultivated lands have rarely been researched as a provider of cultural services.

Objectives

The overarching goal of this study is to assess sense of place across cultivated lands. To do so, we used participatory mapping to elicit public knowledge of the past and present coverage of agricultural areas, as well as to reveal the public sense of place attached to cultivated lands and perceptions about future land-use pathways.

Methods

This study was conducted in an agrarian and rural region of SE Madrid (Spain), where we did ecosystem service participatory mapping workshops with key stakeholders related to the agrarian sector: farming professionals, land-use decision-makers and planners and other local actors.

Results

We identified linkages between cultivated lands and sense of place as a key cultural service. The locations most pinpointed for its sense of place overlapped with cultivated lands. The future land-use pathways that showed the highest agreement between the likelihood and interest in their promotion were the increases in green and/or protected areas and orchards. Extensive crops and urban areas the land-use pathways with the highest dissonance.

Conclusions

The results encourage land planners and researchers to approach landscape values in relation to the sense of place. We concluded that cultivated lands present a sense of place, and this link has the possible to root society in agricultural landscape through the establishment of belongingness, stewardship and care connections.

  相似文献   

16.
Understanding how urban forests developed their current patterns of tree canopy cover, species composition, and diversity requires an appreciation of historical legacy effects. However, analyses of current urban forest characteristics are often limited to contemporary socioeconomic factors, overlooking the role of history. The institutions, human communities, and biophysical conditions of cities change over time, creating layers of legacies on the landscape, shifting urban forests through complex interactive processes and feedbacks. Urban green spaces and planted trees can persist long after their establishment, meaning that today’s mature canopy reflects conditions and decisions from many years prior. In this synthesis article, we discuss some of the major historical human and biophysical drivers and associated legacy effects expressed in present urban forest patterns, highlighting examples in the United States and Canada. The bioregional context – native biome, climate, topography, initial vegetation, and pre-urbanization land use – represents the initial conditions in which a city established and grew, and this context influences how legacy effects unfold. Human drivers of legacy effects can reflect specific historical periods: colonial histories related to the symbolism of certain species, and the urban parks and civic beautification movements. Other human drivers include phenomena that cut across time periods such as neighborhood urban form and socioeconomic change. Biophysical legacy effects include the consequences of past disturbances such as extreme weather events and pest and disease outbreaks. Urban tree professionals play a major role in many legacy effects by mediating the interactions and feedbacks between biophysical and human drivers. We emphasize the importance of historical perspectives to understand past drivers that have produced current urban forest patterns, and call for interdisciplinary and mixed methods research to unpack the mechanisms of long-term urban forest change at intra- and inter-city scales.  相似文献   

17.
Larsen  Ashley E.  McComb  Sofie 《Landscape Ecology》2021,36(1):159-177
Context

Global environmental change is expected to dramatically affect agricultural crop production through a myriad of pathways. One important and thus far poorly understood impact is the effect of land cover and climate change on agricultural insect pests and insecticides.

Objectives

Here we address the following three questions: (1) how do landscape complexity and weather influence present-day insecticide use, (2) how will changing landscape characteristics and changing climate influence future insecticide use, and how do these effects manifest for different climate and land cover projections? and (3) what are the most important drivers of changing insecticide use?

Methods

We use panel models applied to county-level agriculture, land cover, and weather data in the US to understand how landscape composition and configuration, weather, and farm characteristics impact present-day insecticide use. We then leverage forecasted changes in land cover and climate under different future scenarios to predict insecticide use in 2050.

Results

We find different future scenarios—through modifications in both landscape and climate conditions—increase the amount of area treated by ~ 4–20% relative to 2017, with regionally heterogeneous impacts. Of note, we report large farms are more influential than large crop patches and increased winter minimum temperature is more influential than increased summer maximum temperature. However, our results suggest the most important determinants of future insecticide use are crop composition and farm size, variables for which future forecasts are sparse.

Conclusions

Both landscape and climate change are expected to increase future insecticide use. Yet, crop composition and farm size are highly influential, data-poor variables. Better understanding of future crop composition and farm economics is necessary to effectively predict and mitigate increases in pesticide use.

  相似文献   

18.
Context

Management actions and land-use change can disrupt interdependent population processes, re-define population networks, and change source-sink dynamics. Yet we know little about the types of changes that can de-stabilize source-sink dynamics and how such changes could affect management decisions.

Objectives

We examined the degree to which source-sink status and strength could change under a range of management actions and land-use change scenarios including different patterns and extents of habitat loss, restoration, demographic improvements from parasitism control, and increased frequencies inter-population movement.

Methods

We developed an empirically-rich, spatially explicit, individual-based model for the formerly endangered Black-capped vireo in Texas. We simulated the network-wide consequences of different kinds of changes and compared the resulting source-sink strength, status, and regional abundance across scenarios. We gauged source-sink stability by the degree to which system changes caused the reversal of source or sink status.

Results

The stability of source-sink characterizations differed with the type of change. Source-sink dynamics were less responsive to small changes to population structure and changes that minimally affected demographic conditions. Source-sink status was most responsive to changes that affected habitat patterns and quality.

Conclusions

Accurately classifying sources and sinks is challenging, particularly in variable and directionally changing systems. The stability of source-sink classifications depends on the type of management or land-use change. Management actions may need to weigh interventions that improve regional abundance against those that alter regional source-sink dynamics as abundance and source-sink states can be sensitive to different kinds of change.

  相似文献   

19.
Context

Land degradation from mining influences biodiversity and ecosystem functioning. However, comparative studies using small mammal functional groups within rehabilitated mining sites are missing, despite their significant ecological contributions.

Objectives

We investigated the recovery of small mammals according to their trophic guild and terrestriality in restored mining sites and analyzed whether they were influenced by restoration scheme (active or passive), restoration time, mineral type, body mass and invasive species. We were especially interested in whether functional groups showed different recovery patterns across time.

Methods

We classified small mammals into functional groups according to trophic levels distinguishing carnivores, herbivores and omnivores, and according to their terrestriality categorized as above ground-dwelling (AGD) and fossorial and/or ground-dwelling individuals (FGD). We studied small mammal recovery globally following restoration of mining sites based on a meta-analysis using effect sizes. Influences of environmental variables were investigated with linear mixed models using effect sizes as response variable.

Results

We did not find significant differences for restoration scheme and time but we did for mineral type, body mass and invasive species in terms of population (abundance) recovery. Trajectories of functional group recoveries differed: FGD and herbivores quickly recovered after mining activities stopped, but declined later, whereas AGD, carnivores and omnivores recovered within the first few years or decades.

Conclusions

Our results highlight the different vulnerability of functional groups, and the importance of considering this in conservation interventions.

  相似文献   

20.

Context

Recent research suggests that novel geodiversity data on landforms, hydrology and surface materials can improve biodiversity models at the landscape scale by quantifying abiotic variability more effectively than commonly used measures of spatial heterogeneity. However, few studies consider whether these variables can account for, and improve our understanding of, species’ distributions.

Objectives

Assess the role of geodiversity components as macro-scale controls of plant species’ distributions in a montane landscape.

Methods

We used an innovative approach to quantifying a landscape, creating an ecologically meaningful geodiversity dataset that accounted for hydrology, morphometry (landforms derived from geomorphometric techniques), and soil parent material (data from expert sources). We compared models with geodiversity to those just using topographic metrics (e.g. slope and elevation) and climate data. Species distribution models (SDMs) were produced for ‘rare’ (N?=?76) and ‘common’ (N?=?505) plant species at 1 km2 resolution for the Cairngorms National Park, Scotland.

Results

The addition of automatically produced landform geodiversity data and hydrological features to a basic SDM (climate, elevation, and slope) resulted in a significant improvement in model fit across all common species’ distribution models. Adding further geodiversity data on surface materials resulted in a less consistent statistical improvement, but added considerable conceptual value to many individual rare and common SDMs.

Conclusions

The geodiversity data used here helped us capture the abiotic environment’s heterogeneity and allowed for explicit links between the geophysical landscape and species’ ecology. It is encouraging that relatively simple and easily produced geodiversity data have the potential to improve SDMs. Our findings have important implications for applied conservation and support the need to consider geodiversity in management.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号