首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ObjectiveTo evaluate perioperative stress-related hormones in isoflurane-anesthetized horses administered infusions of dexmedetomidine alone or with butorphanol or remifentanil, compared with ketamine–morphine.Study designRandomized, prospective, nonblinded clinical study.AnimalsA total of 51 horses undergoing elective surgical procedures.MethodsHorses were premedicated with xylazine, anesthesia induced with ketamine–diazepam and maintained with isoflurane and one of four intravenous infusions. Partial intravenous anesthesia (PIVA) was achieved with dexmedetomidine (1.0 μg kg–1 hour–1; group D; 12 horses); dexmedetomidine (1.0 μg kg–1 hour–1) and butorphanol bolus (0.05 mg kg–1; group DB; 13 horses); dexmedetomidine (1.0 μg kg–1 hour–1) and remifentanil (3.0 μg kg–1 hour–1; group DR; 13 horses); or ketamine (0.6 mg kg–1 hour–1) and morphine (0.15 mg kg–1, 0.1 mg kg–1 hour–1; group KM; 13 horses). Infusions were started postinduction; butorphanol bolus was administered 10 minutes before starting surgery. Blood was collected before drugs were administered (baseline), 10 minutes after ketamine–diazepam, every 30 minutes during surgery and 1 hour after standing. Mean arterial pressure (MAP), pulse rate, end-tidal isoflurane concentration, cortisol, nonesterified fatty acids (NEFA), glucose and insulin concentrations were compared using linear mixed models. Significance was assumed when p < 0.05.ResultsWithin D, cortisol was lower at 120–180 minutes from starting surgery compared with baseline. Cortisol was higher in KM than in D at 60 minutes from starting surgery. Within all groups, glucose was higher postinduction (except DR) and 60 minutes from starting surgery, and insulin was lower during anesthesia and higher after standing compared with baseline. After standing, NEFA were higher in KM than in DB. In KM, MAP increased at 40–60 minutes from starting surgery compared with 30 minutes postinduction.Conclusions and clinical relevanceDexmedetomidine suppressed cortisol release more than dexmedetomidine–opioid and ketamine–morphine infusions. Ketamine–morphine PIVA might increase catecholamine activity.  相似文献   

2.
ObjectiveTo determine the effects of intravenous (IV) premedication with acepromazine, butorphanol or their combination, on the propofol anesthetic induction dosage in dogs.Study designProspective, blinded, Latin square design.AnimalsA total of three male and three female, healthy Beagle dogs, aged 3.79 ± 0.02 years, weighing 10.6 ± 1.1 kg, mean ± standard deviation.MethodsEach dog was assigned to one of six IV treatments weekly: 0.9% saline (treatment SAL), low-dose acepromazine (0.02 mg kg–1; treatment LDA), high-dose acepromazine (0.04 mg kg–1; treatment HDA), low-dose butorphanol (0.2 mg kg–1; treatment LDB), high-dose butorphanol (0.4 mg kg–1; treatment HDB); and a combination of acepromazine (0.02 mg kg–1) with butorphanol (0.2 mg kg–1; treatment ABC). Physiologic variables and sedation scores were collected at baseline and 10 minutes after premedication. Then propofol was administered at 1 mg kg–1 IV over 15 seconds, followed by boluses (0.5 mg kg–1 over 5 seconds) every 15 seconds until intubation. Propofol dose, physiologic variables, recovery time, recovery score and adverse effects were monitored and recorded. Data were analyzed using mixed-effects anova (p < 0.05).ResultsPropofol dosage was lower in all treatments than in treatment SAL (4.4 ± 0.5 mg kg–1); the largest decrease was recorded in treatment ABC (1.7 ± 0.3 mg kg–1). Post induction mean arterial pressures (MAPs) were lower than baseline values of treatments LDA, HDA and ABC. Apnea and hypotension (MAP < 60 mmHg) developed in some dogs in all treatments with the greatest incidence of hypotension in treatment ABC (4/6 dogs).Conclusions and clinical relevanceAlthough the largest decrease in propofol dosage required for intubation was after IV premedication with acepromazine and butorphanol, hypotension and apnea still occurred.  相似文献   

3.
ObjectiveTo evaluate the cardiorespiratory, sedative and antinociceptive effects of dexmedetomidine alone or in combination with methadone, morphine or tramadol in dogs.Study designExperimental, blinded, randomized, crossover study.AnimalsSix mixed breed dogs (two males and four females) weighing 10 ± 4 kg.MethodsThe animals were randomly divided into four treatments: D (10 μg kg?1 of dexmedetomidine), DM (dexmedetomidine 10 μg kg?1 and methadone 0.5 mg kg?1); DMO (dexmedetomidine 10 μg kg?1 and morphine 0.5 mg kg?1), and DT (dexmedetomidine 10 μg kg?1 and tramadol 2 mg kg?1). The combinations were administered intramuscularly in all treatments. The variables evaluated were heart rate (HR), respiratory rate (fR), rectal temperature (RT), systolic arterial pressure (SAP), sedation scale and pedal withdrawal reflex. These variables were measured at T0 (immediately before the administration of the protocol) and every 15 minutes thereafter until T105.ResultsA decrease in HR and fR occurred in all the treatments compared with T0, but no significant difference was observed between the treatments. The RT decreased from T45 onward in all the treatments. The SAP did not show a difference between the treatments, but in the DT treatment, the SAP was lower at T30 and T45 compared with T0. The D treatment had lower scores of sedation at T15 to T75 compared with the other treatments, and the DMO and DM treatments showed higher scores at T60 and T75 compared with DT.Conclusions and clinical relevanceThe treatments with morphine and methadone added to the dexmedetomidine showed higher sedation scores than the control treatment and the treatment with tramadol added to the dexmedetomidine showed no relevant differences in any of the variables evaluated in the study.  相似文献   

4.
5.
ObjectiveTo assess analgesic efficacy and the pharmacokinetics of intranasal (IN) tramadol in dogs following ovariohysterectomy.Study designRandomized, blinded clinical study.AnimalsA total of 30 bitches undergoing elective ovariohysterectomy.MethodsDogs were randomly assigned to one of three experimental groups (10 dogs per group): IN tramadol 4 mg kg–1 (group T-IN), intravenous (IV) tramadol 4 mg kg–1 (group T-IV) and IV methadone 0.2 mg kg–1 (group M). Drugs were administered at extubation. At established time points (before surgery and up to 8 hours after drug administration) analgesia was assessed using the Italian version of the Glasgow Composite Measure Pain Scale Short Form and physiological variables were recorded. To determine the pharmacokinetics of IN tramadol, blood samples were collected at predetermined time points. Shapiro–Wilk test was used to assess whether data were normally distributed and consequently parametric or non parametric tests were applied. A p value < 0.05 was considered significant.ResultsNo significant intergroup differences were observed in the dogs that were administered rescue analgesia and time of its administration. Excluding dogs that were administered rescue analgesia, no significant intergroup differences emerged in pain scores and physiological variables, except for a lower rectal temperature in group M compared with the tramadol groups. After IN administration, tramadol was rapidly absorbed into the systemic circulation, reaching its maximum concentration (range 74.74–200.29 ng mL–1) within 30–60 minutes, it then decreased rapidly and was detectable in plasma for up to 2 hours after treatment in all dogs.Conclusions and clinical relevanceIN tramadol administration appears to be as effective as IV tramadol and methadone treatments in pain management of dogs after elective ovariohysterectomy. Given its low concentrations and short detection time in plasma after the IN route, systemic tramadol action appears unlikely.  相似文献   

6.
ObjectiveTo assess cardiopulmonary function in sedated and anesthetized dogs administered intravenous (IV) dexmedetomidine and subsequently administered IV lidocaine to treat dexmedetomidine-induced bradycardia.Study designProspective, randomized, crossover experimental trial.AnimalsA total of six purpose-bred female Beagle dogs, weighing 9.1 ± 0.6 kg (mean ± standard deviation).MethodsDogs were randomly assigned to one of three treatments: dexmedetomidine (10 μg kg–1 IV) administered to conscious (treatments SED1 and SED2) or isoflurane-anesthetized dogs (end-tidal isoflurane concentration 1.19 ± 0.04%; treatment ISO). After 30 minutes, a lidocaine bolus (2 mg kg–1) IV was administered in treatments SED1 and ISO, followed 20 minutes later by a second bolus (2 mg kg–1) and a 30 minute lidocaine constant rate infusion (L-CRI) at 50 (SED1) or 100 μg kg–1 minute–1 (ISO). In SED2, lidocaine bolus and L-CRI (50 μg kg–1 minute–1) were administered 5 minutes after dexmedetomidine. Cardiopulmonary measurements were obtained after dexmedetomidine, after lidocaine bolus, during L-CRI and 30 minutes after discontinuing L-CRI. A mixed linear model was used for comparisons within treatments (p < 0.05).ResultsWhen administered after a bolus of dexmedetomidine, lidocaine bolus and L-CRI significantly increased heart rate and cardiac index, decreased mean blood pressure, systemic vascular resistance index and oxygen extraction ratio, and did not affect stroke volume index in all treatments.Conclusion and clinical relevanceLidocaine was an effective treatment for dexmedetomidine-induced bradycardia in healthy research dogs.  相似文献   

7.
ObjectiveTo evaluate the effects of nalbuphine, butorphanol and morphine combined with acepromazine on intraoperative and early postoperative pain management in dogs anesthetized for ovariohysterectomy.Study designProspective, randomized blinded clinical study.AnimalsA total of 48 healthy female dogs of different breeds, aged 1–6 years, weighing (mean ± standard deviation) 14.5 ± 4.8 kg.MethodsDogs were randomly assigned into four groups to be intravenously administered nalbuphine (0.5 mg kg–1; group N0.5), nalbuphine (1.0 mg kg–1; group N1.0), butorphanol (0.4 mg kg–1; group B0.4) or morphine (0.2 mg kg–1; group M0.2) combined with acepromazine (0.02 mg kg–1) prior to propofol and isoflurane for anesthesia. Heart rate (HR), respiratory rate, systolic arterial pressure and rectal temperature (RT) were recorded at time points during anesthesia. A dynamic interactive visual analog scale applied in three phases (DIVAS I, II and III) and the modified Glasgow composite measure pain scale were used to assess pain before premedication and 1, 2, 3, 4, 5 and 6 hours after extubation. Administration of rescue analgesia was recorded.ResultsAt the left ovarian pedicle ligation, HR was higher in N1.0 than in B0.4 (p = 0.020). RT decreased significantly by the end of surgery in N0.5 (p = 0.043) and B0.4 (p = 0.010). Rescue analgesia was administered postoperatively over 6 hours to eight, seven, nine and 10 dogs in N0.5, N1.0, B0.4 and M0.2, respectively (p = 0.57). DIVAS II was higher in B0.4 than in N1.0 at 2 and 3 hours (p = 0.038 and p = 0.002, respectively) and N0.5 at 3 hours (p = 0.003).Conclusions and clinical relevanceAt the doses used, all premedication protocols provided insufficient intraoperative analgesia, with minimal clinical differences between groups. No premedication provided satisfactory analgesia in the first 6 hours postoperatively.  相似文献   

8.
ObjectiveTo evaluate the effect of dexmedetomidine on alfaxalone immobilization in snakes.Study designNonblinded, crossover study.AnimalsA total of eight mature common garter snakes (Thamnophis sirtalis).MethodsSnakes were administered each of three treatments intracoelomically: alfaxalone (30 mg kg–1; treatment A), alfaxalone (30 mg kg–1) combined with dexmedetomidine (0.05 mg kg–1; treatment AD0.05); and alfaxalone (30 mg kg–1) combined with dexmedetomidine (0.10 mg kg–1; treatment AD0.10). A minimum of 10 days elapsed between experimental trials. Times to loss of righting reflex (LRR) and return of righting reflex (RRR) were recorded. Heart rate (HR) was recorded every 5 minutes throughout the period of LRR and averaged for each snake. Times to LRR and RRR, and mean HR in snakes that achieved LRR were reported.ResultsLRR occurred in eight (100%), five (63%) and three (38%) snakes in treatments A, AD0.05 and AD0.10, respectively. For all treatments, time to LRR ranged 3–20 minutes. Median (range) times to RRR were 39 (30–46), 89 (62–128) and 77 (30–185) minutes for treatments A, AD0.05 and AD0.10, respectively. In animals where righting reflex was lost, mean HR was lower in all dexmedetomidine treatments compared with treatment A.Conclusions and clinical relevanceIn this pilot study, alfaxalone resulted in reliable immobilization, whereas dexmedetomidine and alfaxalone combinations resulted in highly variable durations of immobilization with low HR in immobilized animals. For snakes that achieved LRR, the addition of dexmedetomidine (0.05 mg kg–1) to alfaxalone appeared to extend the period of immobilization compared with alfaxalone alone.  相似文献   

9.
ObjectiveTo evaluate the effects of methadone, administered alone or in combination with acepromazine or xylazine, on sedation and on physiologic values in dogs.Study designRandomized cross-over design.AnimalsSix adult healthy mixed-breed dogs weighing 13.5 ± 4.9 kg.MethodsDogs were injected intramuscularly with physiologic saline (Control), or methadone (0.5mg kg−1) or acepromazine (0.1 mg kg−1) or xylazine (1.0 mg kg−1), or acepromazine (0.05 mg kg−1) plus methadone (0.5 mg kg−1) or xylazine (0.5 mg kg−1) plus methadone (0.5 mg kg−1) in a randomized cross-over design, with at least 1-week intervals. Sedation, pulse rate, indirect systolic arterial pressure, respiratory rate (RR), body temperature and pedal withdrawal reflex were evaluated before and at 15-minute intervals for 90 minutes after treatment.ResultsSedation was greater in dogs receiving xylazine alone, xylazine plus methadone and acepromazine plus methadone. Peak sedative effect occurred within 30 minutes of treatment administration. Pulse rate was lower in dogs that received xylazine either alone or with methadone during most of the study. Systolic arterial pressure decreased only in dogs receiving acepromazine alone. When methadone was administered alone, RR was higher than in other treatments during most of the study and a high prevalence of panting was observed. In all treatments body temperature decreased, this effect being more pronounced in dogs receiving methadone alone or in combination with acepromazine. Pedal withdrawal reflex was absent in four dogs receiving methadone plus xylazine but not in any dog in the remaining treatments.Conclusions and clinical relevanceMethadone alone produces mild sedation and a high prevalence of panting. Greater sedation was achieved when methadone was used in combination with acepromazine or xylazine. The combination xylazine–methadone appears to result in better analgesia than xylazine administered alone. Both combinations of methadone/sedative were considered effective for premedication in dogs.  相似文献   

10.
11.
ObjectiveTo evaluate selected effects of midazolam or lidocaine administered prior to etomidate for co-induction of anesthesia in healthy dogs.Study designProspective crossover experimental study.AnimalsA group of 12 healthy adult female Beagle dogs.MethodsDogs were premedicated with intravenous (IV) butorphanol (0.3 mg kg–1), and anesthesia was induced with etomidate following midazolam (0.3 mg kg–1), lidocaine (2 mg kg–1) or physiologic saline (1 mL) IV. Heart rate (HR), arterial blood pressure, respiratory rate (fR) and intraocular pressure (IOP) were recorded following butorphanol, after co-induction administration, after etomidate administration and immediately following intubation. Baseline IOP values were also obtained prior to sedation. Etomidate dose requirements and the presence of myoclonus, as well as coughing or gagging during intubation were recorded. Serum cortisol concentrations were measured prior to premedication and 6 hours following etomidate administration.ResultsBlood pressure, fR and IOP were similar among treatments. Blood pressure decreased in all treatments following etomidate administration and generally returned to sedated values following intubation. HR increased following intubation with midazolam and lidocaine but remained stable in the saline treatment. The dose of etomidate (median, interquartile range, range) required for intubation was lower following midazolam (2.2, 2.1–2.6, 1.7–4.1 mg kg−1) compared with lidocaine (2.7, 2.4–3.6, 2.2–5.1 mg kg−1, p = 0.012) or saline (3.0, 2.8–3.8, 1.9–5.1 mg kg−1, p = 0.015). Coughing or gagging was less frequent with midazolam compared with saline. Myoclonus was not observed. Changes in serum cortisol concentrations were not different among treatments.Conclusions and clinical relevanceMidazolam administration reduced etomidate dose requirements and improved intubation conditions compared with lidocaine or saline treatments. Neither co-induction agent caused clinically relevant differences in measured cardiopulmonary function, IOP or cortisol concentrations compared with saline in healthy dogs. Apnea was noted in all treatments following the induction of anesthesia and preoxygenation is recommended.  相似文献   

12.
BackgroundProblems associated with using inhalational anaesthesia are numerous in veterinary anaesthesia practice. Decreasing the amount of used inhalational anaesthetic agents and minimising of cardiorespiratory disorders are the standard goals of anaesthetists.ObjectiveThis experimental study was carried out to investigate the sparing effect of intravenous tramadol, lidocaine, dexmedetomidine and their combinations on the minimum alveolar concentration (MAC) of sevoflurane in healthy Beagle dogs.MethodsThis study was conducted on six beagle dogs. Sevoflurane MAC was determined by the tail clamp method on five separate occasions. The dogs received no treatment (control; CONT), tramadol (TRM: 1.5 mg kg-1 intravenously followed by 1.3 mg kg-1 h-1), lidocaine (LID: 2 mg kg-1 intravenously followed by 3 mg kg-1 h-1), dexmedetomidine (DEX: 2 μg kg-1 intravenously followed by 2 μg kg-1 h-1), and their combination (COMB), respectively. Cardiorespiratory variables were recorded every five minutes and immediately before the application of a noxious stimulus.ResultsThe COMB treatment had the greatest sevoflurane MAC-sparing effect (67.4 ± 13.9%) compared with the other treatments (5.1 ± 25.3, 12.7 ± 14.3, and 40.3 ± 15.1% for TRM, LID, and DEX treatment, respectively). The cardiopulmonary variables remained within the clinically acceptable range following COMB treatment, although the mean arterial pressure was higher and accompanied by bradycardia.ConclusionsTramadol-lidocaine-dexmedetomidine co-infusion produced a remarkable sevoflurane MAC-sparing effect in clinically healthy beagle dogs and could result in the alleviation of cardiorespiratory depression caused by sevoflurane. Cardiorespiratory variables should be monitored carefully to avoid undesirable side effects induced by dexmedetomidine.  相似文献   

13.
14.
ObjectiveTo compare effects of four drug combinations on sedation, echocardiographic, haematologic and biochemical variables and recovery in cats.Study designExperimental randomized ‘blinded’ cross-over study.AnimalsSix healthy cats.Materials and MethodsTreatments were administered intramuscularly: midazolam 0.4 mg kg?1 and butorphanol 0.4 mg kg?1 (MB); midazolam 0.4 mg kg?1, butorphanol 0.4 mg kg?1 and ketamine 3 mg kg?1 (MBK); midazolam 0.4 mg kg?1, butorphanol 0.4 mg kg?1 and dexmedetomidine 5 μg kg?1 (MBD); ketamine 3 mg kg?1 and dexmedetomidine 5 μg kg?1(KD). Sedation was evaluated at time-points over 10 minutes post injection. Echocardiography, systolic arterial blood pressure (SAP) measurement and blood sampling were performed at baseline and from 10 minutes after treatment. Quality of recovery was scored. Data were analysed by anova for repeated measures. p < 0.05 was considered significant.ResultsThe lowest sedation score was obtained by MB, (median 10.5 [7; 20]), highest by KD (36.5 [32; 38]). Quality of recovery was best with KD (0.5 [0; 2]), and worst with MB (7.5 [4; 11]). Relative to baseline measurements, treatments decreased SAP by 17%, 25%, 13%, 5% in MB, MBK, MBD and KD, respectively. Heart rate decreased (p < 0.05) after MBD (44%) and KD (34%). All treatments decreased stroke volume by 24%, 21%, 24%, 36%, and cardiac output by 23%, 34%, 54%, 53% in MB, MBK, MBD and KD, respectively. Packed cell volume was decreased (p < 0.05) by 20%, 31%, 29% in MBK, MBD and KD, respectively. Plasma glucose was increased after MBD (31%) and KD (52%) and lactate concentration was decreased (p < 0.05) after MBK (58%), MBD (72%) and KD (65%).Conclusions and clinical relevanceThe MB combination did not produce sedation in healthy cats. Treatment MBK led to acceptable sedation and minimal cardiovascular changes. Both treatments with dexmedetomidine produced excellent sedation and recovery but induced more cardiovascular depression and haematologic changes.  相似文献   

15.
ObjectiveTo evaluate the effects of constant rate infusions (CRIs) of dexmedetomidine and remifentanil alone and their combination on minimum alveolar concentration (MAC) of sevoflurane in dogs.Study designRandomized crossover experimental study.AnimalsA total of six (three males, three females) healthy, adult neutered Beagle dogs weighing 12.6 ± 1.4 kg.MethodsAnesthesia was induced with sevoflurane in oxygen until endotracheal intubation was possible and anesthesia maintained with sevoflurane using positive-pressure ventilation. Each dog was anesthetized five times and was administered each of the following treatments: saline (1 mL kg–1 hour–1) or dexmedetomidine at 0.1, 0.5, 1.0 or 5.0 μg kg–1 loading dose intravenously over 10 minutes followed by CRI at 0.1, 0.5, 1.0 or 5.0 μg kg–1 hour–1, respectively. Following 60 minutes of CRI, sevoflurane MAC was determined in duplicate using an electrical stimulus (50 V, 50 Hz, 10 ms). Then, CRI of successively increasing doses of remifentanil (0.15, 0.60 and 2.40 μg kg–1 minute–1) was added to each treatment. MAC was also determined after 30 minutes equilibration at each remifentanil dose. Isobolographic analysis determined interaction from the predicted doses required for a 50% MAC reduction (ED50) with remifentanil, dexmedetomidine and remifentanil combined with dexmedetomidine, with the exception of dexmedetomidine 5.0 μg kg–1 hour–1, obtained using log-linear regression analysis.ResultsThe sevoflurane MAC decreased dose-dependently with increasing infusion rates of dexmedetomidine and remifentanil. Remifentanil ED50 values were lower when combined with dexmedetomidine than those obtained during saline–remifentanil. Synergistic interactions between dexmedetomidine and remifentanil for MAC reduction occurred with dexmedetomidine at 0.5 and 1.0 μg kg–1 hour–1.Conclusions and clinical relevanceCombined CRIs of dexmedetomidine and remifentanil synergistically resulted in sevoflurane MAC reduction. The combination of dexmedetomidine and remifentanil effectively reduced the requirement of sevoflurane during anesthesia in dogs.  相似文献   

16.
ObjectiveTo determine whether dobutamine, norepinephrine or phenylephrine infusions alleviate hypotension in isoflurane-anaesthetized dogs administered dexmedetomidine with vatinoxan.Study designBalanced, randomized crossover trial.AnimalsA total of eight healthy Beagle dogs.MethodsEach dog was anaesthetized with isoflurane (end-tidal isoflurane 1.3%) and five treatments: dexmedetomidine hydrochloride (2.5 μg kg–1) bolus followed by 0.9% saline infusion (DEX-S); dexmedetomidine and vatinoxan hydrochloride (100 μg kg–1) bolus followed by an infusion of 0.9% saline (DEX-VAT-S), dobutamine (DEX-VAT-D), norepinephrine (DEX-VAT-N) or phenylephrine (DEX-VAT-P). The dexmedetomidine and vatinoxan boluses were administered at baseline (T0) and the treatment infusion was started after 15 minutes (T15) if mean arterial pressure (MAP) was < 90 mmHg. The treatment infusion rate was adjusted every 5 minutes as required. Systemic haemodynamics were recorded at T0 and 10 (T10) and 45 (T45) minutes. A repeated measures analysis of covariance model was used.ResultsMost dogs had a MAP < 70 mmHg at T0 before treatment. Treatments DEX-S and DEX-VAT all significantly increased MAP at T10, but systemic vascular resistance index (SVRI) was significantly higher and cardiac index (CI) lower after DEX-S than after DEX-VAT. CI did not significantly differ between DEX-S and DEX-VAT-S at T45, while SVRI remained higher with DEX-S. Normotension was achieved by all vasoactive infusions in every dog, whereas MAP was below baseline with DEX-VAT-S, and higher than baseline with DEX-S at T45. Median infusion rates were 3.75, 0.25 and 0.5 μg kg–1 minute–1 for dobutamine, norepinephrine and phenylephrine, respectively. Dobutamine and norepinephrine increased CI (mean ± standard deviation, 3.35 ± 0.70 and 3.97 ± 1.24 L minute–1 m–2, respectively) and decreased SVRI, whereas phenylephrine had the opposite effect (CI 2.13 ± 0.45 L minute–1 m–2).Conclusions and clinical relevanceHypotension in isoflurane-anaesthetized dogs administered dexmedetomidine and vatinoxan can be treated with either dobutamine or norepinephrine.  相似文献   

17.
ObjectiveTo compare the effects of morphine, parecoxib, tramadol and a combination of parecoxib, tramadol and pindolol on nociceptive thresholds in awake animals and their effect on glomerular filtration rate (GFR) in dogs subjected to 30 minutes of anesthesia.AnimalsEight adult mixed breed experimental dogs.Study designRandomized, controlled trial.MethodsDogs received 0.05 mg kg?1 acepromazine subcutaneously (SC) as anaesthetic pre-medication. Thirty to sixty minutes later, they received either tramadol 3 mg kg?1 intravenously, (IV), parecoxib (1 mg kg?1 IV), a combination of tramadol 3 mg kg?1 (IV), parecoxib 1 mg kg?1 (IV) and pindolol 5 μg kg?1 (SC), morphine (0.1 mg kg?1 (IV) or 0.9% saline (2 mL). Anaesthesia was then induced with IV propofol to effect (2.9 ± 0.8 mg kg?1) and maintained with halothane in oxygen for 30 minutes. Systolic arterial blood pressure was maintained above 90 mmHg with IV fluids and by adjusting the inspired halothane concentration. Post-treatment nociceptive thresholds to mechanical stimuli, expressed as percent of pre-treatment values, were compared between the treatments to assess the analgesic efficacy of the drugs. Plasma iohexol clearance (ICL), a measure of GFR, was estimated both before and 24 hours after induction of anaesthesia to study the drugs’ effects on renal perfusion. Nociceptive threshold and GFR data were compared using mixed model analysis in sas®9.1.ResultsBoth tramadol and parecoxib produced similar analgesia, which was less than that of morphine. Their combination with pindolol produced analgesia comparable with morphine. None of the test drugs, either alone or in combination, reduced GFR.ConclusionTramadol and parecoxib (either alone or in combination) can increase nociceptive thresholds in awake dogs and have minimal effects on renal perfusion in normotensive dogs subjected to anaesthesia.  相似文献   

18.
Although sedatives are routinely administered to dogs for diagnostic and minimally invasive procedures, manual restraint is often used. The study compared intra-procedural behavioral response, scored on a 100-point, visual analog scale, and cost of restraint in healthy dogs given 1 of 5 treatments: manual restraint, dexmedetomidine at 125 μg/m2 (Dex 125) or 375 μg/m2 (Dex 375), Dex 125 plus butorphanol at 0.4 mg/kg (Dex 125 + Bu), or Dex 375 plus butorphanol at 0.4 mg/kg (Dex 375 + Bu). Mean behavioral response scores in dogs declined from baseline in the manual restraint group and improved in a linear fashion in the group order Dex 125, Dex 375, Dex 125 + Bu, and Dex 375 + Bu. Dexmedetomidine at 375 μg/m2 or at 125 μg/m2 or at 375 μg/m2 in combination with butorphanol produced the best intra-procedural behavioral response. The cost of sedative drugs was offset by the opportunity cost of diverting personnel from revenue-generating activity to manual restraint.  相似文献   

19.
ObjectiveTo assess the potential of a thermal carbon dioxide (CO2) laser to explore antinociception in pain-free cats.Study designExperimental, prospective, blinded, randomized study.AnimalsSixty healthy adult female cats with a (mean ± standard deviation) weight of 3.3 ± 0.6 kg.MethodsCats were systematically allocated to one of six treatments: saline 0.2 mL per cat; morphine 0.5 mg kg−1; buprenorphine 20 μg kg−1; medetomidine 2 μg kg−1; tramadol 2 mg kg−1, and ketoprofen 2 mg kg−1. Latency to respond to thermal stimulation was assessed at baseline and at intervals of 15–30, 30–45, 45–60, 60–75, 90–105 and 120–135 minutes. Thermal thresholds were assessed using time to respond behaviourally to stimulation with a 500 mW CO2 laser. Within-treatment differences in response latency were assessed using Friedman’s test. Differences amongst treatments were assessed using independent Kruskal–Wallis tests. Where significant effects were identified, pairwise comparisons were conducted to elucidate the direction of the effect.ResultsCats treated with morphine (X2 = 12.90, df = 6, p = 0.045) and tramadol (X2 = 20.28, df = 6, p = 0.002) showed significant increases in latency to respond. However, subsequent pairwise comparisons indicated that differences in latencies at specific time-points were significant (p < 0.05) only for tramadol at 60–75 and 90–105 minutes after administration (21.9 and 43.6 seconds, respectively) in comparison with baseline (11.0 seconds). No significant pairwise comparisons were found within the morphine treatment. Injections of saline, ketoprofen, medetomidine or buprenorphine showed no significant effect on latency to respond.Conclusions and clinical relevanceThe CO2 laser technique may have utility in the assessment of thermal nociceptive thresholds in pain-free cats after analgesic administration and may provide a simpler alternative to existing systems. Further exploration is required to examine its sensitivity and comparative utility.  相似文献   

20.
ObjectiveTo evaluate the feasibility of gastroduodenoscopy in dogs premedicated with acepromazine in combination with butorphanol or methadone.Study designProspective, randomized, double-blinded clinical trial.AnimalsA group of 40 client-owned dogs.MethodsDogs were randomly allocated to one of two groups and give intramuscular acepromazine 0.02 mg kg–1 combined with either butorphanol 0.3 mg kg–1 (group ACEBUT) or methadone 0.2 mg kg–1 (group ACEMET). General anaesthesia was induced with propofol and ketamine and maintained with sevoflurane (2.3%) in oxygen. Cardiopulmonary variables were recorded at 5 minute intervals during anaesthesia. Feasibility of the entire gastroduodenoscopy was evaluated with a visual analogue scale (VAS) from 0 (best) to 100 (worst) (primary outcome of the study). Lower oesophageal sphincter dilatation and duodenal intubation were scored. Pylorus diameter was measured with standard endoscopic inflatable balloons. Overall cardiovascular stability was assessed during anaesthesia, using a VAS (0-100), as was the presence of fluid in the oesophagus, regurgitation, need for mechanical ventilation, and intraoperative and postoperative rescue analgesia (secondary outcomes of the study). Differences between treatments were analysed with Mann–Whitney U, Student t test, Fisher exact test or mixed model analysis of variance as appropriate. Subsequently, feasibility VAS of the gastroduodenoscopy was assessed for noninferiority between groups. The noninferiority margin was set as –10.ResultsAll gastroduodenoscopies were successfully completed in both groups using an endoscope tip diameter of 12.8 mm in all but one dog. Feasibility of gastroduodenoscopy was evaluated as 2.9 ± 5.6 in group ACEBUT and 5.1 ± 5.8 in group ACEMET. No significant differences between groups were detected in any measured or assessed variables, and noninferiority was confirmed.Conclusion and clinical relevanceIn our study population, the effects of methadone and butorphanol when combined with acepromazine were comparable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号