首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo evaluate the effect of dexmedetomidine on alfaxalone immobilization in snakes.Study designNonblinded, crossover study.AnimalsA total of eight mature common garter snakes (Thamnophis sirtalis).MethodsSnakes were administered each of three treatments intracoelomically: alfaxalone (30 mg kg–1; treatment A), alfaxalone (30 mg kg–1) combined with dexmedetomidine (0.05 mg kg–1; treatment AD0.05); and alfaxalone (30 mg kg–1) combined with dexmedetomidine (0.10 mg kg–1; treatment AD0.10). A minimum of 10 days elapsed between experimental trials. Times to loss of righting reflex (LRR) and return of righting reflex (RRR) were recorded. Heart rate (HR) was recorded every 5 minutes throughout the period of LRR and averaged for each snake. Times to LRR and RRR, and mean HR in snakes that achieved LRR were reported.ResultsLRR occurred in eight (100%), five (63%) and three (38%) snakes in treatments A, AD0.05 and AD0.10, respectively. For all treatments, time to LRR ranged 3–20 minutes. Median (range) times to RRR were 39 (30–46), 89 (62–128) and 77 (30–185) minutes for treatments A, AD0.05 and AD0.10, respectively. In animals where righting reflex was lost, mean HR was lower in all dexmedetomidine treatments compared with treatment A.Conclusions and clinical relevanceIn this pilot study, alfaxalone resulted in reliable immobilization, whereas dexmedetomidine and alfaxalone combinations resulted in highly variable durations of immobilization with low HR in immobilized animals. For snakes that achieved LRR, the addition of dexmedetomidine (0.05 mg kg–1) to alfaxalone appeared to extend the period of immobilization compared with alfaxalone alone.  相似文献   

2.
ObjectiveTo evaluate the anesthetic and cardiopulmonary effects of xylazine–alfaxalone anesthesia in donkey foals undergoing field castration.Study designProspective clinical study.AnimalsA group of seven standard donkeys aged [median (range)] 12 (10–26) weeks, weighing 47.3 (37.3–68.2) kg.MethodsDonkeys were anesthetized with xylazine (1 mg kg−1) intravenously (IV) followed 3 minutes later by alfaxalone (1 mg kg−1) IV. Additional doses of xylazine (0.5 mg kg−1) and alfaxalone (0.5 mg kg−1) IV were administered as needed to maintain surgical anesthesia. Intranasal oxygen was supplemented at 3 L minute−1. Heart rate (HR), respiratory rate (fR) and mean arterial pressure (MAP) by oscillometry were recorded before drug administration and every 5 minutes after induction of anesthesia. Peripheral oxygen saturation (SpO2) was recorded every 5 minutes after induction. Time to recumbency after alfaxalone administration, time to anesthetic re-dose, time to first movement, sternal and standing after last anesthetic dose and surgery time were recorded. Induction and recovery quality were scored (1, very poor; 5, excellent).ResultsMedian (range) induction score was 5 (1–5), and recovery score 4 (1–5). Overall, two donkeys were assigned a score of 1 (excitement) during induction or recovery. HR and MAP during the procedure did not differ from baseline. fR was decreased at 5 and 10 minutes but was not considered clinically significant. SpO2 was <90% at one time point in two animals.Conclusions and clinical relevanceXylazine–alfaxalone anesthesia resulted in adequate conditions for castration in 12 week old donkeys. While the majority of inductions and recoveries were good to excellent, significant excitement occurred in two animals and may limit the utility of this protocol for larger donkeys. Hypoxemia occurred despite intranasal oxygen supplementation.  相似文献   

3.
ObjectiveTo determine the induction doses, then minimum infusion rates of alfaxalone for total intravenous anaesthesia (TIVA), and subsequent, cardiopulmonary effects, recovery characteristics and alfaxalone plasma concentrations in cats undergoing ovariohysterectomy after premedication with butorphanol-acepromazine or butorphanol-medetomidine.Study designProspective randomized blinded clinical study.AnimalsTwenty-eight healthy cats.MethodsCats undergoing ovariohysterectomy were assigned into two groups: together with butorphanol [0.2 mg kg?1 intramuscularly (IM)], group AA (n = 14) received acepromazine (0.1 mg kg?1 IM) and group MA (n = 14) medetomidine (20 μg kg?1 IM). Anaesthesia was induced with alfaxalone to effect [0.2 mg kg?1 intravenously (IV) every 20 seconds], initially maintained with 8 mg kg?1 hour?1 alfaxalone IV and infusion adjusted (±0.5 mg kg?1 hour?1) every five minutes according to alterations in heart rate (HR), respiratory rate (fR), Doppler blood pressure (DBP) and presence of palpebral reflex. Additional alfaxalone boli were administered IV if cats moved/swallowed (0.5 mg kg?1) or if fR >40 breaths minute?1 (0.25 mg kg?1). Venous blood samples were obtained to determine plasma alfaxalone concentrations. Meloxicam (0.2 mg kg?1 IV) was administered postoperatively. Data were analysed using linear mixed models, Chi-squared, Fishers exact and t-tests.ResultsAlfaxalone anaesthesia induction dose (mean ± SD), was lower in group MA (1.87 ± 0.5; group AA: 2.57 ± 0.41 mg kg?1). No cats became apnoeic. Intraoperative bolus requirements and TIVA rates (group AA: 11.62 ± 1.37, group MA: 10.76 ± 0.96 mg kg?1 hour?1) did not differ significantly between groups. Plasma concentrations ranged between 0.69 and 10.76 μg mL?1. In group MA, fR, end-tidal carbon dioxide, temperature and DBP were significantly higher and HR lower.Conclusion and clinical relevanceAlfaxalone TIVA in cats after medetomidine or acepromazine sedation provided suitable anaesthesia with no need for ventilatory support. After these premedications, the authors recommend initial alfaxalone TIVA rates of 10 mg kg?1 hour?1.  相似文献   

4.

Objective

To characterise the minimum dose of intramuscular alfaxalone required to facilitate intubation for mechanical ventilation, and to investigate the impact of cranial versus caudal injection on anaesthetic depth.

Study design

Randomised crossover study.

Animals

Six healthy juvenile ball pythons (Python regius).

Methods

Three dosages (10, 20 and 30 mg kg–1) of alfaxalone were administered to each python in a caudal location with a minimum 2 weeks washout. Induction and recovery were monitored by assessing muscle tone, righting reflex, response to a noxious stimulus and the ability to intubate. A subsequent experiment assessed the influence of injection site by comparing administration of 20 mg kg–1 alfaxalone in a cranial location (1 cm cranial to the heart) with the caudal site. Respiration rate was monitored throughout, and when intubation was possible, snakes were mechanically ventilated.

Results

Regardless of dose and injection site, maximum effect was reached within 10.0 ± 2.7 minutes. When administered at the caudal injection site, intubation was only successful after a dosage of 30 mg kg-1, which is higher than in previous reports for other reptiles. However, intubation was possible in all cases after 7.2 ± 1.6 minutes upon cranial administration of 20 mg kg–1, and anaesthetic duration was significantly lengthened (p < 0.001). Both 30 mg kg–1 at the caudal site and 20 mg kg–1 at the cranial site led to apnoea approximately 10 minutes post-injection, at which time the snakes were intubated and mechanically ventilated.

Conclusions and clinical relevance

Alfaxalone provided rapid, smooth induction when administered intramuscularly to pythons, and may serve as a useful induction agent prior to provision of volatile anaesthetics. The same dosage injected in the cranial site led to deeper anaesthesia than when injected caudally, suggesting that shunting to the liver and first-pass metabolism of alfaxalone occur when injected caudally, via the renal portal system.  相似文献   

5.
ObjectivesTo characterize the cardiopulmonary and anesthetic effects of alfaxalone at three dose rates in comparison with a ketamine–dexmedetomidine–midazolam–tramadol combination (KDMT) for immobilization of golden-headed lion tamarins (GHLTs) (Leontopithecus chrysomelas) undergoing vasectomy.Study designProspective clinical trial.AnimalsA total of 19 healthy, male, wild-caught GHLTs.MethodsTamarins were administered alfaxalone intramuscularly (IM) at 6, 12 or 15 mg kg–1, or KDMT, ketamine (15 mg kg–1), dexmedetomidine (0.015 mg kg–1), midazolam (0.5 mg kg–1) and tramadol (4 mg kg–1) IM. Immediately after immobilization, lidocaine (8 mg kg–1) was infiltrated subcutaneously (SC) at the incision site in all animals. Physiologic variables, anesthetic depth and quality of immobilization were assessed. At the end of the procedure, atipamezole (0.15 mg kg–1) was administered IM to group KDMT and tramadol (4 mg kg–1) SC to the other groups; all animals were injected with ketoprofen (2 mg kg–1) SC.ResultsA dose-dependent increase in sedation, muscle relaxation and immobilization time was noted in the alfaxalone groups. Despite the administration of atipamezole, the recovery time was longer for KDMT than all other groups. Muscle tremors were noted in some animals during induction and recovery with alfaxalone. No significant differences were observed for cardiovascular variables among the alfaxalone groups, whereas an initial decrease in heart rate and systolic arterial blood pressure was recorded in KDMT, which increased after atipamezole administration.Conclusions and clinical relevanceAlfaxalone dose rates of 12 or 15 mg kg–1 IM with local anesthesia provided good sedation and subjectively adequate pain control for vasectomies in GHLTs. KDMT induced a deeper plane of anesthesia and should be considered for more invasive or painful procedures. All study groups experienced mild to moderate hypothermia and hypoxemia; therefore, the use of more efficient heating devices and oxygen supplementation is strongly recommended when using these protocols.  相似文献   

6.
ObjectiveTo evaluate the heart rate (HR) and systemic arterial pressure (sAP) effects, and propofol induction dose requirements in healthy dogs administered propofol with or without guaifenesin for the induction of anesthesia.Study designProspective blinded crossover experimental study.AnimalsA total of 10 healthy adult female Beagle dogs.MethodsDogs were premedicated with intravenous (IV) butorphanol (0.4 mg kg–1) and administered guaifenesin 5% at 50 mg kg–1 (treatment G50), 100 mg kg–1 (treatment G100) or saline (treatment saline) IV prior to anesthetic induction with propofol. HR, invasive sAP and respiratory rate (fR) were recorded after butorphanol administration, after guaifenesin administration and after propofol and endotracheal intubation. Propofol doses for intubation were recorded. Repeated measures analysis of variance (anova) was used to determine differences in propofol dose requirements among treatments, and differences in cardiopulmonary values over time and among treatments with p < 0.05 considered statistically significant.ResultsPropofol doses (mean ± standard deviation) for treatments saline, G50 and G100 were 3.3 ± 1.0, 2.7 ± 0.7 and 2.1 ± 0.8 mg kg–1, respectively. Propofol administered was significantly lower in treatment G100 than in treatment saline (p = 0.04). In treatments G50 and G100, HR increased following induction of anesthesia and intubation compared with baseline measurements. HR was higher in treatment G100 than in treatments G50 and saline following induction of anesthesia. In all treatments, sAP decreased following intubation compared with baseline values. There were no significant differences in sAP among treatments. fR was lower following intubation than baseline and post co-induction values and did not differ significantly among treatments.Conclusions and clinical relevanceWhen administered as a co-induction agent in dogs, guaifenesin reduced propofol requirements for tracheal intubation. HR increased and sAP and fR decreased, but mean values remained clinically acceptable.  相似文献   

7.
ObjectiveTo characterize and compare two intramuscular drug protocols using alfaxalone and alfaxalone–medetomidine combination for the field immobilization of free-ranging koalas.Study designBlinded, randomized, comparative field study.AnimalsA total of 66 free-ranging koalas from the Mount Lofty Ranges, South Australia.MethodsKoalas were randomly allocated into two groups. Group A animals were given alfaxalone alone at 3.5 mg kg–1. Group AM animals were given alfaxalone 2 mg kg–1 and medetomidine 40 μg kg–1, reversed with atipamezole at 0.16 mg kg–1. Blinded operators recorded heart rate (HR), respiratory rate (fR), cloacal temperature, depth of sedation and times to: first effect, sedation suitable for clinical interventions, first arousal and full recovery. Data were analysed using independent t test, Mann–Whitney U test, chi-square analysis and log-rank test at 5% level of significance.ResultsSuitable immobilization for clinical examination and sample collection was achieved in all animals. In groups A and AM, median time to working depth was 6.5 minutes (range: 3.4–15) and 8.1 minutes (range: 4.3–24) and time to complete recovery was 66 minutes (range: 12–138) and 34 minutes (range: 4–84), respectively, following reversal. Time to first effect was significantly shorter in group A (p = 0.013), whereas time to full arousal was significantly shorter in group AM (p = 0.007) probably due to the administration of atipamezole. Maximum HR was 117 ± 28 beats minute–1 in group A, which was a significant increase from baseline values (p < 0.0001), whereas group AM showed a significant tachypnoea of 67 ± 25 (normal fR 10–15; p < 0.0001).Conclusions and clinical relevanceBoth the protocols produced immobilization, enabling clinical examination and sample collection; however, protocol AM was more suitable for field work due to shorter recovery times.  相似文献   

8.
ObjectiveTo evaluate the effects and utility of tiletamine–zolazepam–medetomidine (TZM) and ketamine–medetomidine (KM) for anesthesia of Amur leopard cats (Prionailurus bengalensis euptailurus).Study designProspective, randomized experimental trial.AnimalsA total of six female (3.70 ± 0.49 kg) and six male (5.03 ± 0.44 kg; mean ± standard deviation) Amur leopard cats aged 2–6 years.MethodsEach animal was administered four protocols separated by ≥3 weeks. Each protocol included medetomidine (0.05 mg kg–1) combined with tiletamine–zolazepam (1 mg kg–1; protocol MTZLO); tiletamine–zolazepam (2 mg kg–1; protocol MTZHI); ketamine (2 mg kg–1; protocol MKLO); or ketamine (4 mg kg–1; MKHI) administered intramuscularly. At time 0 (onset of lateral recumbency) and 30 minutes, heart rate (HR), respiratory rate (fR), rectal temperature, noninvasive mean arterial pressure (MAP) and hemoglobin oxygen saturation (SpO2) were recorded. Times to onset of lateral recumbency, duration of anesthesia and time to standing were recorded.ResultsOverall, animals were anesthetized with all protocols within 10 minutes, anesthesia was maintained ≥57 minutes, and recovery (time from the first head lift to standing) was completed within 5 minutes. During anesthesia with all protocols, HR, fR, rectal temperature, SpO2 and MAP were 99–125 beats minute–1, 33–44 breaths minute–1, 37.6–39.4 °C, 90–95% and 152–177 mmHg, respectively. No adverse event was observed.Conclusions and clinical relevanceTZM and KM at various dosages resulted in rapid onset of anesthesia, duration of >57 minutes and rapid recovery without administration of an antagonist. Accordingly, all these combinations are useful for anesthetizing Amur leopard cats and for performing simple procedures. However, the low doses of the anesthetic agents are recommended because there was no difference in duration of anesthesia between the dose rates studied.  相似文献   

9.
ObjectivesTo evaluate alfaxalone–midazolam anesthesia in Egyptian fruit bats (Rousettus aegyptiacus) and the effect of flumazenil administration on recovery time and quality.Study designRandomized, blinded, crossover and controlled, experimental trial.AnimalsA total of 10 male Egyptian fruit bats.MethodsBats were anesthetized with alfaxalone (15 mg kg?1) and midazolam (2 mg kg?1) administered subcutaneously. During anesthesia, vital signs, muscle tone and reflexes were monitored every 10 minutes. Flumazenil (0.3 mg kg?1) or saline at an equal volume was administered subcutaneously 60 minutes after anesthetic administration. Time to induction, time to first movement and recovery time (flying) were measured. Quality of induction, anesthesia and recovery were assessed on a 1–3 scale (1, poor; 2, good; 3, excellent).ResultsTime to induction was 4.2 ± 1.9 minutes (mean ± standard deviation), with median quality score of 2 (range, 1–3). Anesthesia quality score was 3 (1–3). During anesthesia, heart rate and respiratory frequency decreased significantly and penis relaxation, indicating muscle tone, increased significantly. Administration of flumazenil significantly reduced mean recovery time compared with saline (10 ± 5 versus 45 ± 17 minutes, respectively), and significantly improved the quality of recovery [2.5 (2–3) versus 1 (1–2), respectively].Conclusions and clinical relevanceAlfaxalone–midazolam anesthesia resulted in good induction, muscle relaxation and sufficient anesthesia to perform routine diagnostic and therapeutic procedures for approximately 40 minutes. Reversal of midazolam with flumazenil is recommended, resulting in quicker and better recovery.  相似文献   

10.
ObjectiveTo evaluate alfaxalone for total intravenous anesthesia (TIVA) in rabbits premedicated with dexmedetomidine or dexmedetomidine and buprenorphine.Study designCrossover study (part 1) with observational study (part 2).AnimalsA total of eight New Zealand White rabbits (Oryctolagus cuniculus), four female and four male, aged 12–16 weeks and weighing 2.8–3.5 kg in part 1. Separately, four additional rabbits in part 2.MethodsCrossover study design with eight rabbits per treatment. Rabbits were administered treatment D, dexmedetomidine (0.2 mg kg–1), or treatment DB, dexmedetomidine (0.1 mg kg–1) and buprenorphine (0.05 mg kg–1) intramuscularly. Anesthesia was induced with alfaxalone intravenously until a supraglottic airway device was placed to deliver 100% oxygen. Anesthesia was maintained with alfaxalone (TIVA). Infusion rates were adjusted to achieve an absent pedal withdrawal reflex. Heart rate, respiratory rate, noninvasive blood pressure, end-tidal carbon dioxide partial pressure and peripheral hemoglobin oxygen saturation (SpO2) were recorded every 5 minutes. Subsequently, four rabbits underwent ovariohysterectomy using treatment DB and alfaxalone TIVA.ResultsThe mean ± standard deviation alfaxalone infusion rate was 9.6 ± 2.6 and 4.5 ± 1.3 mg kg–1 hour–1 for treatments D and DB, respectively. In both treatments, blood pressure remained within acceptable range and SpO2 was > 95%. Postinduction apnea and respiratory depression were observed in both treatments and managed with manual positive pressure ventilation. Four separate rabbits underwent successful ovariohysterectomy with treatment DB and alfaxalone TIVA. One rabbit required supplementation with inhalant anesthesia; three rabbits were successfully maintained using alfaxalone TIVA alone.Conclusions and clinical relevancePremedication with dexmedetomidine–buprenorphine combined with alfaxalone TIVA may be a viable alternative for performing abdominal surgery in the rabbit. The use of supplemental oxygen and ability to provide respiratory support are advised.  相似文献   

11.
ObjectiveTo compare the effects of intravenous (IV) lidocaine and fentanyl on the cough reflex and autonomic response during endotracheal intubation in dogs.Study designRandomized, blinded, superiority clinical trial.AnimalsA total of 46 client-owned dogs undergoing magnetic resonance imaging.MethodsAfter intramuscular methadone (0.2 mg kg–1), dogs were randomized to be administered either IV lidocaine (2 mg kg–1; group L) or fentanyl (7 μg kg–1; group F). After 5 minutes, alfaxalone was administered until endotracheal intubation was possible (1 mg kg–1 IV over 40 seconds followed by 0.4 mg kg–1 increments to effect). Total dose of alfaxalone was recorded and cough reflex at endotracheal intubation was scored. Heart rate (HR) was continuously recorded, Doppler systolic arterial blood pressure (SAP) was measured every 20 seconds. Vasovagal tonus index (VVTI) and changes (Δ) in HR, SAP and VVTI between pre-intubation and intubation were calculated. Groups were compared using univariate and multivariate analysis. Statistical significance was set as p < 0.05.ResultsGroup F included 22 dogs and group L 24 dogs. The mean (± standard deviation) alfaxalone dose was 1.1 (± 0.2) and 1.35 (± 0.3) mg kg–1 in groups F and L, respectively (p = 0.0008). At intubation, cough was more likely in group L (odds ratio = 11.3; 95% confidence intervals, 2.1 – 94.2; p = 0.01) and HR increased in 87.5% and 54.5% of groups L and F, respectively (p = 0.02). The median (range) ΔHR between pre-intubation and intubation was higher (13.1%; – 4.3 to + 55.1) in group L (p = 0.0021). Between groups, SAP and VVTI were similar.Conclusion and clinical relevanceAt the stated doses, whilst reducing the alfaxalone dose, fentanyl is superior to lidocaine in suppressing the cough reflex and blunting the increase in HR at endotracheal intubation in dogs premedicated with methadone.  相似文献   

12.
ObjectiveTo compare the cardiorespiratory, anesthetic-sparing effects and quality of anesthetic recovery after epidural and constant rate intravenous (IV) infusion of dexmedetomidine (DEX) in cats given a low dose of epidural lidocaine under propofol-isoflurane anesthesia and submitted to elective ovariohysterectomy.Study designRandomized, blinded clinical trial.AnimalsTwenty-one adult female cats (mean body weight: 3.1 ± 0.4 kg).MethodsCats received DEX (4 μg kg?1, IM). Fifteen minutes later, anesthesia was induced with propofol and maintained with isoflurane. Cats were divided into three groups. In GI cats received epidural lidocaine (1 mg kg?1, n = 7), in GII cats were given epidural lidocaine (1 mg kg?1) + DEX (4 μg kg?1, n = 7), and in GIII cats were given epidural lidocaine (1 mg kg?1) + IV constant rate infusion (CRI) of DEX (0.25 μg kg?1 minute?1, n = 7). Variables evaluated included heart rate (HR), respiratory rate (fR), systemic arterial pressures, rectal temperature (RT), end-tidal CO2, end-tidal isoflurane concentration (e′ISO), arterial blood gases, and muscle tone. Anesthetic recovery was compared among groups by evaluation of times to recovery, HR, fR, RT, and degree of analgesia. A paired t-test was used to evaluate pre-medication variables and blood gases within groups. anova was used to compare parametric data, whereas Friedman test was used to compare muscle relaxation.ResultsEpidural and CRI of DEX reduced HR during anesthesia maintenance. Mean ± SD e′ISO ranged from 0.86 ± 0.28% to 1.91 ± 0.63% in GI, from 0.70 ± 0.12% to 0.97 ± 0.20% in GII, and from 0.69 ± 0.12% to 1.17 ± 0.25% in GIII. Cats in GII and GIII had longer recovery periods than in GI.Conclusions and clinical relevanceEpidural and CRI of DEX significantly decreased isoflurane consumption and resulted in recovery of better quality and longer duration, despite bradycardia, without changes in systemic blood pressure.  相似文献   

13.
ObjectiveTo evaluate quality of anaesthetic induction and cardiorespiratory effects following rapid intravenous (IV) injection of propofol or alfaxalone.Study designProspective, randomised, blinded clinical study.AnimalsSixty healthy dogs (ASA I/II) anaesthetized for elective surgery or diagnostic procedures.MethodsPremedication was intramuscular acepromazine (0.03 mg kg?1) and meperidine (pethidine) (3 mg kg?1). For anaesthetic induction dogs received either 3 mg kg?1 propofol (Group P) or 1.5 mg kg?1 alfaxalone (Group A) by rapid IV injection. Heart rate (HR), respiratory rate (fR) and oscillometric arterial pressures were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. The occurrence of post-induction apnoea or hypotension was recorded. Pre-induction sedation and aspects of induction quality were scored using 4 point scales. Data were analysed using Chi-squared tests, two sample t-tests and general linear model mixed effect anova (p < 0.05).ResultsThere were no significant differences between groups with respect to sex, age, body weight, fR, post-induction apnoea, arterial pressures, hypotension, SpO2, sedation score or quality of induction scores. Groups behaved differently over time with respect to HR. On induction HR decreased in Group P (?2 ± 28 beats minute?1) but increased in Group A (14 ± 33 beats minute?1) the difference being significant (p = 0.047). However HR change following premedication also differed between groups (p = 0.006). Arterial pressures decreased significantly over time in both groups and transient hypotension occurred in eight dogs (five in Group P, three in Group A). Post-induction apnoea occurred in 31 dogs (17 in Group P, 14 in Group A). Additional drug was required to achieve endotracheal intubation in two dogs.Conclusions and Clinical relevanceRapid IV injection of propofol or alfaxalone provided suitable conditions for endotracheal intubation in healthy dogs but post-induction apnoea was observed commonly.  相似文献   

14.
ObjectiveTo evaluate the pharmacodynamic effects and pharmacokinetics of a single intramuscular (IM) injection of alfaxalone in central bearded dragons (Pogona vitticeps) when injected at a cranial versus a caudal site.Study designProspective, masked, randomized crossover study.AnimalsA total of 13 healthy bearded dragons weighing 0.48 ± 0.1 kg.MethodsAlfaxalone (10 mg kg–1) was administered IM to 13 bearded dragons in the triceps muscle (cranial treatment) or the quadriceps muscle (caudal treatment) separated by 4 weeks. Pharmacodynamic variables included movement score, muscle tone score and righting reflex. Blood was obtained from the caudal tail vein using a sparse sampling methodology. Plasma alfaxalone concentrations were determined using liquid chromatography–mass spectrometry, and pharmacokinetic analysis was performed using nonlinear mixed-effects modeling. Differences in variables between injection sites were analyzed using a nonparametric Wilcoxon signed-rank test for paired data with significance set at p ≤ 0.05.ResultsTime to loss of righting reflex score was not different, median (interquartile range), between cranial and caudal treatments [8 (5–11) and 8 (4–12) minutes, respectively, p = 0.72]. Time to recovery of righting reflex was also not different between cranial and caudal treatments [80 (44–112) and 64 (56–104) minutes, respectively, p = 0.75]. Plasma alfaxalone concentrations were not significantly different between treatments. The population estimate (95% confidence intervals) for volume of distribution per fraction absorbed was 1.0 (0.79–1.20) L kg–1, clearance per fraction absorbed was 9.6 (7.6–11.6) mL minute–1 kg–1, absorption rate constant was 2.3 (1.9–2.8) minute–1 and elimination half-life was 71.9 (52.7–91.1) minutes.Conclusions and clinical relevanceRegardless of the injection site, IM alfaxalone (10 mg kg–1) produced reliable chemical restraint in central bearded dragons, appropriate for nonpainful diagnostic procedures or anesthetic premedication.  相似文献   

15.
16.
ObjectiveTo compare the physiological parameters, arterial blood gas values, induction quality, and recovery quality after IV injection of alfaxalone or propofol in dogs.Study designProspective, randomized, blinded crossover.AnimalsEight random-source adult female mixed-breed dogs weighing 18.7 ± 4.5 kg.MethodsDogs were assigned to receive up to 8 mg kg?1 propofol or 4 mg kg?1 alfaxalone, administered to effect, at 10% of the calculated dose every 10 seconds. They then received the alternate drug after a 6-day washout. Temperature, pulse rate, respiratory rate, direct blood pressure, and arterial blood gases were measured before induction, immediately post-induction, and at 5-minute intervals until extubation. Quality of induction, recovery, and ataxia were scored by a single blinded investigator. Duration of anesthesia and recovery, and adverse events were recorded.ResultsThe mean doses required for induction were 2.6 ± 0.4 mg kg?1 alfaxalone and 5.2 ± 0.8 mg kg?1 propofol. After alfaxalone, temperature, respiration, and pH were significantly lower, and PaCO2 significantly higher post-induction compared to baseline (p < 0.03). After propofol, pH, PaO2, and SaO2 were significantly lower, and PaCO2, HCO3, and PA-aO2 gradient significantly higher post-induction compared to baseline (p < 0.03). Post-induction and 5-minute physiologic and blood gas values were not significantly different between alfaxalone and propofol. Alfaxalone resulted in significantly longer times to achieve sternal recumbency (p = 0.0003) and standing (p = 0.0004) compared to propofol. Subjective scores for induction, recovery, and ataxia were not significantly different between treatments; however, dogs undergoing alfaxalone anesthesia were more likely to have ≥1 adverse event (p = 0.041). There were no serious adverse events in either treatment.Conclusions and clinical relevanceThere were no clinically significant differences in cardiopulmonary effects between propofol and alfaxalone. A single bolus of propofol resulted in shorter recovery times and fewer adverse events than a single bolus of alfaxalone.  相似文献   

17.
18.
ObjectiveTo determine the cardiorespiratory and anesthetic effects of 0, 5, 15, and 50 mg kg?1 intravenous (IV) alfaxalone in hydroxypropyl beta cyclodextrin (Alfaxan; Jurox Pty Ltd, Rutherford, NSW, Australia) in cats.Study designFour treatments of alfaxalone were administered in sequential order.AnimalsEight healthy adult cats (four male; four female) weighing between 3.71 and 5.91 kg.MethodsCats were instrumented for hemodynamic measurements. Four (0, 5, 15, and 50 mg kg?1) IV doses of alfaxalone were administered over one minute, with a 3-hour washout period between doses 0, 5, and 15 mg kg?1 on Day 0. The 50 mg kg?1 treatment was administered 24 hours later. Measurements of heart rate, aortic systolic, mean, and diastolic blood pressures, pulmonary arterial and right atrial mean pressures, cardiac output, respiratory rate, tidal and minute volumes, and arterial blood pH and blood gases (PaO2, PaCO2) were performed at pre-determined intervals. Systemic vascular resistance and rate pressure product were calculated. The quality of induction, maintenance, and recovery from anesthesia and the response to noxious stimulation were categorically scored.ResultsAlfaxalone administration resulted in dose-dependent cardiorespiratory depression. Decreases in arterial blood pressure and increases in heart rate occurred at higher doses. Most variables returned to baseline by 15-30 minutes. Respiratory rate, minute volume, and PaO2 decreased. Apnea was the most common side effect. Induction and maintenance quality were judged to be good to excellent at all doses and quality of recovery good to excellent at all but the 50 mg kg?1 dose. The duration of anesthesia and unresponsiveness to noxious stimulation increased with dose. The administration of the 50 mg kg?1 dose produced marked cardiorespiratory depression and apnea.Conclusions and clinical relevanceAlfaxalone produced dose-dependent anesthesia, cardiorespiratory depression and unresponsiveness to noxious stimulation in unpremedicated cats. Hypoventilation and apnea were the most common side effects.  相似文献   

19.
ObjectiveTo quantify induction time, reliability, physiological effects, recovery quality and dart volume of a novel formulation of alfaxalone (40 mg mL?1) used in combination with medetomidine and azaperone for the capture and handling of wild bighorn sheep.Study designProspective clinical study.AnimalsA total of 23 wild bighorn sheep (Ovis canadensis) in Sheep River Provincial Park, AB, Canada.MethodsFree-ranging bighorn sheep were immobilized using medetomidine, azaperone and alfaxalone delivered with a remote delivery system. Arterial blood was collected for measurement of blood gases, physiologic variables (temperature, heart and respiratory rates) were recorded and induction and recovery length and quality were scored.ResultsData from 20 animals were included. Administered dose rates were alfaxalone (0.99 ± 0.20 mg kg?1; 40 mg mL?1), azaperone (0.2 ± 0.04 mg kg?1; 10 mg mL?1) and medetomidine (0.16 ± 0.03 mg kg?1; 30 mg mL?1). The mean drug volume injected was 1.51 mL. The median (range) induction time was 7.7 (5.8–9.7) minutes, and recovery was qualitatively smooth.Conclusions and clinical relevanceAn increased concentration formulation of alfaxalone was administered in combination with medetomidine and azaperone, and resulted in appropriate anesthesia for the capture and handling of bighorn sheep. The dart volume was small, with potential for reducing capture-related morbidity.  相似文献   

20.
ObjectiveTo evaluate selected effects of midazolam or lidocaine administered prior to etomidate for co-induction of anesthesia in healthy dogs.Study designProspective crossover experimental study.AnimalsA group of 12 healthy adult female Beagle dogs.MethodsDogs were premedicated with intravenous (IV) butorphanol (0.3 mg kg–1), and anesthesia was induced with etomidate following midazolam (0.3 mg kg–1), lidocaine (2 mg kg–1) or physiologic saline (1 mL) IV. Heart rate (HR), arterial blood pressure, respiratory rate (fR) and intraocular pressure (IOP) were recorded following butorphanol, after co-induction administration, after etomidate administration and immediately following intubation. Baseline IOP values were also obtained prior to sedation. Etomidate dose requirements and the presence of myoclonus, as well as coughing or gagging during intubation were recorded. Serum cortisol concentrations were measured prior to premedication and 6 hours following etomidate administration.ResultsBlood pressure, fR and IOP were similar among treatments. Blood pressure decreased in all treatments following etomidate administration and generally returned to sedated values following intubation. HR increased following intubation with midazolam and lidocaine but remained stable in the saline treatment. The dose of etomidate (median, interquartile range, range) required for intubation was lower following midazolam (2.2, 2.1–2.6, 1.7–4.1 mg kg−1) compared with lidocaine (2.7, 2.4–3.6, 2.2–5.1 mg kg−1, p = 0.012) or saline (3.0, 2.8–3.8, 1.9–5.1 mg kg−1, p = 0.015). Coughing or gagging was less frequent with midazolam compared with saline. Myoclonus was not observed. Changes in serum cortisol concentrations were not different among treatments.Conclusions and clinical relevanceMidazolam administration reduced etomidate dose requirements and improved intubation conditions compared with lidocaine or saline treatments. Neither co-induction agent caused clinically relevant differences in measured cardiopulmonary function, IOP or cortisol concentrations compared with saline in healthy dogs. Apnea was noted in all treatments following the induction of anesthesia and preoxygenation is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号