首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Citrus red mite, Panonychus citri (McGregor), is one of the most important pesticide‐resistant pests in China. In order better to understand its resistance status, six populations of the mite were collected from Chinese citrus orchards for monitoring of resistance to spirodiclofen and another five acaricides. RESULTS: All the samples collected in the field in 2006 were susceptible to spirodiclofen. However, the LC50 values in populations sampled in 2009 ranged from 3.29 to 418.24 mg L?1 spirodiclofen, a 127‐fold difference between the least and most sensitive populations. Compared with a susceptible strain, 50‐fold and 90.8‐fold resistance to spirodiclofen was detected in populations sampled from Pinghe and Fuzhou in 2009, as well as cross‐resistance to spirotetramat. The LC50 values for abamectin, fenpropathrin, hexythiazox and pyridaben in the collected samples ranged from 0.041 to 3.52 mg L?1, from 23.91 to 696.16 mg L?1, from 13.94 to 334.19 mg L?1 and from 48.90 to 609.91 mg L?1 respectively. CONCLUSION: Great variations in resistance to the tested acaricides were observed among the sampled populations. The Pinghe population developed resistance to all the acaricides tested. The Jianning population was susceptible to most acaricides tested, except pyridaben. Resistance management strategies were conducted on the basis of these observations. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Phytophagous mites such as the European red mite, Panonychus ulmi (Koch), are serious pests in European fruit tree orchards, and a number of acaricides are frequently used to control them. Spirodiclofen (Envidor®) has been a commonly used acaricide for several years. In the present study, European field populations collected in 2009 and 2010 were checked for their susceptibility to spirodiclofen by using discriminating dose and full dose response bioassays. RESULTS: In 2009 and 2010, a total of 63 field populations (including winter eggs) of European red mites were collected in different European countries, and in several populations from south‐western Germany a shifting in susceptibility against spirodiclofen was observed. Full dose response bioassays on different developmental stages of field‐collected strains suggested an age‐dependent expression of resistance because eggs remain fully susceptible to spirodiclofen. Artificial selection with spirodiclofen of one of the field strains resulted in resistance ratios of > 7000. Synergism studies suggest a possible role of cytochrome‐P450‐dependent monooxygenases in spirodiclofen detoxification. Most of the other acaricides from different chemical classes displayed no or low cross‐resistance in a spirodiclofen‐selected strain. CONCLUSION: In order to preserve spirodiclofen as an important tool in spider mite resistance management, the efficacy situation should be continuously monitored, and it is suggested that spirodiclofen be alternated with acaricides coming from different mode‐of‐action classes. An observed age‐specific expression of resistance revealed full susceptibility of eggs, so targeting spirodiclofen particularly against eggs is likely to reduce the selection pressures imposed on other life stages. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
Insecticide resistance inHelicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most important constraints on cotton production in Turkey. We investigated the susceptibility ofH. armigera strains collected from cotton fields in the Adana, Hatay and Antalya provinces to insecticides which are in wide use. LD50 values for tralomethrin, lambda-cyhalothrin, endosulfan, profenofos and methomyl were determined by topical bioassay. At the LD50 levels, resistance ratios for tralomethrin were 24.7-, 19.7- and 15.7-fold in the Adana, Hatay, and Antalya strains, respectively; and for lambda-cyhalothrin were 41-, 20-and 40-fold, respectively. Resistance ratios ranged from 1.2- to 2.1-fold in all field strains for endosulfan, profenofos and methomyl, with no significant resistance. These results suggest the presence of resistance to tralomethrin and lambda-cyhalothrin inH. armigera strains collected from cotton fields, but no resistance to endosulfan, profenofos or methomyl could be observed.  相似文献   

4.
The two-spotted spider mite, Tetranychus urticae Koch, is a key pest of many agricultural crops. Studies of stability of resistance, cross-resistance relationships and monitoring of chlorfenapyr resistance were carried out with T. urticae to provide basic information necessary to define effective acaricide resistance management strategies for this pest. Chlorfenapyr resistance was shown to be stable in the absence of selection pressure under laboratory conditions. The activities of seven different acaricides against chlorfenapyr-resistant and -susceptible strains of T. urticae were evaluated. The results indicated possible positive cross-resistance between chlorfenapyr and the acaricides abamectin, propargite and etoxazole. No cross-resistance was detected for the acaricides milbemectin, fenpyroximate and diafenthiuron. A possible negatively correlated cross-resistance was observed between chlorfenapyr and spiromesifen. The evaluation of 21 T. urticae populations from several crops in the States of São Paulo, Mato Grosso, Goiás, and Bahia, in Brazil, indicated that the susceptibility of mites to chlorfenapyr was variable, with percentages of resistant mites ranging from 0.0 to 86.5%. The highest resistance frequencies were observed in ornamental plants in the State of São Paulo. Some populations from cotton and papaya also presented high frequencies of chlorfenapyr resistance. This is the first report on chlorfenapyr resistance in T. urticae on cotton and papaya in Brazil. Strategies for the management of acaricide resistance are discussed.  相似文献   

5.
BACKGROUND: To evaluate the insecticide susceptibility status of Aedes aegypti (L.) in Colombia, and as part of the National Network of Insecticide Resistance Surveillance, 12 mosquito populations were assessed for resistance to pyrethroids, organophosphates and DDT. Bioassays were performed using WHO and CDC methodologies. The underlying resistance mechanisms were investigated through biochemical assays and RT‐PCR. RESULTS: All mosquito populations were susceptible to malathion, deltamethrin and cyfluthrin, and highly resistant to DDT and etofenprox. Resistance to lambda‐cyhalothrin, permethrin and fenitrothion ranged from moderate to high in some populations from Chocó and Putumayo states. In Antioquia state, the Santa Fe population was resistant to fenitrothion. Biochemical assays showed high levels of both cytochrome P450 monooxygenases (CYP) and non‐specific esterases (NSE) in some of the fenitrothion‐ and pyrethroid‐resistant populations. All populations showed high levels of glutathione‐S‐transferase (GST) activity. GSTe2 gene was found overexpressed in DDT‐resistant populations compared with Rockefeller susceptible strain. CONCLUSIONS: Differences in insecticide resistance status were observed between insecticides and localities. Although the biochemical assay results suggest that CYP and NSE could play an important role in the pyrethroid and fenitrothion resistance detected, other mechanisms remain to be investigated, including knockdown resistance. Resistance to DDT was high in all populations, and GST activity is probably the main enzymatic mechanism associated with this resistance. The results of this study provide baseline data on insecticide resistance in Colombian A. aegypti populations, and will allow comparison of changes in susceptibility status in this vector over time. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α‐demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long‐term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.© 2012 Society of Chemical Industry  相似文献   

7.
A dieldrin-resistant and a susceptible strain of the tick Rhipicephalus evertsi evertsi Neumann, 1897 from East Africa were compared for susceptibility to nine organophosphorus and a carbamate acaricides, using an internationally approved oil-based packet test. As only minor differences in response existed between the strains, the presence of cross resistance may be excluded. For some of the acaricides, distinct susceptibility classes were recognised which were probably genetically determined. The tolerances existed independently of the organochlorine-susceptibility status and were low (by a factor less than 3), except in the case of dimethoate for which resistance factors of up to 10 were present. As susceptibility data were not assessed prior to introduction of the compounds in the field, the lowest susceptibility classes may now be considered as providing baseline data. When compared with data from susceptible reference strains of other ticks such as Boophilus microplus from Australia and R. appendiculatus from East Africa, it is feasible that the tolerances observed in the laboratory will not interfere with practical control.  相似文献   

8.
Samenvatting Bij een onderzoek naar de gevoeligheid voor acariciden van spintpopulaties, afkomstig van verschillende bedrijven in Aalsmeer, bleek in 20 van de 22 onderzochte gevallen een resistentie te bestaan tegen organische fosforverbindingen. Deze resistentie bleek ook te bestaan ten opzichte van organische fosforverbindingen, die nooit eerder tegen de onderzochte spintpopulaties gebruikt waren. De resistentie tegen demeton (Systox) bleek bij enkele populaties niet even groot.Tegen acariciden op basis van gechloreerde koolwaterstoffen zoals kelthane en chloorbenzilaat, werd nog geen resistentie bij de onderzochte populaties aangetroffen.Een onderzoek naar de gevoeligheid voor acariciden van spintpopulaties, welke in de directe omgeving buiten de kassen op onkruiden e.d. voorkomen, leidde tot de conclusie dat resistente spintmijten niet buiten de kas voorkomen. De resistentie van spintpopulaties is op de verschillende bedrijven in Aalsmeer zelfstandig spontaan opgetreden. Er bleek geen correlatie te bestaan tussen de verschillende waardplanten (roos, anjer enGerbera) en het optreden van resistentie.Summary During the year 1958 the susceptibility to acaricides of a number of populations of the two-spotted spider mite (Teranychus urticae Auct.) occurring in several nurseries in Aalsmeer (fig. 5) was studied at the Experimental Station for Floriculture at Aalsmeer, The Netherlands.The susceptibility of a population was examined by placing 50 adult female mites on a bean plant, treated with an acaricide. The percentage mortality was determined after four days.In these experiments both spider mite populations in the greenhouses (on roses, carnations andGerbera) and those in the open air near the greenhouses (on weeds) were studied. Fig. 1 gives the susceptibility of the different populations for water, parathion, diazinon, demeton (Systox) and kelthane. Of the 22 populations from glasshouses 20 proved to be resistant to organic P-compounds. Of those collected from weeds growing outside the greenhouses, not a single one proved to be resistant, so that it may be taken for granted that the resistant red spider mite, found in the greenhouse, does not survive outside.A number of populations were examined for their susceptibility to some other acaricides (fig. 2). In this experiment the resistance to those organic P-compounds with which the populations had never been treated before, such as phosdrin, thiometon and phenkapton was observed. It clearly illustrates that there is no question of resistance to a definite acaricide, but to the group of organic P-compounds. Resistance to demeton did not prove to be equally strong for every population.In all cases examined chlorinated hydro-carbons, such as kelthane and chlorobenzilate, proved to be normally active. Resistance to this group of acaricides has not yet been found in Aalsmeer.A special case is stated in fig. 3, where the spider mite population in a cucumberhouse, in which no chemical control had been applied, is compared with a population on nettles outside the glasshouse and a resistant population in a rosehouse of the same nursery.An experiment, repeated on several dates over a period of 13 months (fig. 4), shows that there was no important shift in the susceptibility of the population studied. It is clear that the resistance of two-spotted spider mites to organic P-compounds has been developed in Aalsmeer independently in more than twenty separate glasshouses.In no case the host plant (carnation, rose,Gerbera) proved to have an appreciable influence on the appearence of resistance.  相似文献   

9.
BACKGROUND: Resistance to numerous insecticide classes in Bemisia tabaci Gennadius has impaired field control efficacy in south‐eastern China. The biotype and resistance status of B. tabaci collected from these areas was investigated. RESULTS: Two different biotypes of B. tabaci (B‐biotype and Q‐biotype) were detected in south‐eastern China, and the samples collected from geographical regions showed a prevalence of the Q‐biotype and the coexistence of B‐ and Q‐biotypes in some regions. Moderate to high levels of resistance to two neonicotinoids were established in both biotypes (28–1900‐fold to imidacloprid, 29–1200‐fold to thiamethoxam). Medium to high levels of resistance to alpha‐cypermethrin (22–610‐fold) were also detected in both biotypes. Four out of 12 populations had low to medium levels of resistance to fipronil (10–25‐fold). Four out of 12 populations showed low levels of resistance to spinosad (5.7–6.4‐fold). All populations tested were susceptible to abamectin. CONCLUSION: The Q‐biotype B. tabaci is supplanting the B‐biotype which used to be ubiquitous in China. Field populations of both B‐ and Q‐biotypes of B. tabaci have developed high levels of resistance to imidacloprid and thiamethoxam. Abamectin is the most effective insecticide against adult B. tabaci from all populations. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
The toxicities of eight structurally different acaricidal compounds to six‐legged larvae (first motile stage) of three laboratory strains of the two‐spotted spider mite, Tetranychus urticae, and the European red mite, Panonychus ulmi, were evaluated following spray application. The larvae of five field‐derived strains of T urticae originating from France, Italy, Brazil, California and Florida were also tested for their susceptibilities to discriminating concentrations of several acaricides resulting in 95% mortality when applied to the organophosphate‐resistant laboratory reference strain WI. The spray bioassay used was robust and gave repeatable results with a wide range of acaricidal compounds, irrespective of their mode of action (ovo‐larvicides or primarily acting on motile life stages). Compounds tested were abamectin, azocyclotin, chlorpyrifos, clofentezine, deltamethrin, fenpyroximate, hexythiazox and pyridaben. Larvae of one of the laboratory strains of T urticae, AK, originally collected in Japan in 1996 and maintained without further selection pressure, exhibited 2000‐ and >4000‐fold resistance to the mitochondrial electron transport inhibitors pyridaben and fenpyroximate, respectively. Another strain of T urticae, AU, obtained from Australia and maintained in the laboratory under selection with hexythiazox and clofentezine since 1987 showed >770‐ and >1000‐fold resistance to clofentezine and hexythiazox, respectively. The same resistance pattern was observed against larvae of a laboratory strain of P ulmi, CE, also selected with hexythiazox. Larvae of one of the field‐derived strains of T urticae, BR, showed a lower susceptibility to a number of compounds, whilst the others were susceptible to all compounds except the organophosphates. © 2001 Society of Chemical Industry  相似文献   

11.
BACKGROUND: Spirodiclofen is a selective, non‐systemic acaricide from the new chemical class of tetronic acid derivatives. In order to develop strategies to minimise resistance in the field, a laboratory‐selected spirodiclofen‐resistant strain of the two‐spotted spider mite, Tetranychus urticae Koch, was used to determine genetic, toxicological, biochemical and cross‐resistance data. RESULTS: Selecting for spirodiclofen resistance in the laboratory yielded a strain (SR‐VP) with a resistance ratio of 274, determined on the larval stage. The egg stage remained far more susceptible. No cross‐resistance was found against other established acaricides, except for spiromesifen. Based on synergist experiments and enzyme assays, it appeared that especially P450 monooxygenases, but also esterases and glutathione‐S‐transferases, could be involved in the metabolic detoxification of spirodiclofen. Genetic analysis showed that the resistance is inherited as an intermediate trait under control of more than one gene. CONCLUSIONS: Resistance to spirodiclofen exceeded by far the recommended field rate. A good acaricide resistance management programme is necessary to prevent fast resistance build‐up in the field. Spirodiclofen can be used in alternation with most established acaricides, except for other tetronic acid derivatives. Without selection pressure, resistance tends to be unstable and can decrease in the presence of susceptible individuals owing to the intermediate, polygenic inheritance mode. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
Samples of housefly (Musca domestica) field populations were collected from Danish livestock farms in 1997. The tolerance of the first‐generation offspring was determined for a number of insecticides. Dose‐response values were obtained by topical application for the pyrethroids bioresmethrin and pyrethrum, both synergised with piperonyl butoxide, and the organophosphate dimethoate. The organophosphates azamethiphos and propetamphos and the carbamate methomyl were tested in discriminating dose feeding bioassays. Resistance was low to moderate in most of the populations for most of the compounds tested, but this study also revealed the existence of high resistance to pyrethroid, organophosphate and carbamate insecticides in some populations. The resistance factors at LD50 for bioresmethrin/piperonyl butoxide ranged between 2 and 98, and for pyrethrum/piperonyl butoxide between 2 and 29. Our results indicate that pyrethroid resistance in Denmark is increasing, since four of the 21 farms showed more than 100‐fold resistance at LD95, a level of resistance only observed once before. Resistance factors at LD50 for dimethoate ranged from 9 to 100, and showed two distinct trends: populations with either decreasing or increasing resistance. Resistance to azamethiphos was found to be widespread and high. Although two strains with high methomyl and propetamphos resistance were observed, methomyl and propetamphos resistance is moderate and appears not to be increasing. © 2001 Society of Chemical Industry  相似文献   

13.
French populations of codling moth have developed resistance to several insecticide classes. The susceptibility of susceptible and resistant laboratory strains to diflubenzuron and deltamethrin was evaluated using different exposure methods against various life stages. The tarsal contact method for adults was found to be an appropriate method for testing neurotoxic compounds such as deltamethrin. Insect growth inhibitors, like diflubenzuron, need to be analysed on juvenile instars. Monitoring methodologies were developed and evaluated (a) on neonates obtained by crossing field‐collected males with virgin females from the susceptible laboratory strain so as to overcome the problem of reduced fertility of wild females and (b) on diapausing larvae. All 36 populations analysed exhibited significant levels of resistance to both diflubenzuron and deltamethrin. Resistance to the two compounds was linked, regardless of the cultivation methods used in the monitored area. The monitoring methodologies will be implemented to evaluate the evolution of resistance according to the resistance management strategies that have been adopted. © 2000 Society of Chemical Industry  相似文献   

14.
BACKGROUND: Resistance of Tetranychus urticae Koch to bifenazate was recently linked with mutations in the mitochondrial cytochrome b Qo pocket, suggesting that bifenazate acts as a Qo inhibitor (QoI). Since these mutations might cause cross‐resistance to the known acaricidal QoI acequinocyl and fluacrypyrim, resistance levels and inheritance patterns were investigated in several bifenazate‐susceptible and bifenazate‐resistant strains with different mutations in the cd1 and ef helices aligning the Qo pocket. RESULTS: Cross‐resistance to acequinocyl in two bifenazate‐resistant strains was shown to be maternally inherited and caused by the combination of two specific mutations in the cytochrome b Qo pocket. Although most investigated strains were resistant to fluacrypyrim, resistance was not inherited maternally, but as a monogenic autosomal highly dominant trait. As a consequence, there was no correlation between cytochrome b genotype and fluacrypyrim resistance. CONCLUSIONS: Although there is no absolute cross‐resistance between bifenazate, acequinocyl and fluacrypyrim, some bifenazate resistance mutations confer cross‐resistance to acequinocyl. In the light of resistance development and management, high prudence is called for when alternating bifenazate and acequinocyl in the same crop. Maternally inherited cross‐resistance between bifenazate and acequinocyl reinforces the likelihood of bifenazate acting as a mitochondrial complex III inhibitor at the Qo site. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
Neonicotinoid resistance in rice brown planthopper, Nilaparvata lugens   总被引:1,自引:0,他引:1  
BACKGROUND: Rice brown planthopper, Nilaparvata lugens Stål, is a primary insect pest of cultivated rice, and effective control is essential for economical crop production. Resistance to neonicotinoid insecticides, in particular imidacloprid, has been reported as an increasing constraint in recent years. In order to investigate the extent of resistance, 24 samples of N. lugens were collected from China, India, Indonesia, Malaysia, Thailand and Vietnam during 2005 and 2006. Their responses to two diagnostic doses of imidacloprid (corresponding approximately to the LC95 and 5 × LC95 of a susceptible strain) were examined. RESULTS: Ten of the 12 samples collected during 2005 were found to be susceptible to imidacloprid, but two late‐season samples from India showed reduced mortality at both diagnostic doses. All 13 strains collected in 2006 showed reduced mortality at both doses when compared with the susceptible strain. Dose–response lines showed resistance in one of the most resistant field strains to be approximately 100‐fold compared with the susceptible standard. CONCLUSION: The data demonstrate the development and spread of neonicotinoid resistance in N. lugens in Asia and support reports of reduced field efficacy of imidacloprid. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
Fire blight (Erwinia amylovora), a potentially devastating disease in apple, can cause floral, fruit and structural damage and even tree death. Most commercial apple cultivars are susceptible and the resistance/susceptibility of many modern cultivars has not been evaluated. Fire blight resistance/susceptibility is difficult to phenotype due to quantitative resistance, impacts of tree vigour and environment on susceptibility, and the erratic nature of the disease. Resistance/susceptibility levels were determined for 94 apple cultivars and important breeding parents. In 2016 and 2017, multiple actively growing shoots per tree (about three trees per cultivar) were challenged with E. amylovora Ea153n via a cut-leaf inoculation method. Proportion of current season's shoot length blighted (SLB) was calculated for each shoot. To classify cultivar responses, estimated marginal SLB means were compared to four controls, representing highly susceptible (HS) to highly resistant (HR), via Dunnett's tests. Cultivar responses ranged from HS to HR with estimated marginal SLB means of 0.001–0.995 in 2016 and 0.000–0.885 in 2017. Most cultivars demonstrated similar resistance/susceptibility levels in both years (ρ = 0.657, P < 0.0001). K-means clustering was used to classify cultivars into three resistance/susceptibility groups based on incidence, average severity (SLB), and maximum severity values (maximum SLB and age of wood infected). Sixteen cultivars were consistently moderately resistant (MR) to HR while the remainder ranged from HS to MR. An updated comparison of susceptibility of important cultivars is provided. Resistance/susceptibility information gained could be used to identify genetic loci associated with resistance/susceptibility and/or inform parental selection in apple scion breeding programmes.  相似文献   

17.
BACKGROUND: Microdochium nivale (Fr.) Samuels & Hallet and Microdochium majus (Wollenweber) belong to the Fusarium ear blight (FEB) fungal complex affecting cereals. In 2007 and 2008, major Microdochium sp. infestations were observed in France, and the efficacy of strobilurins was found to be altered in some field trials. The aim of this study was to determine the sensitivity to strobilurins of French isolates of Microdochium and to characterise the possible mechanisms of resistance. RESULTS: Half of the strains collected in 2007 were resistant to strobilurins, and most also displayed strong resistance to benzimidazoles. Strobilurin resistance was found mostly in M. majus isolates. Positive cross‐resistance was observed between all strobilurins tested, but not with the phenylpyrrole derivative fludioxonil and the various classes of sterol biosynthesis inhibitors (SBIs). In most strains, resistance was correlated with the G143A substitution in cytochrome b, the molecular target of strobilurins. Two other mechanisms were also detected at lower frequencies. CONCLUSION: This is the first report of strobilurin resistance in Microdochium. Several resistance mechanisms have evolved independently in populations and may have different impacts on field efficacy. This makes the accurate detection and quantification of QoI resistance difficult. The management of field resistance and efficacy must be adapted to take these findings into account. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
BACKGROUND: The tomato red spider mite, Tetranychus evansi (Baker and Pritchard), is a serious pest of solanaceous crops in many African countries. In this study an investigation has been conducted to establish whether mutation of the para‐type sodium channel underlies pyrethroid resistance in T. evansi strains collected in Southern Malawi. RESULTS: Two T. evansi strains from Malawi showed tolerance to the organophosphate chlorpyrifos and resistance (20–40‐fold) to the pyrethroid bifenthrin, but were susceptible to two contemporary acaricides (abamectin and fenpyroximate) in insecticide bioassays. Cloning of a 3.1 kb fragment (domains IIS5 to IVS5) of the T. evansi para gene from pyrethroid‐resistant and pyrethroid‐susceptible strains revealed a single non‐synonymous mutation in the resistant strains that results in an amino acid substitution (M918T) within the domain II region of the channel. Although novel to mites, this mutation confers high levels of resistance to pyrethroids in several insect species where it has always been associated with another mutation (L1014F). This is the first report of the M918T mutation in the absence of L1014F in any arthropod species. Diagnostic tools were developed that allow sensitive detection of this mutation in individual mites. CONCLUSION: This is the first study of pyrethroid resistance in T. evansi and provides contemporary information for resistance management of this pest in Southern Malawi. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
BACKGROUND: Fenhexamid, a sterol biosynthesis inhibitor effective against Botrytis, inhibits the 3‐ketoreductase (Erg27) involved in C‐4 demethylation. Several fenhexamid‐resistant phenotypes have been detected in Botrytis cinerea populations from French vineyards. The field isolates with the highest resistance levels display amino acid changes in Erg27 (F412S, F412I or F412V). RESULTS: Fenhexamid‐resistant mutants were generated by site‐directed mutagenesis of the erg27 gene in a sensitive recipient strain to overcome the impact of different genetic backgrounds. The wild‐type erg27 allele was replaced by the three mutated alleles (erg27F412S/I/V) by homologous recombination. These isogenic strains were shown to be fenhexamid‐resistant and were used to quantify the impact of F412 mutations on fungal fitness. Several parameters, including radial growth, the production of sclerotia and conidia, freezing resistance and aggressiveness, were quantified in laboratory conditions. Analysis of variance demonstrated significant differences between the mutant and parental strains for some characters. In particular, the mutants grew more slowly than the wild‐type strain and displayed variations in the production of sclerotia and conidia with temperature and susceptibility to freezing. CONCLUSIONS: The results highlight a moderate but significant impact of F412 mutations on the survival capacity of B. cinerea strains displaying high levels of resistance to fenhexamid in laboratory conditions, potentially limiting their dispersal and persistence, particularly in terms of overwintering, in field conditions. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
BACKGROUND: Resistance to spinosad and methoxyfenozide has been studied in several insect pests, but there is a lack of information on Spodoptera exigua (Hübner) in Mexico. Therefore, evidence for the development of resistance in this pest to both compounds was examined. The effects of methoxyfenozide on reproductive parameters of S. exigua adults were also determined.RESULTS: Third instars from a field population were exposed for 24 h to the LC(50) of spinosad or methoxyfenozide for over six generations (G(2)-G(7)). No significant reduction in susceptibility to either compound was detected for up to five generations. In G(7), LC(50) values for insects exposed to spinosad and methoxyfenozide were respectively 2.75-fold and 1.25-fold greater than for G(1) larvae. Oral treatment with methoxyfenozide reduced the fecundity and fertility of G(7) adults, confirming sublethal effects on reproduction. Finally, five populations (Se-La Floriza, Se-Lazareto, Se-Bachigualato, Se-Los Agustinos and Se-Villa de Arista) of S. exigua were collected from fields in three states of Mexico for resistance monitoring to spinosad and methoxyfenozide. With the exception of Se-Villa de Arista, the other populations showed significant resistance to spinosad, with resistance ratios between 16- and 37-fold, compared with a susceptible laboratory colony. In contrast, only one population (Se-Lazareto) showed significant resistance to methoxyfenozide (13-fold).CONCLUSION: Resistance management programmes should be established, particularly in areas where S. exigua has developed resistance to spinosad. Copyright (c) 2008 Society of Chemical Industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号